
Web Material for “When Is the Difference Method

Conservative for Assessing Mediation?”

Web Appendix 1: Mediation Analysis Based on Coun-

terfactual Framework

One of the advantages of the counterfactual approach to mediation analysis is that it

allows for the decomposition of a total effect into a direct effect and an indirect effect

even when nonlinearities and interactions are present (1, 2).

We will let Ya and Ma denote respectively, the value of outcome and mediator that

would have been observed if we set A = a , and we let Yam be the value of outcome

that would have been observed if we set A = a and M = m. Therefore YaMa′
is the

value of outcome that would have been observed if we set A = a and M = Ma′ . We

make the consistency assumption which is commonly used in causal inference literature

(3, 4), i.e. Yam = Y when A = a, M = a and Ya = Y,Ma = M when A = a.

We will follow the exposition of Pearl (2) to propose the definition of the total effect,

the natural direct and indirect effects. On the difference scale, the average total effect,

conditional on X = x, comparing exposure levels a with a′ (a > a′), is defined by

RDTE
a,a′|x = E(Ya − Ya′ | x), which compares the average outcome in subgroup X = x if

A had been set to a with the average outcome in subgroup X = x if A had been set to

a′. On the odds ratio scale, the average total effect, conditional on X = x, comparing

exposure levels a with a′, is defined by

ORTE
a,a′|x =

P (Ya = 1 | x)/{1− P (Ya = 1 | x)}
P (Ya′ = 1 | x)/{1− P (Ya′ = 1 | x)}

,

which compares the odds of outcome Y = 1 in subgroup X = x if A had been set to a
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with the odds of outcome Y = 1 in subgroup X = x if A had been set to a.

There are two classes of direct effects: “controlled” effects and “natural” effects. The

average controlled direct effect conditional on x on the risk difference scale is defined

as E(Yam − Ya′m | x), which captures the effect of the exposure with an intervention

on the mediator to fix it to a specific value. We can also define the natural direct and

indirect effects on either the difference or the odds ratio scale. On the difference scale,

the natural direct effect, conditional on x, comparing the effect of the exposure levels a

and a′ while fixing the mediator at the level it would have naturally been under some

reference condition for the exposure, A = a′, is defined by RDNDE
a,a′|x = E(YaMa′

−Ya′Ma′
|

x). The natural direct effect on the risk difference scale compares the average outcome

in subgroup X = x if A had been set to a and M had been set to Ma′ with the average

outcome in subgroup X = x if A had been set to a′ and M had been set to Ma′ . Thus

the natural direct effect captures the effect of exposure on the outcome via pathways

that do not involve the mediator M .

The natural indirect effect, conditional on x, comparing the effect of the mediator

at levels Ma and Ma′ while fixing the exposure at level a, is defined by RDNIE
a,a′|x =

E(YaMa − YaMa′
| x). The natural indirect effect on the risk difference scale compares

the average outcome in subgroup X = x if A had been set to a and M had been set to

Ma with the average outcome in subgroup X = x if A had been set to a and M had

been set to Ma′ .

On the odds ratio scale, the natural direct effect is defined by

ORNDE
a,a′|x =

P (YaMa′
= 1 | x)/{1− P (YaMa′

= 1 | x)}
P (Ya′Ma′

= 1 | x)/{1− P (Ya′Ma′
= 1 | x)}

,
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which compares the odds of Y = 1 in subgroup X = x if A had been set to a and M

had been set to Ma′ with the odds of Y = 1 in subgroup X = x if A had been set to a′

and M had been set to Ma′ . And the natural indirect effect is defined by

ORNIE
a,a′|x =

P (YaMa = 1 | x)/{1− P (YaMa = 1 | x)}
P (YaMa′

= 1 | x)/{1− P (YaMa′
= 1 | x)}

,

which compares the odds of Y = 1 in subgroup X = x if A had been set to a and M

had been set to Ma with the odds of Y = 1 in subgroup X = x if A had been set to a

and M had been set to Ma′ . Therefore, the natural indirect effect captures the effect

of exposure on the outcome through the mediator M .

On the difference scale, the natural direct and indirect effects have the property

that the total effect decomposes into a natural direct and indirect effect:

RDTE
a,a′|x = E(Ya − Ya′ | x) = E(YaMa − YaMa′

| x) + E(YaMa′
− Ya′Ma′

| x)

= RDNDE
a,a′|x +RDNIE

a,a′|x.

