Supporting information for "Diiron Azamonothiolates via Scission of Dithiadiazacyclooctanes by Iron Carbonyls"

Table of contents:

Variable Temperature ¹ H NMR spectra for $S_2 N_2^{Me}$ in d_8 -THF	pg 1
FTIR spectra of diiron carbonyl complexes disscussed in this report	pg 1
¹ H NMR spectrum of Fe ₂ [SCH ₂ N(CH ₃)CH ₂](CO) ₆ , 1 ^{Me} in CD ₂ Cl ₂	pg 2
$^{1}\text{H-}^{1}\text{H}$ gCOSY spectrum of 1^{Me} in CD ₂ Cl ₂	pg 2
¹ H- ¹³ C HSQC spectrum of 1 ^{Me} in CD ₂ Cl ₂	pg 3
Cyclic Voltammogram of 1 ^{Me}	Pg 3
Arrhenius plots for stereodynamics of 1 ^{Me}	pg 4
Variable Temperature ¹³ C NMR spectra of 1^{Me} in d ⁸ -toluene	pg 4
¹³ C NMR spectra of 1^{Me} in d ⁸ -toluene containing an internal standard	pg 5
Full ¹³ C NMR spectrum of 1^{Me} in d ⁸ -toluene	pg 5
Variable Temperature ¹³ C NMR spectra of 1^{Me} in CD_2Cl_2	pg 6
¹ H NMR spectrum of Fe ₂ [SCH ₂ N(CH ₃)CH ₂](CO) ₅ PPh ₃ , 3 ^{Me} in CD ₂ Cl ₂	pg 6
${}^{31}P{}^{1}H$ NMR spectrum of crystals of 3^{Me} in CD_2Cl_2	pg 7
¹³ C NMR spectrum of crystals o 3^{Me} in CD_2Cl_2	pg 7
¹ H NMR spectrum of crystals of 3^{Me} in CD ₂ Cl ₂ after isomerization	pg 8
$^{31}P{^{1}H}$ NMR spectrum of crystals of 3^{Me} in CD ₂ Cl ₂ after isomerization	pg 8
¹ H NMR spectrum of Fe ₂ [SCH ₂ N(CH ₃)CH ₂](CO) ₅ PMe ₃ , 4 ^{Me} in CD ₂ Cl ₂	pg 9
Variable Temperature ${}^{31}P{}^{1}H$ NMR spectra of 4^{Me} in d^{8} -toluene	pg 9
Full ¹³ C NMR spectrum of 4^{Me} in d ⁸ -toluene	pg 10
13 C NMR spectrum of 4^{Me} in d^8 -toluene at -60 °C highlighting CO region	pg 10
¹ H NMR spectrum of Fe ₂ [SCH ₂ N(CH ₃)CH ₂](CO) ₄ (dppe), 5 ^{Me} in CD ₂ Cl ₂	pg 11
$^{31}P\{^{1}H\}$ NMR spectrum of 5^{Me} in $CD_{2}Cl_{2}$	pg 11
¹³ C NMR spectrum of 5^{Me} in CD ₂ Cl ₂	pg 12

Figure S1: ¹H NMR spectra (500 MHz, d_8 -THF) of S₂N^{Me}₂ at two temperatures. * Residual solvent. δ 2.44 (s, 6H, NC*H*₃), 4.24 (d, 4H, NC*H*₂S), 4.52 (d, 4H, NC*H*₂S).

Figure S2. IR spectra of compounds discussed in this report recorded in hexanes.* Recorded on CH₂Cl₂ solutions.

Figure S3. ¹H NMR spectrum (500 MHz, CD_2Cl_2 solution) of **1**^{Me}. Assignments: δ 2.17 (s, 3H, NC*H*₃), 2.73 (d, 1H, NC*H*₂Fe), 3.03 (dd, 1H, NC*H*₂Fe), 3.52 (d, 1H, NC*H*₂S), 4.63 (dd, 1H, NC*H*₂S).

Figure S4. ¹H-¹H correlation (COSY) NMR spectrum (500 MHz, CD_2Cl_2 solution) of 1^{Me} .

Figure S5. ¹H-¹³C heteronuclear single-quantum correlation (HSQC) NMR spectrum (500 MHz, CD_2Cl_2 solution) of $\mathbf{1}^{Me}$.

Figure S6. Cyclic Voltammogram of 1^{Me} at various scan rates. *Conditions:* 3mM solution in CH₂Cl₂, 0.1M NBu₄PF₆ electrolyte; glassy carbon working electrode, Ag/AgCl reference electrode, and Pt wire counter electrode.

Figure S7. Arrhenius plots for the dynamic processes of 1^{Me} described by k_{rigid} (left), and $k_{non-rigid}$ (right).

Figure S8: ¹³C NMR spectra (125.7 MHz, d_8 -toluene solution) of compound 1^{Me} at various temperatures (black), and NMR simulations (red) at various temperatures (°C). Simulations were generated using WIND-NMR software provided by Hans J. Reich, University of Wisconsin.

