Supplementary Information

Protein quality control at the inner nuclear membrane

Anton Khmelinskii^{1,9}, Ewa Blaszczak^{2,3,9}, Marina Pantazopoulou⁴, Bernd Fischer^{5,6}, Deike J. Omnus⁴, Gaëlle Le Dez^{2,3}, Audrey Brossard^{2,3}, Alexander Gunnarsson⁴, Joseph D. Barry⁵, Matthias Meurer¹, Daniel Kirrmaier¹, Charles Boone⁷, Wolfgang Huber⁵, Gwenaël Rabut^{2,3,*}, Per O. Ljungdahl^{4,*}, Michael Knop^{1,8,*}

- 1) Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- 2) Centre National de la Recherche Scientifique, UMR 6290, Rennes, France
- 3) Institut de Génétique et Développement de Rennes, Université de Rennes 1, Rennes, France
- 4) Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- 5) Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- 6) Computational Genome Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 7) Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- 8) Cell Morphogenesis and Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 9) These authors contributed equally to this work.

* Corresponding authors

This PDF contains

Supplementary Methods

Supplementary Notes 1 and 2

Description of Supplementary Tables 1, 2 and 3

Supplementary Tables 4 and 5

Table of Contents

1.	Supplementary Methods	3
	tFT library construction: overview and workflow	3
	1.1. Tagging strategy	4
	1.2. Library background strain	4
	1.3. Selection of ORFs	4
	1.4. Primers for PCR targeting of the tagging module	5
	1.5. Amplification of the tagging module	6
	1.6. Transformation	6
	1.7. Verification primers	6
	1.8. Diagnostic PCR	7
	1.9. Whole colony imaging	8
2.	Supplementary Notes	9
	2.1. Supplementary Note 1	9
	2.2. Supplementary Note 2	9
3.	Supplementary Tables	10
	Supplementary Table 1: Correlation coefficients between genetic interaction profiles	10
	Supplementary Table 2: Strains in the tFT library	10
	Supplementary Table 3: Protein stability changes in screens with the tFT library	10
	Supplementary Table 4: Yeast strains used in this study	11
	Supplementary Table 5: Plasmids used in this study	13
4.	References	14

1. Supplementary Methods

Here we describe the construction of a genome-wide library of *S. cerevisiae* strains each expressing a different protein tagged with a tFT, hereafter referred to as tFT library.

tFT library construction: overview and workflow

First, we selected a tFT suitable for studies of protein dynamics in this organism. The mean and median half-life of the *S. cerevisiae* proteome is ~43 min, as determined with cycloheximide chase experiments using strains expressing proteins fused to the TAP tag¹. A tFT composed of the slower maturing red fluorescent protein mCherry² and the faster maturing green fluorescent protein sfGFP³ can be used to study the degradation of proteins with half-lives between ~10 min and ~8 h⁴ (see also Supplementary Note 1). The dynamics of most yeast proteins could thus be analyzed with this tFT. Therefore, we constructed a module for seamless protein tagging with the mCherry-sfGFP timer (described in section 1.1).

Second, we selected a strain background for library construction. Various genome-wide libraries of yeast strains carrying genome manipulations such as gene deletions or tagged loci have been constructed over the last fifteen years^{5,6}. With synthetic genetic array (SGA) technology, different genome manipulations present in such libraries can be combined using automated procedures⁷, greatly expanding the potential applications of each individual library. Therefore, we decided to construct the tFT library in a strain background compatible with SGA. We introduced the genetic elements required for seamless protein tagging into the SGA entry strain Y8205⁸, generating the library background strain yMaM330 (described in section 1.2).

Third, we selected the open reading frames (ORFs) to be tagged with the tFT. We sought to reduce potential artifacts (e.g. protein mislocalization) caused by tagging and avoid tagging proteins localized to subcellular compartments that affect the properties of the timer. Moreover, we decided to exclude proteins unlikely to be expressed under standard yeast growth conditions. Using information from previous systematic protein tagging enterprises⁹⁻¹¹ and annotations collected in the *Saccharomyces* Genome Database (http://www.yeastgenome.org), we selected a total of 4081 ORFs (described in section 1.3).

Next, we proceeded to tag each ORF at the respective endogenous chromosomal locus with the mCherry-sfGFP timer. Strain manipulations were automated and performed in 96-well format whenever possible. Each ORF was assigned unique plate and well coordinates to facilitate the construction process. Following this coordinate system, ORF-specific primers required for tagging by PCR targeting (described in section 1.4) were obtained from IDT (Integrated DNA Technologies) in 96-well format. The module for seamless protein tagging with the mCherry-sfGFP timer was integrated into each selected genomic locus using conventional PCR targeting¹² and lithium acetate transformation of yeast¹³. The protocols were optimized for 96-well format such that up to 480 different strains could be constructed in parallel. Briefly, the tagging module was PCR amplified with ORF-specific primers containing short overhangs homologous to each genomic locus (described in section 1.5). Competent yMaM330 cells, prepared from a single colony, were transformed with each PCR product (described in section 1.6). Each transformation mixture (specific for a different ORF) was then manually plated onto a separate 9 cm plate with selective agar medium and incubated at 30°C until distinct colonies were visible. From each plate, six clones were manually purified for single colonies and four purified clones were subsequently inoculated into four separate 96-well plates according to the coordinates assigned to each ORF. Therefore, starting with 45 96-well plates of ORF-specific primers for PCR targeting, we obtained 45x4 plates of purified clones grown in liquid medium that were stored at -80°C at the end of the first round of transformations. Verification primers were obtained from IDT (Integrated DNA Technologies) in 96well format using the same coordinate system (described in section 1.7) and used to test for correct integration of the tagging module into each locus by diagnostic PCR (described in section 1.8). For a subset of ORFs, the PCR gave unclear or ambiguous results and was therefore repeated using new validation primers (described in section 1.7). ORFs for which correct integration of the tagging module could not be confirmed for at least 2 clones were taken through a

second round of transformations using ORF-specific primers with longer overhangs homologous to each genomic locus (described in section 1.4). ORFs for which correct integration of the tagging module could not be confirmed for at least 2 clones after two rounds of transformation were taken through a third and final round of manual transformations. Finally, fluorescence intensities of all strains were measured with a fluorescence plate reader to identify clones validated by diagnostic PCR that nevertheless failed to express a tFT fusion due to mutations in the ORF-specific primers used for PCR targeting (described in section 1.9). In total, we obtained at least 2 validated clones for 3952 ORFs, 1 validated clone for 92 ORFs and no validated clones for 37 ORFs (Supplementary Table 2).

