Function of a p24 heterodimer in morphogenesis and protein transport in *Penicillium oxalicum*

Fangzhong Wang ¹, Kuimei Liu ¹, Lijuan Han ¹, Baojie Jiang ¹, Mingyu Wang ¹, Xu Fang ^{1,*}

¹ State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China

* To whom correspondence is addressed. E-mail: fangxu@sdu.edu.cn

Tel: +86-531-88364004, Fax: +86-531-88364363

Supplementary Information

Fig. S1

Sequence alignment of p24 homologs in P. oxalicum 114-2 and S. cerevisiae.

The same amino acid residues are shaded.

Fig. S2

SDS-PAGE analysis of intracellular proteins of p24 deletion strains grown in liquid media containing 2% Avicel, MM and 0.5% urea.

M: protein marker; 1: parent strain; 2: P. oxalicum 114-2 Δp δΔPDE_03657;

3: *P. oxalicum* 114-2 *ДегрДр б*; 4: *P. oxalicum* 114-2 *Др бДРDE_00613*;

5: parent strain; 6: P. oxalicum 114-2 *APDE_00613 APDE_03657*;

7: P. oxalicum 114-2 *AerpAPDE_03657*; 8: P. oxalicum 114-2 *AerpAPDE_00613*.

Fig. S3

Deletion of the $p\delta$ gene was confirmed by Southern blotting.

Panel a, schematic diagram of Southern blotting. Panel b, Southern blotting analysis

of $p\delta$ deletion. M: 1 kb marker; 1: *P. oxalicum* Δerp strain; 2: *P. oxalicum* $\Delta erp\Delta p\delta$

strain. Arrows are indicated the predicted band sizes of each strain.

Table S1 Proteins were significantly increased or decreased in $\Delta erp \Delta p \delta$ strain.

* were predicted as GPI-anchor proteins

Table S2 P. oxalicum strains that were used in this study.

S1 Protein accession numbers in the phylogenetic tree in Fig. 1a.

Fig. S1 Sequence alignment of p24 homologs in P. oxalicum 114-2 and S. cerevisiae.

The same amino acid residues are shaded.

Fig. S2 SDS-PAGE analysis of intracellular proteins of p24 deletion strains grown in liquid media containing 2% Avicel, MM and 0.5% urea.

M: protein marker; 1: parent strain; 2: *P. oxalicum* 114-2 Δ*p*δΔ*PDE_03657*;

3: *P. oxalicum* 114-2 Δ*erp*Δ*p*δ; 4: *P. oxalicum* 114-2 Δ*p*δΔ*PDE_00613*; 5: parent

strain; 6: P. oxalicum 114-2 APDE_00613APDE_03657;

Fig. S3 Deletion of the $p\delta$ gene was confirmed by Southern blotting.

Panel a, schematic diagram of Southern blotting. Panel b, Southern blotting analysis

of $p\delta$ deletion. M: 1 kb marker; 1: *P. oxalicum* Δerp strain; 2: *P. oxalicum*

 $\Delta erp \Delta p \delta$ strain. Arrows are indicated the predicted band sizes of each strain.

Table S1 Proteins were significantly increased or decreased in $\Delta erp \Delta p \delta$ strain.

* were predicted as GPI-anchor proteins

 Table S 1.1 Cytoplasm (Secreted protein)

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_09285	α-L-rhamnopyranohydrolase, GH28	positive infinity	1.24e-04	Rhamnogalacturonan hydrolysis
PDE_02805*	Hypothetical protein	151.66	2.21e-04	Unknown
PDE_07124	Cellobiohydrolase, GH6	64.4	2.23e-03	Cellulose hydrolysis
PDE_07936	Metallo peptidase	29.53	1.43e-03	Polypeptide hydrolysis
PDE_09226	Endo-β-1,4-glucanase, GH5	14.45	3.97e-04	Cellulose hydrolysis
PDE_07929	Endo-β-1,4-glucanase, GH7	11.29	1.63e-03	Cellulose hydrolysis
PDE_05263*	Chitin glucanosyltransferase, GH16	9.09	2.63e-03	The transfer of chitin to β -1, 3- and β -1, 6-glucans
PDE_05445	Cellobiohydrolase, GH7	8.83	9.68e-05	Cellulose hydrolysis
PDE_07897	α-L-arabinofuranosidase, GH62	8.79	2.61e-04	Arabinoxylan hydrolysis
PDE_06439	Endo-β-1,4-glucanase, GH12	7.38	4.02e-05	Cellulose hydrolysis
PDE_06649	Feruloyl esterase, CE1	6.91	9.12e-03	Arabinoxylan hydrolysis

