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tion biases, and selection coefficients from genomic data alone by Gilchrist et al. (In Review).

Model Validation using Simulated Data

In order to verify the reliability of the with and without ~Φ ROC SEMPPR model fits we apply both

methods to simulated data. Data set S1, is generated from a model with φ values following a LogN

distribution while S2 uses the estimates of φ obtained from our analysis of the S288c genome with ~Φ

data.

Analysis of both simulated datasets show that both the with and without ~Φ methods produce accurate

and unbiased estimates of the mutation bias parameters ~∆M under all circumstances (ρ > 0.99, Figures

S1 & S2, panels c & d). We also obtained accurate estimates of differences in ribosome pausing times ~∆η.

Both with and without ~Φ ROC SEMPPR model fits produced near perfect recovery of ~∆η parameters

when applied to simulated dataset S1 (ρ > 0.99,Figure S1, panels a & b).

When applied to simulated dataset S2, both with and without ~Φ estimates of ~∆η showed strong

agreement with parameter values (ρ > 0.99, Figure S2, panels a & b). We did, however, observe a small

downward bias in their absolute values (∼ 7%). This is a special case of attenuation bias (Fuller, 1987)

which results from the φ values in S2 being distributed with a heavier right tail than the corresponding

LogN distribution with the same mean and variance.

Comparing the with and without ~Φ ROC SEMPPR estimates of protein synthesis rates, e.g. the

posterior means, φ̄, and the φ values used in our simulations illustrates the predictive power of ROC

SEMPPR. For example, analysis of the simulated dataset S1 indicates that under ideal conditions we

observe correlation coefficients between the log of our protein synthesis estimates, log(φ̄), and the log of

their true values, log(φ) of ∼ 0.96 for both the with and without ~Φ ROC SEMPPR model fits (Figure

S1). Even when the true distribution of φ values violates the LogN assumption as in S2, we still observe

correlation coefficients between log(φ̄) and log(φ) of ∼ 0.96 (Figure S2).

Scaling Bias due to Noise and Inherent Uncertainty

Because measurements of mRNA abundances, whether via microarray florescence or sequencing data,

are usually not scaled to any particular unit, researchers often use either the sum of all the measurements

or their mean value as a means of scaling their results. While it is intuitive to scale the data in this way,
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Figure S1: Comparison of estimated parameters versus actual parameters used to simulate data under the
model ROC SEMPPR. Here φ ∼ LogN as assumed when fitting ROC SEMPPR. (a) Comparison of with
~Φ ROC SEMPPR parameter estimates ∆η vs. actual data generating parameters ∆η. (b) Comparison

of without ~Φ ROC SEMPPR parameter estimates ∆η vs. actual data generating parameters ∆η. (c)

Comparison of with ~Φ ROC SEMPPR parameter estimates ∆M vs. actual data generating parameters
∆M . (d) Comparison of without ~Φ ROC SEMPPR parameter estimates ∆M vs. actual data generating

parameters ∆M . (e) Comparison of with ~Φ ROC SEMPPR parameter estimates φ vs. actual data generating

parameters φ. (f) Comparison of without ~Φ ROC SEMPPR parameter estimates φ vs. actual data generating
parameters φ. S2
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Figure S2: Comparison of estimated parameters versus actual parameters used to simulate data under the
model ROC SEMPPR. Here φ values used in the simulation were based on the with ~Φ fit of the S. cerevisiae
S288c genome dataset and, as a result, do not follow a log-normal distribution as assumed when fitting
ROC SEMPPR: (a) Comparison of with ~Φ parameter estimates ∆η vs. actual data generating parameters

∆η. (b) Comparison of without ~Φ parameter estimates ∆η vs. actual data generating parameters ∆η. (c)

Comparison of with ~Φ parameter estimates ∆M vs. actual data generating parameters ∆M . (d) Comparison

of without ~Φ parameter estimates ∆M vs. actual data generating parameters ∆M . (e) Comparison of with
~Φ parameter estimates φ vs. actual data generating parameters φ. (f) Comparison of without ~Φ parameter
estimates φ vs. actual data generating parameters φ.S3
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Figure S3: Comparison between posterior mean estimates of φ for the with ~Φ model fit and ~Φ data consisting
of mRNA abundance measurements from Yassour et al. (2009).

if the additional measurement noise is not taken into account a subtle biases on φ and ~∆η is introduced.