A similar property holds on the odds ratio scale, that the odds ratio for the total effect

decomposes into a product of a natural direct effect and indirect effect:

ORTE
a,a′|x =

P (Ya = 1 | x)/{1− P (Ya = 1 | x)}
P (Ya′ = 1 | x)/{1− P (Ya′ = 1 | x)}

=
P (YaMa′

= 1 | x)/{1− P (YaMa′
= 1 | x)}

P (Ya′Ma′
= 1 | x)/{1− P (Ya′Ma′

= 1 | x)}
· P (YaMa = 1 | x)/{1− P (YaMa = 1 | x)}
P (YaMa′

= 1 | x)/{1− P (YaMa′
= 1 | x)}

= ORNDE
a,a′|x ·ORNIE

a,a′|x,

which is equivalent to

log(ORTE
a,a′|x) = log(ORNDE

a,a′|x) + log(ORNIE
a,a′|x).

Under certain assumptions, the total effect, the natural direct and indirect effects

can be identified with observed data. We will follow the exposition of VanderWeele
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(5) and VanderWeele and Vansteelandt (6) on the identification assumptions proposed

by Pearl (2). These assumptions were presented to identify natural direct and indirect

effects on the risk difference scale, and also presented to be sufficient on the odds

ratio scale. Imai, Keele and Yamamoto (7) propose alternative assumptions to identify

natural direct and indirect effects. But on the causal diagrams with non-parameteric

structural equation models (3), the two sets of assumptions are equivalent (8). We will

let A B | C to denote A is independent of B conditional on C.

To identify the total effect, the general assumption is that conditional on some set

of measured covariates X, the effect of exposure A on outcome Y is unconfounded, i.e.

Ya A | X. (1)

In practice, one should collect data on a sufficiently rich set of covariates X to control

for confounding. Under this assumption, RDTE
a,a′|x and ORTE

a,a′|x can be estimated from

the data as follows:

RDTE
a,a′|x = E(Y | a, x)− E(Y | a′, x),

ORTE
a,a′|x =

P (Y = 1 | a, x)/{1− P (Y = 1 | a, x)}
P (Y = 1 | a′, x)/{1− P (Y = 1 | a′, x)}

.

Identifying the natural direct and indirect effects entails stronger assumptions and

we will present and illustrate them in two parts.

First, we need the assumptions that conditioning on the set of covariates X suffices

to control for confounding of both the exposure-outcome and the mediator-outcome

relations, i.e.

Yam A | X, (2)

Yam M | {A,X}. (3)
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Assumption 2 is similar to the assumption needed for identifying total effects, and

Assumption 3 requires that, conditional on {A,X}, there is no unmeasured confound-

ing for the mediator-outcome relation. Assumptions 2 and 3 together mean that the

set of covariates X suffice to control for the confounding of exposure-outcome relation,

and also to control for the confounding of mediator-outcome relation. These two as-

sumptions are restrictive in the sense that there can not be any additional covariates

other than X to confound the mediator-outcome relation.

However, Assumptions 2 and 3 are not sufficient to identify the natural direct and

indirect effects, and we need the following two additional assumptions:

Ma A | X, (4)

Yam Ma′ | X. (5)

Assumption 4 means that conditional on X, there is no unmeasured confounding of

the exposure-mediator relation. Assumption 5 can be interpreted as that there is no

mediator-outcome confounder affected by the exposure.

Assumptions 2 to 5 are not necessarily satisfied even in randomized experiments,

therefore, in practice we need to rely on scientific knowledge to judge these assumptions

and sensitivity analysis should be conducted when some assumptions are violated (5, 7).

Under Assumptions 2 to 5, the natural direct and indirect effects on the difference
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scale and the odds ratio scale can be estimated as:

RDNDE
a,a′|x =

∫
P (Y = 1 | a,m, x)P (m | a′, x)dm−

∫
P (Y = 1 | a′,m, x)P (m | a′, x)dm,

ORNDE
a,a′|x =

∫
P (Y = 1 | a,m, x)P (m | a′, x)dm/{1− P (Y = 1 | a,m, x)P (m | a′, x)dm}∫
P (Y = 1 | a′,m, x)P (m | a′, x)dm/{1− P (Y = 1 | a′,m, x)P (m | a′, x)dm}

,

RDNIE
a,a′|x =

∫
P (Y = 1 | a,m, x)P (m | a, x)dm−

∫
P (Y = 1 | a,m, x)P (m | a′, x)dm,

ORNIE
a,a′|x =

∫
P (Y = 1 | a,m, x)P (m | a, x)dm/{1− P (Y = 1 | a,m, x)P (m | a, x)dm}∫
P (Y = 1 | a,m, x)P (m | a′, x)dm/{1− P (Y = 1 | a,m, x)P (m | a′, x)dm}

.