PDE_02536*	Hypothetical protein	3.96	4.64e-03	Unknown
PDE_07945	Cellobiohydrolase, GH7	3.59	1.00e-02	Cellulose hydrolysis
PDE_08094	Endo-β-1,4-xylanase, GH10	3.43	3.32e-04	Xylan hydrolysis
PDE_03112*	Exo-β-1,3-glucanase, GH17	2.83	7.96e-03	β-1, 3-glucans hydrolysis
PDE_08122	Chitinase, GH18	2.61	5.09e-03	Chitin hydrolysis
PDE_00500	Non-hemolytic phospholipase C	1.7	8.38e-03	Phosphatidylcholine and phosphatidylserine hydrolysis
PDE_09417	Glucoamylase, GH15	-1.97	1.84e-03	α -1, 4-glucose hydrolysis
PDE_00615	β-1,3-glucanosyltransferase, GH17	-2	1.00e-02	Transferring the newly generated reducing end to the non-reducing end of another β -1, 3-glucan molecule, and generating a new β -1, 6-linkage
PDE_06770	Hypothetical protein	-2.03	8.77e-03	Unknown
PDE_03966	α -glucosidase, GH31	-3.18	2.03e-04	Maltose and other small maltooligosaccharides hydrolysis

Table S 1.2 Cytoplasm

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_02929	_D -xylose reductase	positive infinity	2.95e-03	Reducing _D -xylose into xylitol

PDE_01713	Formamidase	13.19	4.23e-05	Formamide hydrolysis
PDE_02372	Coproporphyrinogen III oxidase	12.66	1.00e-02	The heme biosynthesis
PDE_09398	Transaldolase	11.47	1.80e-03	Pentose-phosphate pathway
PDE_03821	Mannitol-1-phosphate 5-dehydrogenase	9.1	5.96e-03	Fructose and mannose metabolism
PDE_08726	Ribosome biogenesis protein	7.53	1.07e-03	20S pre-rRNA processing; 40S ribosomal subunit synthesis
PDE_05515	β-1,3-glucanase	7.44	5.88e-05	Hydrolysis of 1, 3- linkages in β -glucans
PDE_02988	PLC-like phosphodiesterase	7.28	9.09e-03	Phosphatidylinositol metabolism
PDE_04575	Member of the PUF protein family	6.25	3.25e-04	Binding mRNAs encoding nucleolar ribosomal RNA-processing factors
PDE_04048	X-Pro aminopeptidase	4.42	2.13e-04	Peptidase hydrolysis
PDE_02117	Guanyl-specific ribonuclease	4.23	1.41e-04	Endoribonuclease activity
PDE_04364	GDSL esterase/lipase	3.69	6.84e-03	Easter bonds hydrolysis
PDE_01218	ABC transporter	3.39	1.44e-03	Translocation of a variety of compounds across transmembrane
PDE_04898	Chitinase	2.51	2.15e-03	Chitin hydrolysis
PDE_05480	Aminopeptidase	2.31	5.30e-03	Peptidase hydrolysis

PDE_03243	Esterase/lipase	1.8	1.00e-02	Easter bonds hydrolysis
PDE_04618*	β-1,3-glucanosyltransferase, GH72	1.51	7.97e-03	Transferring the newly generated reducing end to the non-reducing end of another β -1, 3-glucan molecule and elongating the β -1, 3-linkage
PDE_04468	α-1,6-mannanase	-1.55	1.14e-03	Random hydrolysis of α -1, 6-mannosidic linkages in unbranched 1, 6-mannans
PDE_02839	DNA replication licensing factor Mcm3	-1.72	8.61e-03	DNA replication; Component of the Mcm2-7 hexameric helicase complex
PDE_08209	Dienelactone hydrolase family protein	-2.03	8.77e-03	Aromatic compounds degradation
PDE_09561	Lanosterol synthase	-2.9	1.96e-03	Ergosterol biosynthesis
PDE_06127	Ribonucleoside-diphosphate reductase subunit M1	-4.56	3.83e-03	Catalyzing rate-limiting step in dNTP synthesis
PDE_04823	Hydroxymethylglutaryl-CoA synthase	-4.69	6.03e-03	Mevalonate biosynthesis
PDE_02141	Polyketide synthase	-5.9	1.08e-04	Polyketides biosynthesis
PDE_01235	Polyketide synthase	-14.79	6.41e-05	Polyketides biosynthesis
PDE_02162	The dioxygenase family protein	-22.32	7.55e-04	Betalain biosynthesis
PDE_01429	Cytochrome P450 family protein	-319.88	1.92e-03	Oxidoreductase activity

