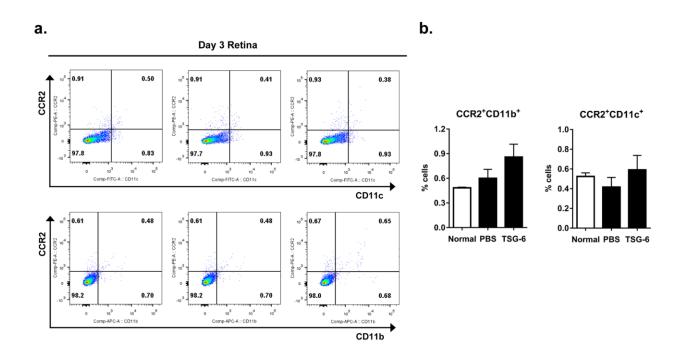
- 1 **Title:** Intravitreal TSG-6 suppresses laser-induced choroidal neovascularization
- 2 by inhibiting CCR2<sup>+</sup> monocyte recruitment.
- 3 **Short title:** Effect of TSG-6 in choroidal neovascularization

4

- 5 **Authors:** Sang Jin Kim, 1, 2 \* Hyun Ju Lee, 3, 4 Ji-Hyun Yun, 2 Jung Hwa Ko, 3, 4 Da
- 6 Ye Choi, 1 Joo Youn Oh3, 4 \*
- 7 \*SJK and JYO equally contributed to the work.

8

9


## Affiliations:

- <sup>1</sup> Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan
- 11 University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, 135-710,
- 12 Korea.
- <sup>2</sup> Samsung Biomedical Research Institute, 50 Irwon-dong, Gangnam-gu, Seoul,
- 14 135-710, Korea.
- <sup>3</sup> Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-
- ro, Jongno-gu, Seoul 110-744, Korea.
- <sup>4</sup> Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical
- 18 Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-
- 19 gu, Seoul 110-744, Korea.

20

The authors declare that no competing financial or personal interests exist.

- 1 Supplementary Figure 1. Flow cytometric analysis of retinal cells at day 3
- 2 after laser photocoagulation to Bruch's membrane.
- 3 TSG-6 treatment did not affect the percentage of CCR2<sup>+</sup>CD11b<sup>+</sup> or
- 4 CCR2<sup>+</sup>CD11c<sup>+</sup> cells in the retina.