1.1. Tagging strategy

Studies in *S. cerevisiae* suggest that N-terminal residues of most proteins are likely to encode signals regulating protein turnover^{14,15}. Although a variety of signals can also occur at the C-terminus of many proteins, in the absence of a systematic comparison between the effects of Nand C-terminal tagging, the tFT library was constructed using C-terminal tagging. We applied a seamless tagging approach that reduces the impact of introducing foreign sequences into the yeast genome and allows expression of protein fusions for their endogenous chromosomal loci under the control of both upstream and downstream gene regulatory elements¹⁶. We designed a module for seamless protein tagging with the mCherry-sfGFP timer that contains the following elements: S3 primer annealing site, mCherry sequence, I-Scel cut site, terminator sequence of the CYC1 gene from Saccharomyces paradoxus, URA3 gene with endogenous promoter and terminator from S. cerevisiae, second I-Scel cut site, mCherry^{ΔN}-sfGFP sequence coding for a Cterminal fragment of mCherry followed by sfGFP, S2 primer annealing site (plasmid pMaM168 in Supplementary Table 5, Extended Data Fig. 3a). After integration of this module into a locus of interest using conventional PCR targeting, an mCherry-tagged protein is expressed. All auxiliary sequences required for clonal selection can then be excised from the genome through conditional expression of the I-Scel endonuclease, leading to the expression of an mCherry-sfGFP-tagged protein (Extended Data Fig. 3a). The seamless excision process is practically error free for the majority of yeast genes and thus does not require validation¹⁶.

1.2. Library background strain

The library background strain is based on the SGA entry strain Y8205⁸. The Y8205 strain (MAT α *can1* Δ ::*STE2pr-SpHIS5 lyp1* Δ ::*STE3pr-LEU2 his3* Δ *1 leu2* Δ *0 ura3* Δ *0*) can be crossed with strains of the opposite mating type carrying genome manipulations such as deletions of non-essential genes¹⁷, temperature-sensitive (*ts*) alleles^{18,19} or decreased abundance by mRNA perturbation (DAmP) alleles²⁰ of essential genes. Importantly, this strain contains the genetic elements (*can1* Δ ::*STE2pr-SpHIS5 lyp1* Δ ::*STE3pr-LEU2*) necessary for selection of haploid double mutant progeny during the SGA procedure.

The seamless tagging strategy used to construct the tFT library relies on conditional expression of the I-Scel endonuclease¹⁶ (Extended Data Fig. 3a). We constructed the plasmid pND32-8 carrying the *I-SCEI* sequence, placed under the control of the galactose-inducible promoter from the *GAL1* gene, and the nourseothricin resistance gene *natNT2*¹² (Supplementary Table 5). The *GAL1pr-I-SCEI-natNT2* sequence was then integrated into the *leu2* Δ 0 locus in the Y8205 strain by PCR targeting with primers ISce1-Nat-A (tcaaaaagatccatgtataatcttcattattacagccctcttgacttatttcaggaaagttt cggaggag) and ISce1-Nat-B (gtttcgtctaccctatgaacatattccattttgtaatttcgtgtcgcaagaatttcgttttaaaaccta ag) and pND32-8 as template. Correct integration was verified by PCR. Tagging of all selected ORFs with the mCherry-sfGFP timer was performed in the resulting strain yMaM330 (Supplementary Table 4).

1.3. Selection of ORFs

We sought to reduce potential artifacts in the tFT library and to rationalize the labor required for library construction. Previously, most *S. cerevisiae* ORFs were successfully fused to a common tag at respective endogenous loci in a haploid reference strain⁹⁻¹¹. The C-terminally tagged proteins

could be detected by fluorescence microscopy, flow cytometry or immunoblotting at levels close to endogenous^{9,10,21,22}. However, some protein fusions could not be detected or analyzed because the C-terminus is important for protein function^{9,10}. We sought to avoid tagging ORFs encoding such proteins. Moreover, the properties of the mCherry-sfGFP timer depend on the intracellular environment²³. We sought to avoid tagging ORFs encoding proteins that localize to compartments with extreme environments such as the lumen of the vacuole or the cell wall/extracellular space.

Therefore, we selected all verified or uncharacterized ORFs from the *Saccharomyces* Genome Database assigned to the following gene ontology (GO) terms: GO:0005829 [cytosol], GO:0005634 [nucleus], GO:0005886 [plasma membrane], GO:0005737 [cytoplasm], GO:0016021 [integral to membrane] (as of 09/08/2010) and GO:0005739 [mitochondrion] (as of 07/09/2010). ORFs from the mitochondrial genome and the 2μ plasmid were not included. For each protein localization pattern defined in a systematic localization study of GFP protein fusions in yeast⁹, ORFs absent from our list were manually inspected for possible inclusion. ORFs encoding the following proteins were subsequently removed from the selection:

- cell wall proteins (manually curated list of ORFs assigned to the GO terms GO:0005618 [cell wall] or GO:0009277 [fungal-type cell wall] as of December 2009);
- glycosylphosphatidylinositol (GPI)-anchored proteins²⁴;
- tail-anchored proteins^{20,25};
- proteins with one of the following motifs at the C-terminus: HDEL, KKXX, CaaX ('X' stands for any amino acid, 'a' stands for an aliphatic amino acid) or the PTS1 peroxisomal targeting signal (selected using the Yeast Genome Pattern Matching tool at http://www.yeastgenome.org/cgi-bin/PATMATCH/nph-patmatch as of 30/08/2010);
- proteins fatty acylated at the C-terminus (manually curated list of proteins obtained from the UniProt Knowledgebase, http://www.uniprot.org as of 14/09/2010).

The resulting list was further curated using information from previous genome-wide tagging efforts⁹⁻¹¹ and a proteome-wide mass spectrometry study²². We decided to exclude ORFs encoding proteins that were tagged but could not be detected in any previous genome-wide tagging study⁹⁻¹¹. ORFs encoding proteins that were not detected by mass spectrometry²² and either were not detected by fluorescence microscopy after tagging with GFP⁹ or no information on the expression of tagged proteins was available in any genome-wide library of protein fusions⁹⁻¹¹ were also excluded. This resulted in a list of 4081 ORFs (Supplementary Table 2).

