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Methods

Data Preliminaries

Data Source We examine anonymised electronic medical records collected over 10 years
from January 2000 to July 2010 in the United States. The dataset consists of about 200
million visitation records which capture the health conditions of over 7 million patients. All
data used for this study was collected privately and not specifically for research by the Medical
Quality Improvement Consortium (MQIC) data warehouse. Data was contributed by users of
the Centricity EMR electronic health record (GE Healthcare, Barrington, Ill., USA). All patient
data is de-identified with no name or address or any other personal information apart from age,
gender, and ethnicity.

Data Schema Our source dataset, Dorig, contains medical records with the following fields: a)
anonymised patient identifier, b) timestamp, and c) a string defining the International Statistical
Classification of Diseases and Related Health Problems edition 9 (ICD-9) diagnostic code. The
patient identifier is a unique integer value, the timestamp represents the number of days from
a fixed reference date, and the diagnostic code is a symbol from the ICD-9 classification of
diseases.

ICD-9 Codes Each record in dataset Dorig contains a code from the International Statistical
Classification of Diseases and Related Health Problems (ICD), edition 9. The ICD-9 system
organises the different disease codes into hierarchical groups. Figure 1 shows a portion of this
hierarchy. Given this scheme, one can think of each diagnostic code (field ’c’ in the dataset) as
a leaf node in the ICD-9 tree.

Medical Histories In order to construct medical histories from the visitation records in
dataset Dorig, we first group all records by the patient identifier (field ’a’), and sort each sequence
by timestamp (field ’b’). This results in individual disease sequences hi for each patient i
consisting of time-ordered ICD-9 codes dj :

hi =< d1, d2, . . . , dn > . (1)

We intentionally discard the absolute time reference and instead are only focusing on the order
at which the disease codes are given in the EHR. Disregarding the absolute time, however, does
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not facilitate the investigation of disruptive changes in medical care, such as the introduction
of new medical guidelines. These advancements in medical care are situated at a moment in
time that can give rise to different medical care patterns before and after such changes are
introduced [1]. In our study, we are more interested in global patterns of transitions and as
a consequence neglect these potentially non-stationary transitions. Apart from time, there
are other dimensions present and available in our dataset such as gender, ethnicity, age, and
geographies that we have left for future studies to explore in great detail.

Given the hierarchical nature of the ICD-9 system, each disease sequence hi can be cast into
four different views:

CAT1(hi) = < CAT1(d1),CAT1(d2), . . . ,CAT1(dn) >,

CAT2(hi) = < CAT2(d1),CAT2(d2), . . . ,CAT2(dn) >,

CAT3(hi) = < CAT3(d1),CAT3(d3), . . . ,CAT3(dn) >,

CAT4(hi) = < CAT4(d1),CAT4(d2), . . . ,CAT4(dn) > = hi .

where CATc(hi) represents patient’s i medical history as described by the c-th category level
of the ICD-9 hierarchy (1 being the topmost category and 4 being the fully specified ICD-9
code). As an example, “Amoebic lung abscess” (code 006.4), has the following categorical
decomposition (see figure 1 for reference):

CAT1(006.4): Infectious and parasitic diseases

CAT2(006.4): Intestinal infectious diseases

CAT3(006.4): Amoebiasis

CAT4(006.4): Amoebic lung abscess

Note how CAT4(006.4) = 006.4, and in general CAT4(hi) = hi.

ICD-9 codes

001–139:
Infectious and

parasitic diseases

001–009:
Intestinal

infectious diseases

001: Cholera
006:

Amoebiasis

006.4:
Amoebic

lung abscess

010–018:
Tuberculosis

140–239:
Neoplasms

290–319:
Mental disorders

CATEGORY 1

CATEGORY 2

CATEGORY 3

CATEGORY 4

Figure 1: A portion of the ICD-9 tree. The right-hand side shows the categorical specification
of a disease, whereby the high level categories (1&2) indicate the more general groupings of a
disease, and the low level ones (3&4) provide greater specification.
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Figure 2: Medical history of one anonymised patient with 28 hospital visitations and 64 diag-
noses over a 9 year period. A The personal disease history as plotted according to the top-level
category of the ICD-9 classification scheme and aggregated for each quarter of a year. The most
common diseases for this patient are related to hormone nutrition immunities, digestive, and
genitourinary diseases. B visualises possible disease associations for the first level category of
diseases. These disease associations are based on the chronological order of the personal disease
history, where a connection between diseases is established if a set of diagnoses at at hospital
visitation t + 1 follows a set of diagnoses at the previous hospital visitation. C to E provide
successively more detail on the diagnostic code ranging from the second level category to the
actual ICD-9 code.

