Supplemental Data

Distribution and Dynamics of Chromatin Modification Induced by a Defined DNA Double Strand Break

Robert Shroff, Ayelet Arbel-Eden, Duane Pilch, Grzegorz Ira, William M. Bonner, John H. Petrini, James E. Haber, and Michael Lichten

Supplemental Experimental Procedures

Culture Conditions for HO Induction

For *HO* induction in growing cultures, cells were grown to $0.5 - 10^7$ cells/ml in YEPL broth [S3] with vigorous aeration. A 10 ml sample was collected, D-galactose (Sigma, 20% w/v) was added (final concentration, 2% w/v), and ≤ 10 ml samples were collected at appropriate times. For induction of *HO* in G1-arrested cultures, *bar1* strains were grown to 0.5×10^7 cells/ml in YEPL broth, α -mating pheromone (Sigma) was added to a final concentration of 200 nM, and cells were incubated for 3 hr, at which point >95% of cells were unbudded schmoos. *HO* was then induced as above.

Chromatin Immunoprecipitation

ChIP was performed as described [S4], with the following changes. Lysis buffer contained 1 M NaCl to help block reassociation of free histones with DNA. Cells were agitated for 5 min with glass beads in a Mini-Bead Beater-8 (Bio Spec). Lysates were sonicated to an average fragment size of 0.5 1 kb. Primary antibodies were against γ-H2AX [S5], Mre11p [S6], and the HA epitope (monoclonal antibody 12CA5, Roche). Later experiments used rabbit polyclonal antiserum against the yeast-specific phosphopeptide, with no significant change in relative ChIP ratios. Immunocomplexes were bound to immobilized Protein G (Pierce), washed five times in lysis buffer with 1 M NaCl, three times with lysis buffer with 0.5 M NaCl, and twice with the final wash as described [S4], and were eluted in 10 mM Tris and 1 mM EDTA (pH 8.0). Eluates were incubated at 65°C for \geq 6 hr and then at 95°C for 20 min to dissociate cross-linked protein from DNA. Genomic DNA was prepared as described [S7]. All samples for a given experiment were processed in parallel.

PCR and Data Analysis

One to ten percent of each immunoprecipitate or 250 pg of purified DNA was used in multiplex PCR reactions containing two primer pairs: a pair specific to a sequence of interest near *MAT* and a control pair specific to *YCL011c* (Table S2). PCR reactions contained

Table S1. Yeast Strains		
Strain Name	Relevant Genotype	
JKM179 [S1]	ΜΑΤα	
CY3265	MATα dun1::KAN	
YAA2	MATα chk1::KAN	
JKM187	MATα mre11::hisG	
YAA25	MATα sml1::KAN mec1::NAT	
H987	MATα tel1::URA3	
YAA45	MATα sml1::KAN mec1::NAT tel1::TRP1	
YMV73-3	MATα rad53::NAT sml1::KAN	
<u>JKM139</u> [S2]	MATa	
H1069	MATa HA-6xHis- HTB2-URA3	
<u>yXW1</u> [S2]	MATa bar1::ADE3	
R664	MATa bar1::ADE3 tel1::TRP1	
H1073	MATa bar1::ADE3 mre11::hisG	
H1081	MATa bar1::ADE3 sml1::KAN mec1::NAT	
H1132	MATa bar1::ADE3 sml1::KAN tel1::TRP1 mec1::NAT	

All strains are *ho hml::ADE1 leu2–3, 112 hmr::ADE1 ade1 lys5 trp1:: hisG ura3-52 ade3::GAL10::HO.* Parent strains are underlined; derivates are indented. H1069 contains an *HA-6xHis* immunotag fused in-frame to the *HTB2* N-terminus and the *URA3* gene inserted in noncoding sequences 3' to *HTB2* (gift from Namrita Dhillon). 50 mM KCl, 10 mM Tris-HCl (pH 9.0 at 25°C), 0.1% Triton X-100, 25 mM MgCl2, 200 mM each dNTP, 25 pM each oligonucleotide, and 2.5 units of Taq polymerase (Promega). PCR reactions were 25 cycles of: 95°C, 15 s; 55°C, 15 s; 72°C, 30 s. Products were displayed on 10% polyacrylamide gels, stained with SYBR Green 1 (Molecular Probes), imaged on a Fuji LAS1000 imaging system, and quantified with Image Gauge V4.0 (Fuji).