1.4. Primers for PCR targeting of the tagging module

S2/S3 primers for PCR amplification of the tagging module were designed as previously described¹³. Sequences of all ORFs with untranslated regions 1000 bases upstream of the initial ATG and 1000 bases downstream of the stop codon were downloaded from the Saccharomyces Genome Database (orf genomic 1000.fasta.gz as of December 2009) and used for primer design. For each ORF, an S3 primer was composed of 55 nucleotides before the stop codon (excluding stop) followed by cgtacgctgcaggtcgac and an S2 primer was composed of the reverse complement of 55 nucleotides downstream of the stop codon (including stop) followed by atcgatgaattcgagctcg. All primers were obtained from IDT (Integrated DNA Technologies) in 96-well format. Unique plate and well coordinates were assigned to each ORF such that each well contained a mixture of S2/S3 primers for a different ORF at 5 µM concentration. A distinct well was left empty on each plate for identification purposes (plate 1 – well A1 empty, plate 2 – well A2 empty, etc.). Four wells on each plate were served as controls in PCR amplification of the tagging module: well H9 was left empty; well H10 contained a mixture of S2/S3 primers for HSP104, which performed robustly in PCR amplification of tagging modules (data not shown); well H11 contained a mixture of S2/S3 primers for SPC110, which yielded a PCR product only under optimal conditions (data not shown); well H12 was left empty.

New tagging primers were obtained for the ORFs for which no positive clones were identified by diagnostic PCR in the first round of transformations. For each ORF, the new S3 primer was composed of 62 nucleotides before the stop codon (excluding stop) followed by

cgtacgctgcaggtcgac and the new S2 primer was composed of the reverse complement of 61 nucleotides downstream of the stop codon (including stop) followed by atcgatgaattcgagctcg.

1.5. Amplification of the tagging module

The module for seamless protein tagging with mCherry-sfGFP was PCR amplified in 96-well format using the plasmid pMaM168 (Supplementary Table 5) as template and ORF-specific S2/S3 primers in each well, as follows. Cooled 96-well PCR plates (4titude, 4ti-0960) were filled with 45 µl per well of a PCR mix (each well received 10 µl of 5x Herculase II buffer (Agilent Technologies), 0.5 µl of 100mM stock of dNTPs (Fermentas, R0141/0151/0161/0171), 0.075 µl of 1M stock MgCl₂, 5 µl of 5M stock of betaine (Sigma-Aldrich, 61962), 0.5 µl of template DNA (200 ng/µl stock), 28.675 µl of H₂O and 0.25 µl of Herculase II Fusion DNA polymerase (Agilent Technologies, 600679)) using a Multiprobe II liquid handling 8-channel robot (Perkin Elmer). A mixture of ORF-specific S2/S3 primers (5 µl of 5µM stock) was added to each well from 96-well primer source plates (see section 1.4) using the liquid handling 8-channel robot. The plates were sealed with peelable aluminum seals (Agilent, 24210-001) using a Velocity11 PlateLoc sealer. PCR was then carried out in PTC-225 PCR cyclers (MJ Research) using the following program: 2 min at 95°C, 30 cycles of 20 s at 95°C/20 s at 64°C/2 min 20 s at 72°C, 3 min at 72°C and incubation at 4°C. Control reactions in wells H8-H11 of each 96-well plate were examined by agarose gel electrophoresis to ensure successful amplification of the tagging module.

1.6. Transformation

Preparation of yeast competent cells and transformations were carried out essentially as previously described¹³. Briefly, a pre-culture of the strain yMaM330 was grown to saturation in rich YPD medium (1% yeast extract, 2% peptone, 2% glucose) and used to inoculate a 5 L YPD culture to optical density of 0.2 (OD_{600nm}). After growth at 30°C to OD_{600nm} of 2.0, the cells were collected by centrifugation (500 g for 5 min at room temperature), washed first with 5 L of sterile water and finally with 1 L of LiSorb (100mM lithium acetate (L4158, Sigma), 1M sorbitol (1.07758.1000, Merck), 10mM Tris/HCI pH 8, 1mM EDTA/NaOH pH 8, adjusted to pH 8 with acetic acid). The cell pellet was resuspended in 45 ml of LiSorb, aliquoted and stored at -80°C. For transformations, a thawed aliquot of cells was mixed 18:2 with pre-boiled carrier DNA (salmon sperm DNA, #15632-011, Invitrogen).

Transformations were performed in 96-deepwell plates (Eppendorf, 0030 502.132). 50 µl of competent yMaM330 cells were pipetted into each well. Using a Platetrak 96-channel liquid handling robot (Perkin Elmer), 5 µl of amplified tagging module were transferred from each PCR plate (see section 1.5) into the corresponding transformation plate. 300 µl of LiPEG (100mM lithium acetate (L4158, Sigma), 10mM Tris/HCl pH 8, 1mM EDTA/NaOH pH 8, 40% (w/v) polyethylene glycol (P4338, Sigma)) were subsequently added to each well and thoroughly mixed. The plates were sealed with gas permeable adhesive seals (AB-0718, Thermo Scientific) and incubated for 40 min in a 42°C water bath. After a centrifugation step (5 min at 500 g), the supernatant was removed and the cell pellet was resuspended in 100 µl per well of synthetic medium devoid of uracil (SC-Ura) using the 96-channel liquid handling robot. The cell suspension from each well was manually plated onto a separate 9 cm plate with SC-Ura agar medium. The plates were incubated at 30°C for 3 days until clear colonies were visible in the control transformation plate).

Six clones from each 9 cm plate were manually streaked for single colonies on SC-Ura agar medium and incubated at 30°C for 2 days. For each ORF, four purified clones were inoculated in 96-well format (each well contained 150 μ l of SC-Ura medium with 15% (v/v) of glycerol), with each clone at the same well position in a separate 96-well plate. The plates were sealed with gas permeable adhesive seals, incubated at 30°C for 2 days and stored at -80°C.

1.7. Verification primers

ORF-specific verification primers that anneal within each ORF were designed using BatchPrimer3 v1.0²⁶ (http://batchprimer3.bioinformatics.ucdavis.edu/index.html as of 22/10/2010),

a high-throughput web implementation of Primer3²⁷. For each ORF, a sequence composed of 1000 nucleotides before the STOP codon followed by the tag was entered into BatchPrimer3. Using the 1st set of constraints indicated below (min/optimal/max values are specified for each parameter), a unique primer with two consecutive G and/or C nucleotides at the 3' end that would yield a PCR product around 450 nucleotides long, when used together with a generic reverse primer (atggccatgttatcctcctg) that anneals 71 nucleotides downstream of the start of the tag, was selected for each ORF. When no satisfactory primer could be found, the 2nd set of relaxed constraints or finally the 3rd set were used.