Since Assumption 1 is implied by Assumption 2 to 5, the confounding assumptions

(a)-(d) in the main text is referred to as Assumptions 2 to 5.

6



Web Appendix 2: Proof of the Results

Proof of Result 1.

RDTE
a,a′|x = E(Y | a, x)− E(Y | a′, x)

= (φ0 + φ1a+ φ>2 x)− (φ0 + φ1a
′ + φ>2 x) = φ1(a− a′).

Under Assumptions 2-5, according to model 2 the natural direct effect on the risk

difference scale is given by:

RDNDE
a,a′|x =

∫
P (Y = 1 | a,m, x)P (m | a′, x)dm−

∫
P (Y = 1 | a′,m, x)P (m | a′, x)dm

= {θ0 + θ1a+ θ2E(M | a′, x) + θ>3 x} − {θ0 + θ1a
′ + θ2E(M | a′, x) + θ>3 x}

= θ1(a− a′).

From the property that the total effect decomposes into a natural direct and indirect

effect, we then have RDNIE
a,a′|x = (φ1 − θ1)(a− a′). Result 1 then follows if we let a = 1

and a′ = 0.

We use the following Lemma to prove Result 2:

Lemma 1. Let f and g be functions with n real-valued arguments such that both f and

g are non-decreasing in each of their arguments. If X = (X1, · · · , Xn) is a multivariate

random variable with n components such that each component is independent of the

other components, then Cov{f(X), g(X)} ≥ 0

Proof of Lemma 1. See Theorem 2.1 of Esary, Proschan and Walkup (9).

Proof of Result 2. According to model 3, if Assumption 1 holds, we can get

log(ORTE
a,a′|x) = log

{
P (Y = 1 | a, x)/{1− P (Y = 1 | a, x)}
P (Y = 1 | a′, x)/{1− P (Y = 1 | a′, x)}

}
= (φ0 + φ1a+ φ>2 x)− (φ0 + φ1a

′ + φ>2 x) = φ1(a− a′).
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Thus we have ORTE
a,a′|x = eφ1(a−a

′). Under Assumption 2 to 5, from model 4, we can

estimate ORNDE
a,a′|x as:

ORNDE
a,a′|x = (

1

A
− 1)/(

1

B
− 1),

where

A =

∫
P (Y = 0 | a,m, x)P (m | a′, x)dm

=

∫
1

1 + eθ0+θ1a+θ2m+θ>3 x
· P (M = m | a′, x)dm

= EM |a′,x

(
1

1 + eθ0+θ1a+θ2M+θ>3 x

)
,

and

B =

∫
P (Y = 0 | a′,m, x)P (m|a′, c)dm

=

∫
1

1 + eθ0+θ1a
′+θ2m+θ>3 x

· P (M = m | a′, x)dm

= EM |a′,x

(
1

1 + eθ0+θ1a
′+θ2M+θ>3 x

)
.

Then, we have

eθ1(a−a
′)(

1

B
− 1)− (

1

A
− 1)

=
A · eθ1(a−a′) −B

AB
− eθ1(a−a′)

=
EM |a′,x

{
eθ1(a−a

′)

1+eθ0+θ1a+θ2M+θ>3 x
− 1

1+eθ0+θ1a
′+θ2M+θ>3 x

}
AB

− (eθ1(a−a
′) − 1)

= (eθ1(a−a
′) − 1)(

C

AB
− 1),

where C = EM |a′,x

{
1

(1+eθ0+θ1a+θ2M+θ>3 x)(1+eθ0+θ1a
′+θ2M+θ>3 x)

}
.