A Look at an Individual Patient In order to better grasp the different categorical views of
a patient’s medical history, figure 2 depicts the medical history of a randomly chosen patient who
had been diagnosed with 64 medical conditions or symptoms on 28 hospital visitations. Because
of the hierarchical classification scheme of ICD-9, we show 4 levels of detail of how diseases are
associated with each other for the randomly chosen patient (see 1.1 for details on the ICD-9
hierarchy). Figure 2 A shows the quarterly summarised timeline of hospital visitations and the
diagnosis count of the 13 disease categories the patient was diagnosed with. The disease history
of this random patient can also be visualised in a network of disease associations, where we plot
disease transitions in chronological order (figure 2 B-E). Any diagnosis recorded on a particular
date t links to diagnoses recorded at the next hospital visitation at date t + 1. The weight on
the links corresponds to the number of times this transition has occurred, while the size of the
node represents the prevalence of this particular diagnostic code in a patient’s history. The
coarsest level of detail is provided through 13 disease categories in figure 2 B. Diseases classified
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under hormone nutrition immunity (such as Diabetes) make up 25% of this patient’s diagnosed
diseases followed by unclassified diseases (15%) and digestive diseases (9%). Figure 2 C and
D provide more fine grained classifications and figure 2 E represents the actual 5 digit ICD-9
codes.

Descriptive Statistics and Filtering Rules Prompted by the challenges associated with
EHR data [2], we calculated a variety of descriptive statistics, shown in figure 3. From these
metrics, we introduced the following filtering rules to curtail certain artifacts in the dataset.
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Figure 3: Descriptive Electronic Medical Record Statistics. A shows the frequency of the
number of diagnoses associated with a single health encounter across the entire EHR. B shows
the time-series of the number of visitations in each week from January 2001 to July 2010
normalised by the median of the corresponding month. C presents the distribution of the
median inter-arrival times of each patient’s health encounters. D presents the histogram of the
inter-arrival times up to 60 days. E shows the cumulative probability distribution of the ICD-9
codes in the dataset. F presents the number of diagnostic codes found in a patient’s EHR.

Figure 3 A shows the frequency of the number of diagnostic codes assigned to a health
visitation across the entire EHR dataset (a health visitation event is identified by the value of
the timestamp, field ’b’, in the dataset). While it is common practice to record more than one
diagnostic code per health visitation, we found several instances where tens or even hundreds
of codes were associated to a single patient on a single day (these batch entries likely stem from
data imports). Figure 3 B gives further evidence to the presence of batch entries, where a single
day receives an unusual number of diagnoses. For this reason, we removed all encounters that
resulted in more than two diagnostic codes, with the caveat that such a cutoff may exclude
patients with complex medical conditions diagnosed on a single health encounter.

The distribution of the median inter-arrival time of diagnoses for the patients is shown
in figure 3 C. The median inter-arrival is on average 100 days between health encounters.
Interestingly, figure 3 D illustrates some of the characteristics of health encounters in that
they are typically scheduled in multiples of 7 days for follow-up visits. Figure 3 E shows
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the cumulative probability distribution of the disease codes occurring in the EHR dataset and
figure 3 F gives the count of diagnostic codes per patient. One can observe that there is a large
number of patients that have had only 1 or 2 visits recorded in the system, which can be for a
number of reasons, ranging from good health to switching to other health care providers. For
this reason, we removed all patients that have a relatively short medical history of less than 20
diagnostic codes. Other researchers used different techniques to filter their dataset, for example
by removing the most frequent diseases [3]. This can have the benefit that progression patterns
are not dominated by common diseases that are independent and identically distributed.

Applying these two filtering rules resulted in a reduced dataset D of 516,276 patients with
an average medical history length of 31.16 and the average history spans 6 years and 5 months.

Information-theoretic Background The simplest and most intuitive way of characterising
the predictability inherent in EHRs is to invoke an information-theoretic approach to quantify
the amount of information in the disease sequences. Thus, we set out to estimate entropy rates
for each individual disease history hi, and then move on to estimate the entropy rate of the
entire dataset as a collection of disease sequences.