Selection of verification primers (first round)

	1st set	2nd set	3rd set
PCR product length (nucleotides)	300/450/600	300/450/600	300/450/670
primer length (nucleotides)	19/20/21	18/20/22	18/20/24
melting temperature (°C)	60/63/65	59/63/66	59/63/66
GC content (%)	25/50/75	25/50/75	25/50/75
satisfactory primers	3911	158	12

These primers were used in the first round of diagnostic PCR. For 360 ORFs with ambiguous results, the diagnostic PCR was repeated with new ORF-specific primers, designed using the constraints indicated below (no optimal PCR product length in the 1st set, optimal PCR product length of 250 or 600 nucleotides in the 2nd and 3rd sets of constraints).

Selection of verification primers (second round)

	1st set	2nd set	3rd set
PCR product length (nucleotides)	300/0/600	250/<>/600	250/<>/600
primer length (nucleotides)	19/20/21	18/20/22	18/20/24
melting temperature (°C)	60/63/65	59/63/66	59/63/66
GC content (%)	25/50/75	25/50/75	25/50/75
satisfactory primers	253	104	3

1.8. Diagnostic PCR

Integration of the tagging module into each genomic locus was tested by PCR. The junction between each ORF and the tag was verified using a forward ORF-specific primer annealing within the ORF and a generic reverse primer annealing within the tag (see section 1.7). Cooled 96-well PCR plates (4titude, 4ti-0960) were filled with 35 μ l per well of a PCR mix (each well received 4 μ l of 10x long incubation buffer (200mM Tris pH8.8, 100mM (NH₄)₂SO₄, 100mM KCI), 0.16 μ l of 100mM stock of dNTPs (Fermentas, R0141/0151/0161/0171), 0.1 μ l of 1M stock MgCl₂, 4 μ l of 5M stock of betaine (Sigma-Aldrich, 61962), 0.2 μ l of 100 μ M stock of the generic reverse primer (see section 1.7), 25.94 μ l of H₂0 and 0.6 μ l of Taq DNA polymerase (self-made, ~5 U/ μ l) using a Perkin Elmer Multiprobe II liquid handling 8-channel robot. A distinct forward ORF-specific validation primer (4 μ l of 5 μ M stock) was added to each well from 96-well validation primer source plates (see section 1.7). A dense culture of each strain (stored at -80°C as glycerol stock, see section 1.6) added to each well (1 μ l) provided the genomic DNA template. For each ORF-specific

primer, a control PCR was set up with the library background strain yMaM330 as a source of template DNA. The plates were sealed with peelable aluminum seal using a Velocity11 PlateLoc sealer. PCR was then carried out in MJ Research PTC-225 PCR cyclers using the following program: 7 min at 97°C, 38 cycles of 30 s at 95°C/30 s at 58°C/30 s at 72°C, 5 min at 72°C and incubation at 4°C.

All PCR products were examined by agarose gel electrophoresis using 96-well precast gels (2% E-Gel® 96 gels (G7008-02), Invitrogen) and a reference DNA ladder (FastRuler low range DNA ladder (SM1103), Fermentas). Clones with correct chromosomal integration of the tagging module were identified by the presence of a PCR product of expected size in the sample but not in the control PCR.

1.9. Whole colony imaging

Using a RoToR pinning robot (Singer Instruments), all clones from a single 96-well transformation plate were combined in 1536-colony format with 4 technical replicates of each clone. All strains underwent seamless marker excision by sequential growth on galactose (synthetic complete medium containing 2% galactose and 2% raffinose instead of glucose) and 5-FOA plates (synthetic medium containing 5-fluoroorotic acid)¹⁶. Fluorescence intensities of all colonies were measured after ~21 h of growth on glucose medium (synthetic complete medium containing 2% glucose) using an Infinite M1000 Pro microplate reader (Tecan).

2. Supplementary Notes

2.1. Supplementary Note 1

We have previously shown that measurements of protein turnover with the mCherry-sfGFP timer exceed cycloheximide or pulse-chase experiments in both dynamic range and sensitivity. For instance, the turnover of 20 N-degrons differing in the N-terminal residue, which were previously classified into five stability groups based on pulse-chase experiments^{28,29}, could be reliably resolved with the tFT, showing that each of the 20 N-degrons possesses a specific turnover (Supplementary Figure 7 in Ref.⁴).

Cycloheximide chase experiments are limited by the availability of free ubiquitin in the cell. Upon inhibition of translation, ubiquitin is depleted from yeast cell with a half-life of ~2 h³⁰. This prevents reliable turnover measurements for relatively stable proteins. In contrast, the tFT approach is not limited by ubiquitin availability but by the maturation kinetics of the used fluorescent proteins. Degradation of proteins with half-lives between ~10 min and ~8 h can be analyzed with the mCherry-sfGFP timer⁴. Thus, although 3HA-tagged Are2, Yip4, Alg2 and Ybr287w appear rather stable in cycloheximide chase experiments (data not shown), tFT-tagged Are2, Yip4, Alg2 and Ybr287w were identified as Asi substrates in our screens (Fig. 3b) and, accordingly, accumulated at the nuclear rim in the *asi1* Δ mutant (Extended Data Fig. 4c).

Besides the aforementioned differences, we note that protein stability measurements with the tFT based on whole colony fluorescence measurements are not directly comparable with cycloheximide experiments also due to differences in growth conditions. Cycloheximide chase experiments are typically performed with exponentially growing cultures. However, measurements of colony fluorescence detect the signal mostly from the colony surface, where nutrient supply is limited and cells grow slower³¹, with a potential influence on protein expression and turnover. For instance, Aqy2 was identified as an Asi substrate in our screens (Fig. 3b) but was not expressed during exponential growth in synthetic complete medium (data not shown).

2.2. Supplementary Note 2

SILAC mass spectrometry³² or quantitative microscopy can be used to identify potential substrates of degradation pathways based on changes in protein abundance³³⁻³⁵. However, these methods cannot distinguish between changes in abundance that result from altered protein stability and those caused by changes in protein expression. The tFT strategy directly identifies proteins with altered stability. However, in contrast to approached based on mass spectrometry, it has the disadvantage that fusion to the tFT might compromise protein function³⁶. Nevertheless, our screens identified Erg11 among the substrates of the Asi ubiquitin ligase, in agreement with the recent work of Foresti et al.³⁷ Nsg1, another Asi substrate identified by Foresti et al., is a false-negative in our screens, as retesting showed stabilization of Nsg1-tFT upon deletion of *ASI1* (data not shown).

3. Supplementary Tables

Supplementary Table 1: Correlation coefficients between genetic interaction profiles

Pearson correlation coefficients between genetic interaction profiles of *ASI1, ASI2, ASI3, UBC6, UBC7, CUE1, HRD1, DOA10* genes and of all the other genes in the genome-wide genetic interaction map³⁸. The data (Excel file) is available online.