The nature of the bias can be most easily illustrated when we assume that both the signal and the

noise follow log-normal distributions, however, the effects should be present as long as the noise is not

symmetrically distributed around the underlying signal values.

For example, let φ′i represent the true, unscaled protein synthesis rate of gene i, i.e. ln(φ′i) = ln(φi) +

AΦ and assume that, across the genome, φ′ ∼ LogN(mφ′ , sφ′), such that E(φ′) = exp
[
mφ′ + s2

φ′/2
]
.

Let Φi,j represent a given noisy observation or estimate of φ′i, i.e. Φi,j is part of our ~Φ data set. Also

let Φi,j = φ′iεj where εj ∼ LogN(0, sε) and implies that the observation Φi,j is log normally distributed

around the true values φ′i. Even though the noise is centered around the true value, because the log-normal

distribution is asymmetric, E(Φi|φ′i) = φ′i exp[s2
ε/2] > φ′i and when considering the entire distribution

E(Φ) = exp
[
mφ′ + s2

φ′/2 + s2
ε/2
]

= E(φ′) exp[s2
ε/2]. Thus we see that the mean of our observed values

is actually greater than the mean of the true signals underlying them and, as a result, if one scales by

the sum or the mean of these observed values the resulting values will be biased downward by a factor of

exp[s2
ε/2]. To remove this bias, we introduce an additional scaling term AΦ such that mφ′ = AΦ − s2

φ′/2

and, as a result, E(φ′) = exp [AΦ] and E(Φ) = exp
[
AΦ + s2

ε/2
]
. Our empirical data provides an

estimate of E(Φ) and the inconsistency between the degrees of adaptation in CUB observed across genes

and their expression levels greater than that expected due to genetic drift allows us to estimate sε while,

simultaneously estimating AΦ.
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Finally, we note that simply scaling one’s estimates of x by the mean of these estimates during the

MCMC run also introduces bias. This is because our estimates of φ′i during the MCMC, ΦMCMC are

imprecise and, as a result, their mean value will be overestimated. Assuming our uncertainty in x is log-

normally distributed LogN(m = 0, s = sMCMC), E(ΦMCMC) = E(φ′)E(s2
MCMC/2). As a consequence,

the scaled protein synthesis rates, φ, are biased downward leading to an overestimation in the absolute

differences in pausing times between codons, ~∆η. The effects of this bias are actually evident in Wallace

et al. (2013) Figure 5A where the estimates of the coefficients differ from the values used during their

simulations. Including the parameter AΦ, which explicitly models this scaling terms, provides a simple

way to avoid these issues.

Fitting of Model to Genomic Data and Noisy Measurements

of Protein Synthesis

We generalize our ROC SEMPPR model to include the extraction of information from noisy, unscaled

measurements of protein synthesis for each gene, i.e. ~Φj . This is essentially the same model as Wallace

et al. (2013) except instead of rescaling estimates of ~φ and ~∆η in pre- and post-MCMC data processing

step, we include the estimation of the scaling term AΦ discussed in the last section.

naa∏
i=1

ng∏
j=1

f
(
~∆M i, ~∆ηi, φj , sφ, AΦ, s

2
ε

∣∣∣~ki,j , ni,j , ~Φj) ∝
naa∏
i=1

ng∏
j=1

f
(
~ki,j

∣∣∣~pi,j , ni,j) f (~Φj∣∣∣φj , AΦ, s
2
ε

)
f (φj |sφ) f (sφ) f (AΦ) f

(
s2
ε

)
(S1)

where, as before, ~∆M i and ~∆ηi are the mutation and selection coefficients respectively for amino acid i,

~ki,j are the codon counts following a multinomial distribution for the amino acid i in the ORF of gene j

as defined in Equation (2), ni,j is the sum of all codon counts related to a particular amino acid i in the

gene j, ~pi,j is an inverse multinomial logit function of ~∆M i, ~∆ηi, and φj , f (φj |sφ) is the prior for the

protein synthesis rate φj ∼ LogN(−s2
φ/2, sφ), and f(sφ) = 1.