DSB Analysis

DNA samples were digested with Sspl (New England Biolabs) and displayed on alkaline agarose gels as described [S8]. Gel blots were probed with a single-strand probe complementary to the unresected DSB strand, prepared by single-primer linear amplification [S7] with primer 7 (Table S2) and a PCR product (with primer 7 and HO-R, 5'-GAAACACCAAGGGAGAAGAC-3'). This probe contains sequences 20–715 nucleotides to the right of the HO-cut site. Blot radioactivity was detected with a Fuji BAS2000 phosphorimager and quantified with ImageGuage 4.0 software (Fuji).

Supplemental References

- S1. Lee, S.E., Pellicioli, A., Demeter, J., Vaze, M.P., Gasch, A.P., Malkova, A., Brown, P.O., Botstein, D., Stearns, T., Foiani, M., et al. (2000). Arrest, adaptation, and recovery following a chromosome double- strand break in *Saccharomyces cerevisiae*. Cold Spring Harb. Symp. Quant. Biol. 65, 303–314.
- S2. Wang, X., and Haber, J.E. (2004). Role of Saccharomyces singlestranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. PLoS Biol 2(1): e21 DOI: 10.1371/ journal.pbio.0020021.
- Rudin, N., and Haber, J.E. (1988). Efficient repair of HO-induced chromosomal breaks in *Saccharomyces cerevisiae* by recombination between flanking homologous sequences. Mol. Cell. Biol. 8, 3918–3928.
- S4. Strahl-Bolsinger, S., Hecht, A., Luo, K., and Grunstein, M. (1997). SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93.
- Rogakou, E.P., Boon, C., Redon, C., and Bonner, W.M. (1999). Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. *146*, 905–916.
- S6. Usui, T., Ogawa, H., and Petrini, J.H. (2001). A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7, 1255–1266.
- Liu, J., Wu, T.C., and Lichten, M. (1995). The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J. 14, 4599–4608.
- White, C.I., and Haber, J.E. (1990). Intermediates of recombination during mating type switching in *Saccharomyces cerevisiae*. EMBO J. 9, 663–673.