Supplementary Table 2: Strains in the tFT library

Number of validated clones for each ORF in the tFT library, including ORFs with zero validated clones. The data (Excel file) is available online.

Supplementary Table 3: Protein stability changes in screens with the tFT library

Stability changes of each protein in the tFT library in $asi1\Delta$, $asi3\Delta$, $hrd1\Delta$, $doa10\Delta$, $ubc6\Delta$ and $ubc7\Delta$ mutants. z-scores and p-values adjusted for multiple testing are provided. The data (Excel file) is available online.

Supplementary Table 4: Yeast strains used in this study

Strain	Background	Genotype	Source
PLY127	S288c	MATa ura $3-52$ lvs $2\Delta 201$	Liungdahl lab
PI Y966	S288c	MATa ura3-52 lvs2/201 leu2-3 112 ubc6/I FU2	Ref ³⁹
PI Y967	S288c	MATa ura3-52 lvs2/201 leu2-3 112 ubc7/I FU2	Ref ³⁹
PLY1558	S288c	MATa ura3-52 lys2A201 leu2-3 112 ubc6AI EU2 ubc7AnatMX4	Ref ³⁹
PL V1327	S288c	MATa ura3-52 lys2A201 asi1A80hnhMX	l iunadahl lah
PI V1320	S288c	MATa ura3-52 lys2A201 asi7A:kanMX	Ljungdahl lab
RV4741	S288c	MATa his 3A1 hu 2A0 met 15A0 ura 3A0	Ref ⁴⁰
MHV2241	BV4741	ubc/A::kanMY	Hochetrasser Jah
MHV2022	D14741 DV4741	brd1A::kanMX	Dof ⁴¹
MUV2022	D14/41 DV/7/1		Ref. Pof ⁴¹
V0205	C2000	MATalaba hia 2A1 lau 2A0 mat 15A0 ura 2A0	Ref. Bof ⁴⁰
10205	32000	ant A STE2nr snH1S5 lvn1 A STE2nr I El 12	Nel.
	V9205	MATalaba aan1A::STE2pr anHIS5 lyn1A::STE2pr HDH	Dobut Job
SCEDITS	10205	ma raipila calita51 Ezpi-spi 1155 iyp 1251 Espi-11711	Rabuliab
			Debutleb
SCEB133	SCEB115		Rabut lab
SCED 129	SCEDI 10	rauozRADO-VC-halivix	Rabutiab
SCEB130	SCEB115		Rabut lab
SCEB 153	SCEB115		Rabut lab
SCEB121	SCEB115		Rabutiab
SCEB152	SCEB115	UDC6A::VC-UBC6-natMX	Rabut lab
SCGR1267	SCEB115		Rabut lab
SCEB125	SCEB115	ubc8A::UBC8-VC-natMX	Rabut lab
SCEB126	SCEB115	pex4A::PEX4-VC-natMX	Rabut lab
scEB127	scEB115	ubc11A::UBC11-VC-natMX	Rabut lab
scEB123	scEB115	ubc13A::UBC13-VC-natMX	Rabut lab
VN_0484	BY4741	hul4A::HUL4-VN-KIURA3	Bioneer
VN_0394	BY4741	hul5Δ::HUL5-VN-KIURA3	Bioneer
scGR1173	BY4741	pGR703 (expressing RSP5-VN)	Rabut lab
VN_0034	BY4741	tom1Δ::TOM1-VN-KIURA3	Bioneer
VN_0045	BY4741	ufd4∆::UFD4-VN-KIURA3	Bioneer
VN_1027	BY4741	asi1Δ::ASI1-VN-KIURA3	Bioneer
VN_0927	BY4741	asi3Δ::ASI3-VN-KIURA3	Bioneer
VN_2780	BY4741	asr1Δ::ASR1-VN-KIURA3	Bioneer
VN_0860	BY4741	bre1∆::BRE1-VN-KIURA3	Bioneer
VN_3152	BY4741	cwc24∆::CWC24-VN-KIURA3	Bioneer
VN_2108	BY4741	dma1Δ::DMA1-VN-KIURA3	Bioneer
VN_1460	BY4741	dma2Δ::DMA2-VN-KIURA3	Bioneer
VN_4936	BY4741	doa10Δ::DOA10-VN-KIURA3	Bioneer
VN_1175	BY4741	etp1Δ::ETP1-VN-KIURA3	Bioneer
VN_0376	BY4741	fap1Δ::FAP1-VN-KIURA3	Bioneer
scGR1165	BY4741	far1∆::VN-FAR1-URA3	Rabut lab
VN_1990	BY4741	gid2Δ::GID2-VN-KIURA3	Bioneer
VN_1419	BY4741	gid9Δ::GID9-VN-KIURA3	Bioneer
VN_1031	BY4741	hel2Δ::HEL2-VN-KIURA3	Bioneer
VN_5317	BY4741	hrd1Δ::HRD1-VN-KIURA3	Bioneer
VN_0043	BY4741	irc20∆::IRC20-VN-KIURA3	Bioneer
VN_0884	BY4741	mag2Δ::MAG2-VN-KIURA3	Bioneer
scGR1166	BY4741	mot2Δ::VN-MOT2-URA3	Rabut lab
VN_0246	BY4741	mtc5Δ::MTC5-VN-KIURA3	Bioneer
scGR1172	BY4741	nam7Δ::VN-NAM7-URA3	Rabut lab
VN_5066	BY4741	pep3∆::PEP3-VN-KIURA3	Bioneer
VN 5052	BY4741	pep5A::PEP5-VN-KIURA3	Bioneer
VN 5657	BY4741	pex2A::PEX2-VN-KIURA3	Bioneer
VN 5559	BY4741	pex10Δ::PEX10-VN-KIURA3	Bioneer
VN 5469	BY4741	pex12Δ::PEX12-VN-KIURA3	Bioneer
VN_2059	BY4741	psh1Δ::VN-PSH1-KIURA3	Bioneer
VN_0234	BY4741	rad5∆::RAD5-VN-KIURA3	Bioneer
VN_0644	BY4741	rad16Δ::RAD16-VN-KIURA3	Bioneer
VN 1639	BY4741	rad18A::RAD18-VN-KIURA3	Bioneer
VN 0021	BY4741	rkr1Δ::RKR1-VN-KIURA3	Bioneer
VN 0153	BY4741	rtc1Δ::RTC1-VN-KIURA3	Bioneer
VN 1107	BY4741	san1Δ::SAN1-VN-KIURA3	Bioneer
VN 1072	BY4741	six54::SLX5-VN-KIURA3	Bioneer
VN 3137	BY4741	six8A::SLX8-VN-KIURA3	Bioneer
scGR1171	BY4741	ste5Δ::VN-STE5-URA3	Rabut lab
VN 1785	BY4741	ssl1Δ::SSL1-VN-KIURA3	Bioneer
scGR1167	BY4741	tfb3A::VN-TFB3-URA3	Rabut lab
VN 0629	BY4741	tul1ATUI 1-VN-KIURA3	Bioneer
VN 0060	BY4741	ubr2A: UBR2-VN-KIURA3	Bioneer
VN 0020	BY4741	uls1A::UL S1-VN-KIURA3	Bioneer
VN 4927	BY4741	vps8A···VPS8-VN-KIURA3	Bioneer
VN 4447	BY4741	vbr062cA···YBR062C-VN-KIURA3	Bioneer
scGR1168	BY4741	prp194::VN-PRP19-URA3	Rabut lab
		P P	