Additionally, we assume that log
(
~Φj
)
∼ N

(
log (φj) +AΦ, s

2
ε

)
, i.e. the log transformed measurements

log
(
~Φj
)

are offset by a constant AΦ and normally distributed around log(φ) +AΦ with variance s2
ε. We

also assume f(AΦ) = 1 and f(s2
ε) ∝ 1/s2

ε. Both AΦ and s2
ε are genome scale parameters and are estimated

in the with ~Φ model. In the future, the assumption that s2
ε is the same across genes could be relaxed. In

the absence of any ~Φ data, the f
(
~Φj

∣∣∣φj , AΦ, s
2
ε

)
, f (AΦ), and f

(
s2
ε

)
terms are undefined and drop out.
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The system below summarizes the expressions just given describing Equation (S1):

~ki,j ∼ Multinom(ni,j , ~pi,j),

~pi,j = mlogit−1(− ~∆M i − ~∆ηiφj),

log
(
~Φj
)
∼ N(log(φj) +AΦ, s

2
ε),

φj ∼ LogN(−s2
φ/2, sφ),

~∆M i, ~∆ηi, sφ, AΦ ∝ 1, and

f(s2
ε) ∝ 1/s2

ε.

To fit the without and with ~Φ models, we apply the following algorithm with a superscript (i) indicating

the ith iteration of an MCMC chain.

Step 1. Update ~∆M and ~∆η conditional on all other parameters in the ith iteration through a random

walk Metropolis-Hasting (MH) algorithm:

(a) Step i = 0 only.

i. Calculate SCUO value for each gene following Wan et al. (2006).

ii. Generate random ordered values φ(0) by simulating from LogN(m = −s2(0)
φ /2, s = s

(0)
φ ),

and sorting them in the same order as the SCUO values to maintain the rank order of

production rates among genes.

iii. Given φ(0), for each amino acid a estimate initial values ~∆M
(0)

a , ~∆η
(0)

a , and the covariance

matrix of these estimates Σ
(0)
~∆Ma, ~∆ηa

using multinomial logistic regression.

(b) For each amino acid, independently simulate a new proposal for ( ~∆Ma, ~∆ηa) jointly from a

multivariate normal distribution which has mean ( ~∆M
(i)

a , ~∆η
(i)

a ) and covariance c
(i)
a Σ

(0)

( ~∆Ma, ~∆ηa)

with initial adaptive scaling factor c
(0)
a = 1. See Marin and Robert (2007, Chapter 2) for details

on incorporating a covariance matrix in practice.

(c) Accept the proposal with the MH probability based on the acceptance ratio and set ~∆M
(i+1)

a

and ~∆η
(i+1)

a accordingly for all amino acids.

Step 2. Update hyperparameters conditional on all other parameters:

(a) If using the fitting with ~Φ model: update
(
s

(i+1)
ε

)2

∼ Inv-Gamma((ng − 1)/2,
(
S(i)

)2

/2)

where
(
S(i)

)2

=
∑ng
j=1(log ~Φj −A(i)

Φ − log φ
(i)
j )2.

(b) Update s
(i+1)
φ using a random walk MH with proposal distribution LogN(log s

(i)
φ , σ

(i)
sφ ) with ini-

tial value σ
(0)
sφ = 1 for the adaptive scaling factor of MCMC. Also, set m(i+1) = −

(
s(i+1)

)2

/2.

(c) If fitting with ~Φ model: update A
(i+1)
Φ using a random walk MH with proposal distribution

N(A
(i)
Φ , σ

2(i)
AΦ

) with initial value σ
(0)
AΦ

= 0.1 for the adaptive MCMC scaling factor.
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Step 3. Update protein translation rates conditional on Steps 1 and 2 and all other parameters:

For each gene j, generate φj through a random walk MH step:

(a) Propose φj from LogN(φ
(i)
j , σ

(i)
φj

) with initial value σ
(0)
φj

= 1 for the adaptive MCMC scaling

factor.

(b) Accept the proposal with the MH probability based on the acceptance ratio and set φ
(i+1)
j

accordingly.