We model each disease history, hi, as a sequence of discrete random variables {Di}. De-
pending on which category level of the ICD-9 hierarchy we focus on, each Di will vary over the
following alphabet:

for category 1 (CAT1), the alphabet is the set of first-level categories in the ICD-9 hier-
archy, whose size in our dataset is 19 symbols;

for category 2 (CAT2), the alphabet is the set of second-level categories in the ICD-9
hierarchy, whose size in our dataset is 186 symbols;

for category 3 (CAT3), the alphabet is the set of third-level categories in the ICD-9
hierarchy, whose size in our dataset is 1719 symbols;

for category 4 (CAT4), the alphabet is the entire set of ICD-9 codes, whose size in our
dataset is 12462 symbols.

In what follows, unless otherwise specified, we will refer to our analysis at the fourth-level cate-
gory. Our initial analysis follows the approach taken by Song et al. to explore the predictability
of human mobility [4].

The entropy of a single random variable is a measure of its uncertainty, and the entropy
rate of a sequence of n random variables is the per-symbol entropy of the n random variables
[5]. Given a sequence of diagnostic codes, {Di}, the entropy rate S of {Di} is a parameter that
quantifies the average amount of information that is produced by each symbol [5, 6]. Intuitively,
it is a measure of how “unexpected” each new symbol is as we read the sequence.

Entropy Calculations Given a symbol sequence h =< d1, d2, . . . , dn >, we estimate its
entropy rate via a series of approximations S(0), S(1), . . . , which successively take more of
the statistics of the sequence into account [7]. We refer to S(n) as the entropy estimate that
measures the amount of information due to statistics extending over n successive symbols in h.

5



S(n) is calculated as:

S(0) = log2(Nh), (2)

S(n) = S(dj |bi)

= −
∑
i,j

p(〈bi, dj〉) log2[p(dj |bi)] (3)

= −
∑
i,j

p(〈bi, dj〉) log2[p(〈bi, dj〉)]

+
∑
i

p(bi) log2[p(bi)], n ≥ 1 , (4)

where Nh is the number of different symbols in h, dj is a single target symbol, and bi = di−1
i−n+1

is a block of the n − 1 preceding symbols of dj , i.e., the symbols from position i − n + 1 to
position i − 1. As n increases, S(n) includes more of the statistical structure of the sequence
and the entropy rate S of h results as the limit value of S(n):

S = lim
n→∞

S(n) . (5)

An alternative definition of entropy is the quantity

S′ = lim
n→∞

1

n
S(d1, d2, . . . , dn) , (6)

which measures the per symbol entropy instead of the conditional entropy of the last random
variable given the past. Under the assumption of stationarity, both limits S and S′ exist and
are equal [5].

In order to assess the information content of a single medical history h, we focus on three
statistics with important semantics [4] that arise from the progression of estimates of equa-
tions 2 - 4:

Srnd
h Is the entropy of the history under the assumption that the diagnostic code distribution

is uniformly random. This quantity is calculated as

Srnd
h = S(0) = log2(Nh) ,

where Nh is the number of distinct diagnoses in history h.

Sunc
h Is the entropy of the history considering the actual distribution of diagnosis codes in it.

This quantity is calculated as

Sunc
h = S(1) = −

Nh∑
j

p(dj) log2(p(dj)) ,

where dj is a symbol in h.

Scor
h Is the entropy of the history considering the order in which diagnoses appear. This quantity

is calculated as

Scor
h =

[
1

nh

∑
k

Γk

]−1
log2(nh) ≈ S ,

where nh is the length of medical history h, and Γk is the length of the shortest substring
starting at position k and which does not previously appear from position 1 to k − 1 [8].
Scor can be thought of as our best estimator of the entropy rate S of the medical history.
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Another way to think about these entropy estimates is that the random, Srnd
h , and the

uncorrelated entropy, Sunc
h disregard the time dimension. For the former entropy measure we

only need the number of distinct symbols, and for the latter we require the frequencies of each
symbol. Both are equal when the probability of each symbol is equally likely. The correlated
entropy rate estimate, Scor

h , on the other hand, models a medical history as a sequence of random
variables. Scor

h is known to be an efficient estimator that converges rapidly to the true entropy
rate, even with quite short sequences. More specifically, the modelling assumption of estimator
Scor
h is that the medical history is a stationary ergodic process with real entropy rate S > 0 [8].