Since 1

1+eθ0+θ1a+θ2m+θ>3 x
and 1

1+eθ0+θ1a
′+θ2m+θ>3 c

are both non-increasing or non-decreasing

inm, according to Lemma 1, C−AB = CovM |a′,x

(
1

1+eθ0+θ1a+θ2M+θ>3 x
, 1

1+eθ0+θ1a
′+θ2M+θ>3 x

)
≥

0.
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If θ1 ≥ 0, we have (eθ1(a−a
′) − 1)( C

AB
− 1) ≥ 0, and then ORNDE

a,a′|c ≤ eθ1(a−a
′). From

the property that on the odds ratio scale, the total effect decomposes into a product

of a natural direct effect and indirect effect , we have ORNIE
a,a′|x = eφ1(a−a

′)/ORNDE
a,a′|c ≥

e(φ1−θ1)(a−a
′). Result 2 then follows if we let a = 1 and a′ = 0.
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Web Appendix 3: Result for the confidence interval of the nat-
ural indirect effect based on the difference method

Result 3. (a) If θ1 ≥ 0, and the lower 95% confidence bound of the difference method

is positive, then the lower 95% confidence bound of the natural indirect effect is positive.

(b) if P (θ1 > 0, φ1−θ1 > 0) ≥ 0.95, then the lower 95% confidence bound of the natural

indirect effect is positive.

Proof of Result 4. (a) From Result 2, we have

P (log(ORNIE
a,a′|c) > 0) ≥ P (φ1 − θ1 > 0) > 0.95.

(b) From Result 2, we have

P (log(ORNIE
a,a′|c) > 0) = P (log(ORNIE

a,a′|c) > 0, θ1 ≥ 0)

≥ P (φ1 − θ1 > 0, θ1 ≥ 0) ≥ 0.95.
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Web Appendix 4: Other Qualitative Conclusions About the
Natural Indirect Effect

First, we need M to come from an exponential family which is defined as follows:

Definition 1. We say that Y is from an exponential family if its probability density

function has the form

f(y; θ, φ) = e
yθ+b(θ)
a(φ)

+c(y,φ)

Then, we have

Result 4. Under Assumptions 2 to 5, suppose M comes from the exponential family

with E(M | a, x) ≥ E(M | a′, x), then

(a) if model 2 holds with θ2 ≥ 0, RDNIE
a,a′|x ≥ 0;

(b) if models 4 holds with θ2 ≥ 0, log(ORNIE
a,a′|x) ≥ 0.

The following Lemmas are useful for our derivation:

Lemma 2. Suppose X1, X2 are from the exponential family with the same φ, then

θx1 ≥ θx2 ⇔ E(X1) ≥ E(X2)⇔ P (X1 > x) ≥ P (X2 > x).

Proof of Lemma 2. See Theorem 3.4.1 (ii) of Lehmann and Romano (10).

Lemma 3. If E(Y |a,m, x) is non-decreasing(non-increasing) in m, and P (M > m|a, x)

is non-decreasing(non-increasing) in a for all m, then
∫
E(Y | a,m, x){P (M = m |

a, x)− P (M = m | a′, x)}dm ≥ 0.

Proof of Lemma 3. See Lemma 1 of VanderWeele and Robins (11).
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Proof of Result 3. If model 2 holds, we have

RDNIE
a,a′|x =

∫
E(Y | a,m, x){P (M = m | a, x)− P (M = m | a′, x)}dm.

Since θ2 ≥ 0 implies E(Y |a,m, x) is non-decreasing in m, and according to Lemma

2 we can get P (M > m|a, x) is non-decreasing(non-increasing) in a for all m from

E(M | a, x) ≥ E(M | a′, x). From Lemma 3, we have RDNIE
a,a′|x ≥ 0.

If model 4 holds, we have

ORNIE
a,a′|x =

∫
P (Y = 1 | a,m, x)P (m | a, x)dm/{1−

∫
P (Y = 1 | a,m, x)P (m | a, x)dm}∫

P (Y = 1 | a,m, x)P (m | a, x)dm/{1−
∫
P (Y = 1 | a,m, x)P (m | a′, x)dm}

.

Since θ2 ≥ 0 implies P (Y = 1|a,m, x) is non-decreasing in m, and according to Lemma

2 we can get P (M > m|a, x) is non-decreasing(non-increasing) in a for all m from

E(M | a, x) ≥ E(M | a′, x). From Lemma 3, we have
∫
P (Y = 1 | a,m, x)P (m |

a, x)dm ≥
∫
P (Y = 1 | a,m, x)P (m | a′, x)dm, thus log(ORNIE

a,a′|x) ≥ 0.

The following Corollary follows immediately from Theorem 4.

Corollary 1. Under Assumptions 2 to 5, if model 4 and a linear model E(M |a, x) =

β0 + β1a+ β′2x hold with θ2 ≥ 0 and β1 ≥ 0, then log(ORNIE
a,a′|x) ≥ 0.
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