Step 4. Update all adaptive scaling factors if the acceptance rate of each set of parameters falls outside the

20-35% acceptance rate in the above Steps 1, 2, and 3 in order to sample the posterior distribution

efficiently.

Comparison of Predicted Protein Synthesis Rates φ to In-

dependent mRNA Abundance Measurements

Figure S4 compares posterior mean estimates of φ produced with (using the mRNA abundance measure-

ments of Yassour et al. (2009)) and without ~Φ to four additional lab measurements of mRNA abundances

reported by Arava (2003); Nagalakshmi et al. (2008); Holstege et al. (1998); Sun et al. (2012). These

values can be found in Table S9. Correlation coefficients are provided for each figure and tend to be

slightly higher for estimates generated using the with ~Φ algorithm. Although this seems to indicate that

with ~Φ estimates are superior, it is worth noting that these data measure mRNA expression levels. Be-

cause the without ~Φ algorithm estimates protein synthesis rates, fundamentally a different quantity, we

would expect these estimates to differ. Because the with ~Φ measurement algorithm shrinks the protein

synthesis estimates toward the mRNA expression observations, it is natural that with ~Φ estimates show

higher correlation with measurements from other laboratories.
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Figure S4: Scatter plot comparisons of with (Yassour measurements) and without ~Φ posterior mean estimates
to empirical measurements from four additional laboratories. The units for φ are protein/t and time is scaled
such that the prior for φ satisfies E(φ) = 1. The empirical mRNA abundance measurements, [mRNA], are
being used here as a proxy for protein synthesis rates, i.e. [mRNA] ∝ protein/t. The measurements are
scaled such that the mean [mRNA] value is 1. Pearson correlation coefficients ρ are given and the dashed
black line represents the fit of a linear regression model.S8
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Figure S5: Scatter plot comparisons of with ~Φ (Yassour) and without ~Φ posterior mean estimates to empirical
measurements from three ribosome profiling datasets from three different laboratories. The units for φ are
protein/t and time is scaled such that the prior for φ satisfies E(φ) = 1. The empirical ribosome profiling
measurements were originally in units of reads per kilobase of transcript per million mapped (rpkm) corrected
for mRNA length. These measurements are scaled such that the mean rpkm value is 1. Pearson correlation
coefficients ρ are given and the dashed black line represents the fit of a linear regression model.S9



Supplemental Tables

Data in supplemental tables can be downloaded from doi: http://dx.doi.org/10.1101/009670

S1. Summary statistics of posterior estimates of ∆M for S. cerevisiae S288c genome estimated with ~Φ

(s288c deltam wphi.tsv).

S2. Summary statistics of posterior estimates of ∆M for S. cerevisiae S288c genome estimated without

~Φ (s288c deltam wophi.tsv).

S3. Summary statistics of posterior estimates of ∆η for S. cerevisiae S288c genome estimated with ~Φ

(s288c deltaeta wphi.tsv).

S4. Summary statistics of posterior estimates of ∆η for S. cerevisiae S288c genome estimated without

~Φ (s288c deltaeta wophi.tsv).

S5. Summary statistics of posterior estimates of φ for S. cerevisiae S288c genome estimated with ~Φ

(s288c phi wphi.tsv).

S6. Summary statistics of posterior estimates of φ for S. cerevisiae S288c genome estimated without ~Φ

(s288c phi wophi.tsv).

S7. Gene and codon specific selection coefficients for S. cerevisiae S288c genome estimated with ~Φ

(s288c selection coefficient wphi.tsv).

S8. Gene and codon specific selection coefficients for S. cerevisiae S288c genome estimated without ~Φ

(s288c selection coefficient wophi.tsv).

S9. Additional absolute mRNA measurements from multiple laboratories of S. cerevisiae Genome

(s.cerevisiae.mRNA.measurements.tsv).

S10. Additional measurements of protein synthesis rates from ribosome profiling experiments from mul-

tiple laboratories of S. cerevisiae Genome (s.cerevisiae.rpf.measurements.tsv).

S11. Results from linear regression of FMutSel estimates of S vs. without ~Φ ROC SEMPPR estimates of

S for the 106 genes in the Rokas et al. (2003) dataset (FMutSel S vs ROC wo phi S regressions.txt).
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