When analysing a group of patients that share certain traits (e.g., demographics, predispo-
sition to certain diseases, etc.), the analysis of the information content of their medical histories
should regard each sequence in the set as originating from the same “information source”, such
that we can extract knowledge about common health progressions occurring within the group
of patients.

n-gram models [9] are a natural extension to the individual entropy analysis of the preceding
section [7], and they provide estimates of the probabilities required by equations 2 – 4, taking
into account the collective statistics of a group of medical histories. First, let us consider the
general case of computing the probability of a disease history, h, composed of the diseases
d1, d2, . . . , dn. Without loss of generality the probability p(h) can be computed using the chain-
rule:

p(h) = p(d1)p(d2|d1)p(d3|d1d2) · · · p(dn|d1 . . . dn−1) = Πn
i=1p(di|d1 . . . di−1). (7)

For bigram models (n = 2), the probability of the history h ∼ p(h) is approximated by only
taking the identity of the immediately preceding disease into account:

p(h) = Πn
i=1p(di|d1 . . . di−1) ≈ Πn

i=1p(di|di−1). (8)

For i = 1 we introduce an artificial token to mark the beginning of a history in order to calculate
the conditional probability p(di|di−1). Similarly, an end of history token needs to be introduced
in order for the probability over all histories to sum to 1. The conditional probabilities in
equation 8 are estimated using maximum likelihood estimation, which is simply the count of
the bigram in the text divided by a normalisation constant amounting to the sum of the counts
of all bigrams. For n-gram orders larger than 2 the probability of a history readily generalises
to

q̂(h) ≈ Πn+1
i=1 q(di|bi), (9)

where bi is the block of diseases preceding di as before and the approximation is due to the
finiteness of the n-gram order. As previously stated with the bigram model, the sequences are
appropriately padded. Let c(di

i−n+1) denote the number of times the n-gram occurred in the
disease histories. Then the maximum likelihood estimates of p(di|bi) are

q(di|bi) =
c(di

i−n+1)∑
di
c(di

i−n+1)
. (10)

Typically datasets are sparse, which limits the collection of sufficient statistics to reliably
estimate the probability distributions. A consequence of this is that the counts c(di

i−n+1)
can be zero and hence lead to underestimates of q(h) = 0. Smoothing is a central issue in
language modelling and is used to address this problem by assigning non-zero probabilities to
these sequences [10]. Specifically, smoothing shifts some of the probability mass from high
probabilities to low probabilities. Whenever, maximum likelihood estimates result from few
counts, smoothing has the potential to improve the quality and accuracy of n-gram models
significantly.
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One of the simplest smoothing techniques used in practice is additive smoothing, which adds
0 < δ ≤ 1 to the counts of the n-grams, yielding

q(di|di−1
i−n+1) =

δ + c(di
i−n+1)

δ|V |+
∑

di
c(di

i−n+1)
, (11)

where |V | is the vocabulary, which corresponds in our case to the different category levels
of the ICD-9 coding scheme. We refer to Chen et al. who review and empirically evaluate
several smoothing techniques in the domain of language modelling [10]. We employ Witten-Bell
smoothing on our models [11], which interpolates the maximum likelihood estimate of the n-th
order with the smoothed estimate of the (n− 1)th order.

Cross-Entropy In general we define cross entropy of a random variable X with the true
probability distribution p and a model M that stipulates an estimate q̂ of that probability
distribution as [12, 9]:

Sp,M (X) = S(X) +KL(p ‖ q̂) = −
∑
x∈X

p(x) log [q̂(x)], (12)

where KL is the Kullback-Leibler divergence or relative entropy from q̂ to p. KL(p ‖ q̂) =∑
x p(h) log (p(x)q̂(x) ) accounts for the model mismatch (in bits) onto the true distribution of X.

The cross-entropy Sp,M (X) quantifies the average length of bits needed to encode X sampled
from the true distribution p with a coding scheme based on a language model q̂.

It is a well-known fact that Sp,M (X) ≥ S(X), because the Kullback-Leibler divergence KL
is always non-negative [5]. The better the model q̂ is, the tighter the upper bound. Thus, it is
important to note that given a particular model of X that approximates the true probability
distribution p allows us to obtain an upper bound on the actual entropy [12].