Table S2. PCR Primers			
Primer Name	Sequence	kb from <i>MAT</i> DSB	
a. 25	5'-GTATCACGAGCCCATCTCCAATAG-3'		
b. 26	5'-CATCCCTCACCAAGGAAGAAGAG-3'	-46.37	
a. 23	5'-CTCTTTCTTCCTTGGTGAGGGATG-3'		
b. 24	5'-GTTGTGTCCTTAGTTAGGTTCAGCG-3'	-40.44	
a. 19	5'-TCGTCGTCGCCATCATTTTC-3'		
b. 20	5'-GCCCAAGTTTGAGAGAGGTTGC-3'	-29.61	
a. 17	5'-GGAGTCAGATGGAACTGGGGTAAC-3'		
b. 18	5'-TGCCGCTAAGTGTAAGGAAGTCG-3'	-23.04	
a. 15	5'-CGTCTTCTCAGCGAACAACAGC-3'		
b. 16	5'-GCAATAACCCACGGAAACACTG-3'	-16.44	
a. 13	5'-TCAGGGTCTGGTGGAAGGAATG-3'		
b. 14	5'-CAAAGGTGGCAGTTGTTGAACC-3'	-9.32	
a. 1	5'-ATTGCGACAAGGCTTCACCC-3'		
b. 2	5'-CACATCACAGGTTTATTGGTTCCC-3'	-5.08	
a. 39	5'-TGTCGGTAGTGTCAGCAAACACG-3'		
b. 40	5'-CCTGAAATTCAAGCATTGCCTC-3'	-4.18	
a. 3	5'-ATTCTGCCATTCAGGGACAGCG-3'		
b. 4	5'-CGTGGGAAAAGTAATCCGATGC-3'	-3.43	
a. 43	5'-CCAGATTTGTATTAGACGAGGGACG-3'		
b. 44	5'-AAGATGCTGCCGCACAACTCTCAC-3'	-1.90	
a. 3-1	5'-ATGTCCTGACTTCTTTTGACGAGG-3'		
b. 4-1	5'-ACGACCTATTTGTAACCGCACG-3'	-1.35	
a. 45	5'-CCACATTAAATACCAACCCATCCG-3'		
b. 46	5'-TAGTGATGAGGAGAAGAAGTTGTTGC-3'	-0.77	
a. 5'BreakF	5'-AAGAGTTTGGGTATGTAATATGAG-3'		
b. 5'BreakR	5'-CTGAAACTAAAAGAAAAACCCGAC-3'	-0.01	
a. 7	5'-CCTGGTTTTGGTTTTGTAGAGTGG-3'		
b. 8	5'-GTACAAACACATCTTCCCAATA-3'	0.02	
a. 49	5'-CATGCGGTTCACATGACTTTTGAC-3'		
b. 50	5'-GGAAGTAACCTCTACTGTGGAGGCAC-3'	0.48	
a. 51	5'-TGGACGGAGGACTTAATATCGTCAC-3'		
b. 52	5'-AGGATGCCCTTGTTTGTTTACTG-3'	1.02	
a. 9	5'-AACGCTCGTCGATCGCCGTTCTAA-3'		
b. 10	5'-AATGGATTTGCCAAATGCACAT-3'	1.81	
a. 53	5'-CGGAGTACCATCGTGTTCATGG-3'		
b. 54	5'-CTGGGTATAAGGCAAGTTCAAGATG-3'	2.29	
a. 11	5'-GCGGTTTCTCGAAGTCTTGTTCCA-3'		
b. 12	5'-ACGAATGAGTTAGCATGGGCACTT-3'	2.80	
a. 55	5'-CCTCTTCCTCTTCATCGTGCTCAG-3'		
b. 56	5'-GCAGTTCTGCATCATATTGGGTCC-3'	3.72	
a. 27	5'-CAGGTTTATATCCACCTTCATCGG-3'		
b. 28	5'-TTTGGGGCAACAGTAGGCAGTG-3'	5.67	
a. 29	5'-GCAATCGTGTCAATGTGGTCATC-3'		
b. 30	5'-GTTTCAGGAGCCCCATAATCAAC-3'	7.77	
a. 31	5'-CGTTGTCTTTTCGTTTGGTGTCTG-3'		
b. 32	5'-GCTCTTTGCCCCTGTCTTTGAC-3'	12.84	
a. 33	5'-GAACCAAACGCCAGCCATTC-3'		
b. 34	5'-GCCAAAGTAAAGTGTGTCACCTTCC-3'	21.41	
a. 35	5'-TCCAGGCGGGTGTGAAAAAC-3'		
b. 36	5'-ATGGGGAATACGGAAGTGGGTC-3'	29.43	
a. YCR011CF	5'-CGTTACTTTCCTCATCACCTTCGC-3'		
b. YCR011CR	5'-ACAGAGAGAGTGGGCTCATCTTGC-3'	-65.93	

Left-hand and right-hand primers in each pair are labeled "a" and "b." All distances are calculated from the closest point of the PCR product to the HO-cut site in a *MAT*a strain. Primers with negative values are between the HO-cut site and *CEN3*. PCR product sizes range from 143 to 204 bp, with the exception of the YCR011CF/YCR011CR (217 bp) and MAT3-1/MAT4-1 (246 bp).