Strain	Background	Genotype	Source
VN_0419	BY4741	ufd2Δ::UFD2-VN-KIURA3	Bioneer
VN_1367	BY4741	hel1Δ::HEL1-VN-KIURA3	Bioneer
VN_1749	BY4741	itt1Δ::ITT1-VN-KIURA3	Bioneer
VN_3891	BY4741	apc11Δ::APC11-VN-KIURA3	Bioneer
VN_0690	BY4741	cul3A::CUL3-VN-KIURA3	Bioneer
VN_0556	BY4741	rtt101∆::RTT101-VN-KIURA3	Bioneer
scEB300	scEB115	asi1∆::ASI1-VN-KIURA3 ubc6∆::VC-UBC6-natMX	Rabut lab
scEB289	scEB115	asi1∆::ASI1-VN-KIURA3 ubc4∆::UBC4-VC-natMX	Rabut lab
scEB323	scEB115	asi1∆::ASI1-VN-KIURA3 ubc4∆::UBC4-VC-natMX ubc6∆::kanMX	Rabut lab
scEB258	scEB115	asi3∆::ASI3-VN-KIURA3 ubc6∆::VC-UBC6-natMX	Rabut lab
scEB265	scEB115	asi3∆::ASI1-VN-KIURA3 ubc6∆::VC-UBC6-natMX asi1∆::kanMX	Rabut lab
scEB266	scEB115	asi3∆::ASI1-VN-KIURA3 ubc6∆::VC-UBC6-natMX asi2∆::kanMX	Rabut lab
scGR1245	BY4741	asi3Δ::ASI3-TAP-HIS3MX	Open Biosystems
scGR1258	BY4741	asi3Δ::ASI3-TAP-HIS3MX asi1Δ::kanMX	Rabut lab
scGR1260	BY4741	asi3Δ::ASI3-TAP-HIS3MX asi2Δ::kanMX	Rabut lab
scAB17	W303	tor1-1 fpr1::NAT RPL13A-2xFKBP12::TRP1	Rabut lab
		PRE8-FRBGFP::kanMX6 stp2(1-45)-TAP::URA3	
scAB22	scAB17	asi3::HPH	Rabut lab
scAB23	scAB17	ubc6::HPH	Rabut lab
scAB24	scAB17	ubc7::HPH	Rabut lab
AK1234	BY4741	asi1∆::kanMX6	Knop lab
YMaM767	BY4741	ire1∆::natNT2 hrd1∆::hphNT1	Knop lab
YMaM768	BY4741	hac1Δ::natNT2 hrd1Δ::hphNT1	Knop lab
YMaM814	BY4741	ire1Δ::natNT2 hrd1Δ::hphNT1 asi1Δ::kanMX6	Knop lab
YMaM815	BY4741	hac1Δ::natNT2 hrd1Δ::hphNT1 asi1Δ::kanMX6	Knop lab
AK1222	BY4741	hrd1Δ::hphNT1	Knop lab
AK1225	BY4741	doa10Δ::hphNT1	Knop lab
YMaM891	BY4741	$hrd1\Delta$::hphNT1 asi1 Δ ::kanMX6	Knop lab
YMaM892	BY4741	doa10Δ::hphNT1 asi1Δ::kanMX6	Knop lab
YMaM330	Y8205	leu2Δ::GAL1pr-I-SCEI-natNT2	Knop lab
YMaM344	YMaM330	ura3Δ0::mCherrvΔN-I-SceIsite-CYC1term-ScURA3-I-SceIsite-mCherrvΔN	Knop lab
AK1235	BY4741	asi2∆::kanMX6	Knop lab
AK1236	BY4741	asi3∆::kanMX6	Knop lab
AK1237	BY4741	ubc6Δ::kanMX6	Knop lab
AK1238	BY4741	ubc7Δ::kanMX6	Knop lab
AK1239	BY4741	cue1Δ::kanMX6	Knop lab
YMaM758	YMaM330	VTC1-mCherry-sfGFP	Knop lab
YMaM757	YMaM330	FRG11-mCherry-sfGEP	Knop lab
YMaM759	YMaM330	VCX1-mCherry-sfGEP	Knop lab
YMaM762	YMaM330	ARF2-mCherry-sfGFP	Knop lab
YMaM765	YMaM330	YIP4-mCherry-sfGFP	Knop lab
YMaM756	YMaM330	AI G2-mCherry-sfGEP	Knop lab
YMaM764	YMaM330	VTC4-mCherry-sfGEP	Knop lab
YMaM761	YMaM330	YBR287W-mCherry-sfGEP	Knop lab
YMaM763	YMaM330	AQY2-mCherry-sfGEP	Knop lab
YMaM760	YMaM330	FRG1-mCherry-sfGFP	Knop lab
YMaM828	YMaM330	VTC1-mCherry-sfGEP asi1A::hnhNT1	Knop lab
YMaM827	YMaM330	FRG11-mCherny-sfGEP asi1A::hnhNT1	Knop lab
YMaM830	YMaM330	VCX1-mCherny-siGFP asi1A::hphNT1	Knop lab
YMaM831	YMaM330	ARE2-mCherny-sfGEP asi1A::hphNT1	Knop lab
YMaM833	YMaM330	YIP4-mCherry-sfGFP asi1A::hphNT1	Knop lab
VMaM820	VMaM330	AI C2-mCherry-stGEP asi1A::hphNT1	Knop lab
VMaM832	VMaM330	VTCA_mCherny_sfGEP asi1A::hphNT1	Knop lab
YMaM835	YMaM330	VBR287W_mCherry_sfGEP_asi1A::hphNT1	Knop lab
VMaM834	VMaM330	$\Delta O V_2$ -mCherny-sfGEP asi1A::hphNT1	Knop lab
YMaM836	YMaM330	ERG1_mCherry_sfGEP asi1A::hphNT1	Knop lab
VMaM818	VMaM330	VTC1_mCherry_sfGEP hrd1A::hphNT1	Knop lab
VMaM817	VMaM330	EPG11_mCherry_stGFP hrd1A::hphNT1	Knop lab
VMaM820	VMaM330	VCY1-mCherny-stGFP hrd1A::hphNT1	Knop lab
VMaM821	VMaM330	APE2_mChern/_sfGEP hrd1AhphNT1	Knop lab
VMaM823	VMaM330	VIPA-mCherny-stGEP brd1 A::hphNT1	Knop lab
	VMaM220	ALC2 mCherry stGEP hrd1A::hphNT1	Knop lab
VMaM822	VMaM330	VTC4 mCherry sfGEP hrd14::hphNT1	Knop lab
VMaM225	VMaM330	VRD287/M-mCharry-stGED hrd1/1hphNIT1	Knop lab
YMaM23	YMaM220	$\Delta OY2_mCharry_siGEP hrd1 AhphNIT1$	Knop lab
	VMaM330	FRC1_mCharny-stGEP hrd1A::hphNIT1	Knop lab
	RV1711	VTC1_3HA_bobNT1	Knop lab
	D14/41	EDC11 2HA bobNT1	Knop lab
VMaN702	D14/41 DV/7/1		Knop lab
VMaM705	D14/41	VOT FOLIA-TIPHINT I VITCA 2HA babNIT1	Knop lab
	D14/41 DV/7/1	VIO4-JAA-APHINII	Knop lab
	D14/41 DV4744	VICI-JIA-IIPHIVII AJIAKAHIVIAO EDC11 244 hahNT1 ajiAkaHIVIAO	Knop lab
	D14/41 DV4744		Knop lab
	DT4/41 DV4741	VUTCA 2HA hphNT1 ppi1A::KanMX0	Knop lab
	D14/41 DV/7/1	VICT 2HA hohNT1 hollAKallVIAO	Knop lab
1 11/10/04	014/41	v i G i -5HA-HPHNI I HIGI I A.HIdUN I Z	