This definition of cross-entropy is easily extended to define the cross-entropy of a stochastic
process. Similarly to defining entropy rate in equation 6 as the limit of the entropy of a block
of diseases as the size of the block approaches infinity, the cross-entropy rate of a stochastic
process (here disease sequences) is defined as:

Sp,M (D) = lim
n→∞

1

n
Sp,M (Xn

1 ) = − lim
n→∞

1

n

∑
(x1,··· ,xn)

p(xn1 ) log (q̂(xn1 )), (13)

where Xn
1 denotes X1, X2, . . . , Xn and q̂ is the probability distribution over disease sequences

estimated according to the language model given above.
Note that the true distribution of the disease histories is used once to generate the disease

histories D and once to compute the probability p(D). In our study we do not assume to know
p, but instead evaluate the EHR as an object in itself and we do not claim that the results are
universal. Nevertheless, we can model D = {Xi} as a stationary ergodic process and then the
Asymptotic Equipartition Property (AEP) should hold [5]. By AEP,

− 1

n
log [q̂(xn1 )]→ − lim

n→∞

1

n

∑
(x1,··· ,xn)

p(xn1 ) log (q̂(xn1 )) as n→∞ (14)

= Sp,M (D). (15)

So, the cross-entropy Sp,M (D) can be approximated by − 1
n log [q̂(xn1 )] for sufficiently long disease

sequences.

8



The inequality between the entropy and the cross-entropy of a random variable continues
to hold for the entropy rate of a stochastic process D

Sp,M (D) ≥ S′, (16)

and hence by estimating Sp,M (D) we have an upper bound on the true entropy S′.

Bias Estimation Any entropy estimator, including the maximum likelihood estimator, will
be subject to bias [13]. Intuitively, this is because the number of different possible blocks of
length n increases exponentially with n and so does the necessary minimum length N of the
sample sequence if one wants to determine the probabilities p faithfully [14]. The cross-entropy
accounts for the bias through the Kullback-Leibler divergence from q̂ to p (see equation 12).
The Kullback-Leibler divergence can be interpreted as the information loss when using q̂ to
approximate the true (unknown) probability distribution p.

We can estimate the bias incorporated in the cross-entropy explicitly by following the same
approach as Paninski and Miller [13, 15]. The Miller-Madow approach is an analytical bias
correction that is derived from a Taylor expansion of the Kullback-Leibler divergence about the
true underlying probability distribution p:

B(Sq̂) = S(D)− Sq̂(D) =
m̂− 1

2N
+O(N−2), (17)

where m̂ is an estimate of the alphabet size and N is the size of the EHR dataset. Figure 4
presents the biases normalised by the n-gram order for 3 different ICD-9 categories for each n-
gram order. As the alphabet size increases with the sample size N fixed, we observe an increase
in the corresponding biases. However, the classical asymptotics break down when N ∼ m̂ and
as a consequence the bias is likely not fully accounted for [13]. We estimated q̂ on the entire
dataset with N = 16, 085, 433. Figure 4 A also shows the higher n-gram orders for which the
bias is likely underestimated (the dashed lines). For the complete ICD-9 code specification
n-gram with order n ≥ 3 exhibit N ∼ m̂. As the disease codes are projected onto higher ICD-9
categories the order n for which this is the case becomes larger.
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Figure 4: Normalised bias and alphabet size estimation of the Entropy estimates. For increasing
ICD-9 categories the bias is presented in A and the corresponding alphabet sizes m̂ are given
in B. The dashed lines in figure A indicate that the sample size is on the order of the alphabet
size, N ∼ m̂, which is where the Miller-Madow bias is likely underestimated.

Assessing n-gram Quality Large-scale language modelling, especially those with large al-
phabets or high orders or both, require a careful assessment of the underlying quality of the
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model. As higher orders are being modelled more and more of the idiosyncrasies of the data
source are embedded in the model and consequently n-grams may not improve upon the infor-
mation content of the previous order. Since the true language model is not known, an upper
bound to the entropy S′ can be obtained from an approximation to p.