Table S 1.3 proteasome

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_02603	26S proteasome regulatory subunit	5.63	4.98e-04	Degrading proteins that have been ubiquinated

Table S 1.4 Nucleus

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_08726	Ribosome biogenesis protein	7.53	1.07e-03	20S pre-rRNA processing; 40S ribosomal subunit synthesis
PDE_06111	DNA mismatch repair protein	3.59	4.31e-04	DNA mismatch repair
PDE_05989	Kinesin family member 11	3.58	1.28e-03	Spindle assembly and chromosome segregation
PDE_02839	DNA replication licensing factor Mcm3	-1.72	8.61e-03	Protein involved in DNA replication; Component of the Mcm2-7 hexameric helicase complex
PDE_06220	DNA polymerase epsilon subunit 2	-2.04	5.31e-03	The maintenance of fidelity of chromosomal replication
PDE_07239	Quinate repressor protein	-2.39	1.00e-02	Transcription of the quinate utilization pathway genes
PDE_02391	Chromosome segregation protein	-2.48	1.45e-04	Sister chromatid cohesion and linking DNA synthesis to sister chromatid cohesion
PDE_07738	rRNA biogenesis protein	-3.33	1.99e-04	18S and 5.8S rRNA biogenesis

PDE_05592	DEAD/DEAH box helicase	-4.39	5.95e-03	Nuclear RNA processing and degradation
PDE_06767	Nucleolar protein	-5.42	1.00e-02	35S pre-RNA processing; 40S ribosomal subunit biogenesis
PDE_09925	Nuclear condensin complex subunit 3	-5.9	5.95e-05	The establishment and maintenance of chromosome condensation; the segregation and chromatin binding of the condensin complex

Table S 1.5 Cytoskeleton

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_08653	Dynactin, 150 kDa	2.47	5.48e-03	Dynactin is a multisubunit complex required for cytoplasmic dynein to efficiently transport vesicles along microtubules.
PDE_00169	Arp2/3 complex subunit 2	-12.02	1.63e-05	The regulation of actin polymerization and mediating the formation of branched actin networks

Table S 1.6 Golgi-like apparatus

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_04430	Guanyl-nucleotide exchange factor	2.45	1.24e-03	Arl1p activation and vesicular transport
PDE_03529	Aminophospholipid translocase	2.15	8.94e-03	Endocytosis and vacuolar biogenesis

Table S 1.7 Mitochondria

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_09399	Superoxide dismutase [Cu-Zn]	6.28	4.15e-04	Detoxifying superoxide
PDE_05733	3-hydroxybutyryl-CoA dehydrogenase	5.53	5.78e-03	Catalyzing the NAD-dependent dehydration of β-hydroxybutyryl-CoA to acetoacetyl-CoA

Table S 1.8 Endoplasmic reticulum

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_08512	Alkaline ceramidase	7	7.37e-03	Sphingolipid ceramide hydrolysis
PDE_07729	Phosphatidylethanolamine N-methyltransferase	6.06	4.82e-04	The conversion of phosphatidylethanolamine to phosphatidylcholine
PDE_03488	Fatty acid transporter protein	5.89	7.55e-04	Long chain fatty acids transport
PDE_06282	ER quality control lectin	1.89	2.12e-03	The bridging protein between the machinery that extracts misfolded proteins from the ER lumen and the machinery involved in their retro-translocation across the ER-membrane

Table S 1.9 Plasma membrane

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_04996	Putative sensor/transporter protein	2.55	1.13e-03	Cell wall biogenesis

Table S 1.10 Hypothetical protein

Gene name	Protein name	Fold change	P value	Predicted protein function
PDE_02805*	Hypothetical protein	151.66	2.21e-04	Unknown
PDE_02536*	Hypothetical protein	3.96	4.64e-03	Unknown
PDE_08596	Hypothetical protein	2.03	2.81e-03	Unknown
PDE_05474	Hypothetical protein	1.73	1.49e-03	Unknown
PDE_06770	Hypothetical protein	6.49	4.14e-03	Unknown
PDE_07440	Hypothetical protein	-2.65	8.42e-03	Unknown
PDE_09712	Hypothetical protein	-3.09	1.00e-02	Unknown
PDE_05911	Hypothetical protein	-3.12	9.30e-04	Unknown
PDE_06953	Hypothetical protein	-3.41	4.40e-03	Unknown
PDE_00315	Hypothetical protein	-5.64	5.82e-04	Unknown
PDE_03744	Hypothetical protein	-13.12	1.46e-04	Unknown