Strain YMaM863 YMaM866 YMaM868 YDK179 YDK178 YDK180 YDK181 YDK182 YDK182 YDK188 YDK223 YDK224 YDK266	Background BY4741 BY4741 BY4741 BY4741 BY4741 BY4741 BY4741 BY4741 BY4741 BY4741 YMaM330 YMaM330 YMaM330	Genotype ERG11-3HA-hphNT1 hrd1Δ::natNT2 VCX1-3HA-hphNT1 hrd1Δ::natNT2 VTC4-3HA-hphNT1 hrd1Δ::natNT2 VTC1-3HA-hphNT1 asi1Δ::kanMX6 hrd1Δ::natNT2 doa10Δ::KIURA3 ERG11-3HA-hphNT1 asi1Δ::kanMX6 hrd1Δ::natNT2 doa10Δ::KIURA3 VCX1-3HA-hphNT1 asi1Δ::kanMX6 hrd1Δ::natNT2 doa10Δ::KIURA3 VTC4-3HA-hphNT1 asi1Δ::kanMX6 hrd1Δ::natNT2 doa10Δ::KIURA3 VTC4-myeGFP-kanMX sfGFPΔC-I-Scelsite-SpCYC1term-ScURA3-SpTEF1pr-I-Scelsite-sfGFP-VTC1 sfGFPΔC-I-Scelsite-SpCYC1term-ScURA3-SpTEF1pr-I-Scelsite-sfGFP-VTC4 sfGFP-VTC1	Source Knop lab Knop lab Knop lab Knop lab Knop lab Knop lab Knop lab Knop lab
YDK266	YMaM330	sfGFP-VTC1	Knop lab
YDK267	YMaM330	sfGFP-VTC4	Knop lab

Supplementary Table 5: Plasmids used in this study

Plasmid	Description	Source
pRS316	CEN ARS URA4 low copy yeast/E. coli shuttle plasmid	Ref.42
pRS317	CEN ARS LYS2 low copy yeast/E. coli shuttle plasmid	Ref.42
pCA047	pRS316 (URA3) containing STP1-3HA	Ref.43
pCA111	pRS316 (URA3) containing STP2-3HA	Ref.43
pDO74	pRS316 (URA3) containing STP1-RI ₁₇₋₃₃ -3HA	Ref.44
pAG04	pRS316 (URA3) containing STP2 Δ_{2-13} -3HA	Ljungdahl lab
YCpAGP1-LacZ	AGP1pr-lacZ in CEN URA3	Ref. ⁴⁵
pFA6a	E. coli plasmid containing the ampicillin resistance gene ampR	Ref.46
pFA6a-KanMX6	pFA6a-KanMX6	Ref.46
pKS133	pFA6a-HphNT1	Ref. ¹²
pKS134	pFA6a-NatNT2	Ref. ¹²
pYM24	pFA6a-3HA-HphNT1	Ref. ¹²
pMaM168	pFA6a-mCherry-I-SceIsite-SpCYC1term-ScURA3-I-SceIsite-mCherry∆N-sfGFP	Knop lab
pND32-8	pRS305N-GAL1pr-I-SCEI	Ref. ¹⁶
pMaM173	pFA6a-sfGFP∆C-I-Scelsite-SpCYC1term-ScURA3-SpTEF1pr-I-Scelsite-sfGFP	Knop lab
pYM12monomeric	pFA6a-yeGFP-kanMX6 with A206R mutation	Knop lab
pGR731	pGEX4TG containing GST-Ubc6 ^{∆™}	Rabut lab
pGR732	pGEX4TG containing GST-Ubc7	Rabut lab
pGR738	pETDuet-1 containing GST-Ubc7 + Cue1	Rabut lab
pGR773	pMALXTG containing MBP-Hrd1 ^{C1}	Rabut lab
pGR759	pMALXTG containing MBP-Asi1 ^{RING}	Rabut lab
pGR766	pMALXTG containing MBP-Asi3 ^{RING}	Rabut lab
pGR703	pRS316 (<i>URA3</i>) containing Rsp5-VN	Rabut lab
pGR295	p415TEF1 (LEU2) containing 10His-Ubiquitin	Rabut lab