A common approach is to approximate the true language model is to perform an intrinsic
model evaluation and compute the probability that the model assigns to a hold-out validation
dataset V [9] using 10-fold cross-validation. From this probability the metrics cross-entropy and
perplexity are calculated. We assess the quality of the trained n-gram model of medical histories
by repeatedly drawing two subsets from our dataset without replacement, one for training
(90%) and the remaining 10% for validation. From the training set, we build n-gram models
of increasing order. These models provide the smoothed maximum likelihood estimates for the
probabilities q(di|bi). The validation set V is composed of disease histories (h1, h2, . . . , hlT ).
The probability of the validation set is then computed by

q̂(V) = ΠlV
i=1q̂(hi). (18)

The cross-entropy of a model q̂ on the validation set is calculating using Sp,M (V) from equa-
tion 15. The cross-entropy Sp,M (V) is an upper bound on the entropy S′ [12]. Recall our
previous notion of entropy as a measure of surprise or uncertainty about a data source. Cross-
entropy quantifies the degree to which the test language departs from our smoothed model q̂.
A lower model cross-entropy tends to lead to a better performance in application scenarios.
However, this does not need to be the case if one considers not only the probability mass but
also the relative ordering. Language models tend to be optimised on perplexity, which is simply

PPq̂(T ) = 2Sp,M (T ). (19)

Using perplexity we can identify whether higher order n-gram models yield a significant im-
provement in prediction performance.

Additionally to assessing the n-gram quality by estimating cross-entropy or perplexity, we
need to ensure that the entropies being calculated are consistent and converge. Because most of
the above derivation of the modelling approach relies on stationary ergodic assumptions we may
leave ourselves vulnerable to estimators that exhibit unstable behaviours. In order to elucidate
whether this is the case, we sample differently sized training sets for our models, i.e., at 70%,
80%, and 90% using 10-fold cross-validation. Plotting statistical summaries across the folds
for each training set size and n-gram order and type of dataset provides us with visual clues
of the robustness of the entropy estimators. Figure 5 presents these results for the complete
ICD-9 code specification of our EHR dataset. For brevity we focus on the most granular level of
encoding the disease sequences, because higher level categories project disease sequences onto
a smaller alphabet and hence are more robust. Indeed the results in figure 5 demonstrate that
we get robust entropy rate estimators with an inter-quartile range of at most 0.005 bits per
symbol across the folds and reductions of the same order as we increase the training set. Only
our cross-entropy rate estimates of the population-wide shuffled dataset D′′ exhibits a slightly
increasing trend as the sample size is increased.

Further to the above diagnostics, we evaluate the percentage change between the joint n-
gram probabilities q(bi) across the folds of our 10-fold cross-validation. We approximately meet
our stationarity assumption when these percentage changes are very low and as a consequence
we can claim that the probabilities are captured faithfully across the different training samples
during cross-validation. Figure 6 presents the results for the full ICD-9 alphabet (figure 6 A),
the third category level (figure 6 B), and the second category level (figure 6 C). The percentage
changes in the unigram models are negligible. For the trigram models we find that 95% of all
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percentage changes are smaller than 18.5%, 14.5%, and 5.5% for the respective alphabets. For
the 5-gram models these changes are 21.5%, 18.5%, and 16.5% respectively. These statistics
account for the relative frequencies of the n-grams.

Importantly, the larger the percentage change of a joint probability q(bi) across the folds,
the rarer the n-gram bi. Intuitively, this can be explained by the fact that observing a block
of diseases only a few times in one fold can be exposed to more dramatic changes in the
transitions across different samples of the cross-validation. As we increase the order of the
n-gram models, more and more contexts exhibit low probabilities of occurring and hence the
stationarity assumptions need to be reviewed carefully. Nevertheless, we can claim that our
entropy rate estimators represent converged statistics and we are therefore not exposed to
violations of the stationary ergodic assumptions of our approach, especially for n-gram orders
smaller or equal to three.

Predictability Calculations We begin by defining pML, the probability that a patient will
be diagnosed with the most likely next diagnosis. We then define predictability, π, as the
weighted sum of pML over all possible medical histories. Finally, we show how to calculate an
upper bound, Π, on predictability.

pML(hn−1) is defined as the probability that the patient will be diagnosed with the most
likely next diagnosis given a history of diseases hn−1 =< d1, d2, . . . , dn−1 >:

pML(hn−1) = arg max
d

p(dn = d|hn−1) .

In this way, pML takes into account the entire statistical structure of the patient’s history up
to time n− 1.