PDE_06675	Hypothetical protein	minus infinity	6.74e-04	Unknown
-----------	----------------------	----------------	----------	---------

strains	Genotype	Source
P. oxalicum 114-2	Wildtype	Reference 6
P. oxalicum 114-2	∆pku70::hph	Reference 51
∆pku70		
P. oxalicum 114-2	Δpku70::hph; Δerp::ptra	Reference 27
Δerp		
P. oxalicum 114-2	∆pku70::hph;	This study
ΔerpΔpδ	Δerp::ptra; Δpδ::bar	
P. oxalicum 114-2	∆pku70::hph;	This study
ΔerpΔPDE_00613	Δerp::ptra; ΔPDE_00613::bar	
P. oxalicum 114-2	<i>∆pku70::hph</i> ;	This study
ΔerpΔPDE_03657	Δerp::ptra; ΔPDE_03657::bar	
P. oxalicum 114-2	<i>∆pku70::hph</i> ;	This study
ΔpδΔPDE_00613	Δpδ::ptra; ΔPDE_00613::bar	
P. oxalicum 114-2	∆pku70::hph;	This study
ΔpδΔPDE_03657	Δpδ::ptra; ΔPDE_03657::bar	
P. oxalicum 114-2	∆pku70::hph;	This study
ΔPDE_00613ΔPDE_03657	ΔPDE_03657::ptra; ΔPDE_00613::bar	
BiFC- <i>erp</i> / $p\delta$	Pgpd::erp::eyfpN::TtrpC::hph;	This study
	Pgpd::p\delta::eyfpC::TtrpC::ptra;	
BiFC-erp/eyfpC	Pgpd::erp::eyfpN::TtrpC::hph;	This study

Table S2 P. oxalicum strains that were used in this study.

	Pgpd::eyfpC::TtrpC::ptra;	
BiFC-pδ/eyfpN	Pgpd::eyfpN::TtrpC::hph;	This study
	$Pgpd::p\delta::eyfpC::TtrpC::ptra;$	
BiFC-eyfpN/eyfpC	Pgpd::eyfpN::TtrpC::hph;	This study
	Pgpd::eyfpC::TtrpC::ptra;	

S1. Protein accession numbers in the phylogenetic tree in Fig. 1a.

Hp24y2 accession number: NP_057124.2, Hp24y1 accession number: NP_006849.1, Hp24y4 accession number: NP_031390.1, Hp24y3 accession number: NP_861974.1, Hp24γ5 accession number: NP_653277.1, Hp24β1 accession number: NP_006806.1, Hp24δ1 accession number: NP_006818.3, Hp24α2 accession number: NP_059980.2; Dcg31787 accession number: NP_724105.1, Dcg9053A accession number: NP_572994.1, Dcg1967 accession number: NP_572754.1, Dlogjam accession number: AAL28932.1, Dcg3564 accession number: NP 572165.1, Dcg9308 accession number: NP_611629.1, Declair accession number: NP_788616.1, Dbaiser accession number: NP_651323.3; Serp2 accession number: NP_009395.1, Serp4 accession number: NP_014659.1, Serp3 accession number: NP_010266.1, Semp24 accession number: NP_011315.1, Serv25 accession number: NP_013701.1, Serp1 accession number: NP_009402.1, Serp6 accession number: NP_011513.1, Serp5 accession number: NP_011978.1; Xp24y3 accession number: NP_989261.1, Xp24y5 accession number: AAH87777.1, Xp24y1 accession number: NP 001039263.1, Xp24y2 accession number: NP_001016560.1, Xp24a3 accession number: NP_001015779.1, Xp2482 accession number: NP 001007925.1; Pp24a1 accession number: XP 517060;

A3g07680.1 accession number: NP_187425.1, A3g29070.1 accession number:

NP_189550.2, A2g03290.X accession numer: AAD17445.1, A1g69460.1 accession number: NP_177105.2, A1g21900.1 accession number: NP_173608.1, A1g09580.1 accession number: NP_172429.1. The tree was constructed by the neighbor-joining method. Bootstrap values are shown at each note, and are calculated from 1000 trees. Bar, evolutionary distance of 0.2.