4. References

- 1. Belle, A., Tanay, A., Bitincka, L., Shamir, R. & O'Shea, E. K. Quantification of protein halflives in the budding yeast proteome. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 13004–13009 (2006).
- 2. Shaner, N. C. *et al.* Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. *Nat. Biotechnol.* **22**, 1567–1572 (2004).
- 3. Pédelacq, J.-D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. *Nat. Biotechnol.* **24**, 79–88 (2006).
- 4. Khmelinskii, A. *et al.* Tandem fluorescent protein timers for in vivo analysis of protein dynamics. *Nat. Biotechnol.* **30**, 708–714 (2012).
- 5. Giaever, G. & Nislow, C. The yeast deletion collection: a decade of functional genomics. *Genetics* **197**, 451–465 (2014).
- 6. Botstein, D. & Fink, G. R. Yeast: an experimental organism for 21st Century biology. *Genetics* **189**, 695–704 (2011).
- 7. Tong, A. H. *et al.* Systematic genetic analysis with ordered arrays of yeast deletion mutants. *Science* **294**, 2364–2368 (2001).
- 8. Tong, A. H. Y. & Boone, C. Synthetic genetic array analysis in Saccharomyces cerevisiae. *Methods Mol. Biol.* **313**, 171–192 (2006).
- 9. Huh, W.-K. *et al.* Global analysis of protein localization in budding yeast. *Nature* **425**, 686–691 (2003).
- 10. Ghaemmaghami, S. *et al.* Global analysis of protein expression in yeast. *Nature* **425**, 737–741 (2003).
- 11. Gavin, A.-C. *et al.* Proteome survey reveals modularity of the yeast cell machinery. *Nature* **440**, 631–636 (2006).
- 12. Janke, C. *et al.* A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. *Yeast* **21**, 947–962 (2004).
- 13. Knop, M. *et al.* Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. *Yeast* **15**, 963–972 (1999).
- 14. Hwang, C.-S., Shemorry, A. & Varshavsky, A. N-terminal acetylation of cellular proteins creates specific degradation signals. *Science* **327**, 973–977 (2010).
- 15. Kim, H.-K. *et al.* The N-terminal methionine of cellular proteins as a degradation signal. *Cell* **156**, 158–169 (2014).
- 16. Khmelinskii, A., Meurer, M., Duishoev, N., Delhomme, N. & Knop, M. Seamless gene tagging by endonuclease-driven homologous recombination. *PLoS ONE* **6**, e23794 (2011).
- 17. Winzeler, E. A. *et al.* Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. *Science* **285**, 901–906 (1999).
- 18. Ben-Aroya, S. *et al.* Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. *Mol. Cell* **30**, 248–258 (2008).
- 19. Li, Z. *et al.* Systematic exploration of essential yeast gene function with temperaturesensitive mutants. *Nat. Biotechnol.* **29**, 361–367 (2011).
- 20. Schuldiner, M. *et al.* Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. *Cell* **123**, 507–519 (2005).
- 21. Newman, J. R. S. *et al.* Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. *Nature* **441**, 840–846 (2006).
- 22. de Godoy, L. M. F. *et al.* Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. *Nature* **455**, 1251–1254 (2008).
- 23. Khmelinskii, A. & Knop, M. Analysis of protein dynamics with tandem fluorescent protein timers. *Methods Mol. Biol.* **1174**, 195–210 (2014).
- 24. De Groot, P. W. J., Hellingwerf, K. J. & Klis, F. M. Genome-wide identification of fungal GPI proteins. *Yeast* **20**, 781–796 (2003).
- 25. Beilharz, T., Egan, B., Silver, P. A., Hofmann, K. & Lithgow, T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. *J.*

Biol. Chem. 278, 8219–8223 (2003).

- 26. You, F. M. *et al.* BatchPrimer3: a high throughput web application for PCR and sequencing primer design. *BMC Bioinformatics* **9**, 253 (2008).
- 27. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. *Methods Mol. Biol.* **132**, 365–386 (2000).
- 28. Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. *Science* **234**, 179–186 (1986).
- 29. Bachmair, A. & Varshavsky, A. The degradation signal in a short-lived protein. *Cell* **56**, 1019–1032 (1989).
- 30. Hanna, J., Leggett, D. S. & Finley, D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. *Mol. Cell. Biol.* **23**, 9251–9261 (2003).
- 31. Vulin, C. et al. Growing yeast into cylindrical colonies. *Biophys. J.* **106**, 2214–2221 (2014).
- 32. Ong, S.-E. *et al.* Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. *Mol. Cell Proteomics* **1**, 376–386 (2002).
- 33. Hemming, M. L., Elias, J. E., Gygi, S. P. & Selkoe, D. J. Proteomic profiling of gammasecretase substrates and mapping of substrate requirements. *PLoS Biol.* **6**, e257 (2008).
- 34. Benanti, J. A., Cheung, S. K., Brady, M. C. & Toczyski, D. P. A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. *Nat. Cell Biol.* 9, 1184–1191 (2007).
- 35. Foresti, O., Ruggiano, A., Hannibal-Bach, H. K., Ejsing, C. S. & Carvalho, P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. *Elife* **2**, e00953 (2013).
- 36. Yewdell, J. W., Lacsina, J. R., Rechsteiner, M. C. & Nicchitta, C. V. Out with the old, in with the new? Comparing methods for measuring protein degradation. *Cell Biol. Int.* **35**, 457–462 (2011).
- 37. Foresti, O., Rodriguez-Vaello, V., Funaya, C. & Carvalho, P. Quality control of inner nuclear membrane proteins by the Asi complex. *Science* **346**, 751–755 (2014).
- 38. Costanzo, M. et al. The Genetic Landscape of a Cell. Science 327, 425–431 (2010).
- 39. Kota, J., Gilstring, C. F. & Ljungdahl, P. O. Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. *J. Cell Biol.* **176**, 617–628 (2007).
- 40. Tong, A. H. Y. & Boone, C. High-Throughput Strain Construction and Systematic Synthetic Lethal Screening in Saccharomyces cerevisiae. *Meth. Microbiol.* **36**, 369–386 (2007).
- 41. Zattas, D., Adle, D. J., Rubenstein, E. M. & Hochstrasser, M. N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates. *Mol. Biol. Cell* **24**, 890–900 (2013).
- 42. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics* **122**, 19–27 (1989).
- 43. Andreasson, C. Receptor-mediated endoproteolytic activation of two transcription factors in yeast. *Genes Dev.* **16**, 3158–3172 (2002).
- 44. Omnus, D. J. & Ljungdahl, P. O. Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. *Mol. Biol. Cell* **25**, 3823–3833 (2014).
- 45. Iraqui, I., Vissers, S., Cartiaux, M. & Urrestarazu, A. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. *Mol. Gen. Genet.* **257**, 238–248 (1998).
- 46. Brachmann, C. B. *et al.* Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* **14**, 115–132 (1998).