The predictability π(n) of a given medical history is defined as the best success rate to
predict a patient’s n-th diagnosis. We calculate it as the weighted sum of pML over all possible
health trajectories up to n− 1:

π(n) =
∑
hn−1

p(hn−1)p
ML(hn−1). (20)

Taking the limit as the length of the medical history increases yields the overall average rate
with which we can successfully predict a patient’s next diagnosis:

π = lim
n→∞

1

n

∑
i

π(i). (21)

We want to relate the estimated entropies to a notion of predictability. An upper bound, Π,
on π, can be derived as follows [4]: a) first, we use Fano’s inequality to build a function SF

that is an upper bound of S(dn|hn−1); b) we then use SF to derive an upper bound on the
conditional entropy S(n) of equation 3; and finally c) we extend the bound to the limit case to
obtain S ≤ SF (π).

a) construct an entropy function SF such that S(dn|hn−1) ≤ SF (pML(hn−1)), i.e., SF is an
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upper bound on the entropy of the n-th diagnosis random variable dn:

dn ∼ p(dn|hn−1)

d′n ∼
(
pML(hn−1),

1− pML(hn−1)

Nh − 1
, . . . ,

1− pML(hn−1)

Nh − 1

)
S(d′n|hn−1) = −pML(hn−1) log2 p

ML(hn−1) (22)

− (1− pML(hn−1)) log2(
1− pML(hn−1)

Nh − 1
)

= SF (pML(hn−1)) .

In this step we concentrate the probability mass at the most likely diagnosis code and assign
equal probabilities to the remaining ones.

b) the weighted sum of S(dn|hn−1) over all possible medical histories hn−1 is just the conditional
entropy S(n) we defined in equation 3. We can use SF to bound such a sum:

S(n) =
∑
hn−1

p(hn−1)S(dn|hn−1)

≤
∑
hn−1

p(hn−1)S
F (pML(hn−1))

≤ SF

∑
hn−1

p(hn−1)p
ML(hn−1)


= SF (π(n)) .

c) we can now derive the desired relation for S:

S = lim
n→∞

1

n

∑
i

S(i) (23)

≤ lim
n→∞

1

n

∑
i

SF (π(i))

≤ SF

(
lim
n→∞

1

n

∑
i

π(i)

)
= SF (π) ,

where equation 23 is an application of the chain rule to the alternative definition of entropy
presented in equation 6.

We are now ready to define Π as the upper bound on predictability. We calculate Π by
plugging in an entropy rate estimate S and the number of distinct diagnoses N into S = SF (Π),
and then solving for Π. Given that S = SF (Π) ≤ SF (π), and that SF (π) monotonically
decreases with π, we obtain Π ≥ π.

Research Protocol In the following we are highlighting the research protocol that governs
our findings. As mentioned above we use 10-fold cross-validation for all our statistics. In
each fold k we use a training set Tk of 90% of the original dataset D to build our language
model. Let us call this model q̂k for each fold k. The remaining 10% of each fold make up

12



a hold-out validation set Vk over which we compute the cross-entropy rates and derive the
upper bound of predictability. In parallel we permute the dataset D in two ways for each fold.
First, we permute the order of the diseases for each patient in D independently in each fold
to get a new dataset D′k. In order to exemplify this process, let us consider a patient with
the following disease history: AABCCA. A possible permutation of this patient in fold 1 may
result in BCCAAA and in fold 2 CCAAAB. Second, we permute diseases across all histories
D′′k , essentially removing any correlation structure in the diseases a patient might have had in
his EHR. We sample 10% validation sets V ′k and V ′′k without replacement of both permuted
dataset respectively and compute the cross-entropy rates Sp,M (V ′k) and Sp,M (V ′′k ) using the
model q̂k we built on the original training set Tk. Using the statistics for each fold we compute
the 95% confidence intervals and perform one-sided statistical significance tests to quantify any
differences.

The principal reason for permuting is to test whether we can claim any predictive quality
in our dataset at all. If the entropy and corresponding predictability statistics do not degrade
substantially for any of the permuted sets, then we cannot claim any predictive quality.
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Figure 5: Convergence plots of the cross-entropy rates given the training set size (70-90%) for
the fourth category level of the ICD-9 coding scheme. The rows represent the order n of the
n-gram model with the first row n = 1 and the last row n = 5. The columns differentiate
between the original dataset D in the first column, the individually shuffled disease histories D′
(second column), and finally the population-wide shuffled dataset D′′ (third column).
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Figure 6: Cumulative distribution function of the percentage changes in log-log between the
joint n-gram probabilities q(bi) across the folds k and l with k 6= l accounting for the frequencies
at which the n-grams occur. Figure A gives the result for the full ICD-9 alphabet, while figure B
and C represent the categories CAT3 and CAT2 respectively.
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