Figure S9. ¹³C NMR spectra (125.7 MHz, d_8 -toluene solution) of 1^{Me} at two temperatures with ethylacetoacetate as an internal standard. *Rigid, ** Non-rigid.

Figure S10. ¹³C{¹H} NMR spectrum (125.7 MHz, d₈-toluene solution) of 1^{Me} at 20 °C. * Residual solvent. *Assignments:* δ 52.7 (s, 1C, NCH₃), 57.4 (s, 1C, NCH₂Fe), 73.1 (s, 1C, NCH₂S).

Figure S11. ¹³C{¹H} NMR spectra (126 MHz, CD₂Cl₂ solution) of 1^{Me} recorded at various temperatures.

Figure S12. ¹H NMR spectrum of crystals of **3**^{Me} (500 MHz, CD₂Cl₂ solution). *Assignments:* δ 2.06 (s, 3H, NC*H*₃), 2.12 (d, 1H, NC*H*₂Fe), 2.23 (dd, 1H, NC*H*₂Fe), 3.39 (d, 1H, NC*H*₂S), 4.12 (dd, 1H, NC*H*₂S), 7.40-7.55 (2s, 15H, P(C₆*H*₅)₃.

Figure S13. ³¹P{¹H} NMR spectrum of crystals of $\mathbf{3}^{Me}$ (202 MHz, CD₂Cl₂ solution). *Assignments:* δ 70.60 (PPh₃).

Figure S14. ¹³C NMR spectrum (125.7 MHz, CD₂Cl₂ solution) of $\mathbf{3}^{Me}$ at 20 °C. Inset: * Residual solvent. *Assignments:* δ 64.7 (s, 1C, NCH₂Fe), 72.6 (s, 1C, NCH₂S), 129-134 (P(C₆H₅)₃).

Figure S15. ¹H NMR spectrum of crystals of 3^{Me} (500 MHz, CD₂Cl₂ solution) highlighting minor isomer that forms after 24 h. *Assignments:* δ 1.51 (s, 3H, NCH₃), 2.57 (d, 1H, NCH₂Fe), 2.97 (d, 1H, NCH₂Fe), 3.06 (d, 1H, NCH₂S), 3.86 (d, 1H, NCH₂S), 7.45-7.70 (2s, 15H, P(C₆H₅)₃.

Figure S16. ³¹P{¹H} NMR spectrum of crystals of $\mathbf{3}^{Me}$ (202.3 MHz, CD₂Cl₂ solution) after 24 h.

Figure S17. ¹H NMR spectrum (500 MHz, CD_2Cl_2 solution) of 4^{Me}. *Assignments:* $\delta 1.21$ (d, 9H, P(CH₃)₃), 2.12 (2, 3H, NCH₃), 2.44 (d, 1H, NCH₂Fe), 2.85 (dd, 1H, NCH₂Fe), 3.36 (d, 1H, NCH₂S), 4.59 (dd, 1H, NCH₂S).

Figure S18. ³¹P{¹H} NMR spectrum (202.3 MHz, d_8 -toluene solution) of 4^{Me} at various temperatures.

Figure S19. ¹³C NMR spectrum (125.7 MHz, d_8 -toluene solution) of **4**^{Me} at 20 °C. * Residual solvent. *Assignments:* δ 13.5 (d, 1C, P(CH₃)₃, J_{PC} = 28.9 Hz), 47.3 (s, 1C, NCH₃), 52.0, (s, 1C, NCH₂Fe), 67.8 (s, 1C, NCH₂S), 208-215 (3s, 3 C, Fe(CO)₃).

Figure S20. ¹³C NMR spectrum (125.7 MHz, d_8 -toluene solution) of 4^{Me} at -60 °C. * Rigid iron center (3C, Fe^{CH2}(CO)₃)** non-rigid iron center (2C, Fe^{NMe}(CO)₂PMe₃).

Figure S21. ¹H NMR spectrum (500 MHz, CD_2Cl_2 solution) of **5**^{Me}. *Assignments:* $\delta 2.06$ (s, 3H, NCH₃), 2.56 (dd, 1H, NCH₂Fe), 3.02 (d, 1H, NCH₂Fe), 3.68 (dd, 1H, NCH₂S), 5.01 (d, 1H, NCH₂S), 0.9-2.10 (m, 10H, PCH₂CH₂P), 7.37-7.95 (m, 20H, P(C₆H₅)₂).

Figure S22. ³¹P{¹H} NMR spectrum (202.3 MHz, CD₂Cl₂ solution) of 5^{Me} . $J_{PP} = 11.8$ Hz.

Figure 3. ¹³C NMR spectrum (125.7 MHz, CD_2Cl_2 solution) of **5**^{Me} at 20 °C. *Residual solvent. *Assignments:* $\delta 20.8$ (t, 1C, PCH_2CH_2P), 27.3 (t, 1C, PCH_2CH_2P), 560 (d, 1C, NCH_2Fe), 75.5 (d, 1C, NCH_2S), 128.33-133.24 (m, 24 C, $P(C_6H_5)_2$), 214-225 (4d, 4C, $Fe(CO)_2$).