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I. MODEL MOTIVATION AND APPROXIMATIONS

The motivation for the model used in the main text stems from a model studied in Ref. [1] which in turn was

introduced to elucidate the mechanism of oscillations in synthetic gene circuits based on delayed self-repression [2].

In Ref. [1], we demonstrated (in both deterministic and stochastic contexts) how a short delay in transcriptional

negative feedback can lead to long oscillatory periods. The deterministic model for the oscillator is written as a

delay-differential equation (DDE) for a repressor concentration x

dx

dt
= F (xτ1)− γx

K + x
, (S1)

where the synthesis rate of the repressor protein x at time t is characterized by the function F (·) that depends on the

delayed value of the repressor concentration x(t− τ1). The repressor degradation is assumed enzymatic and described

by the usual Michaelis-Menten kinetics. Function F (x) is assumed to be monotonically decreasing with its argument.

For definiteness, we can consider the model

dx

dt
=

α

(1 +
xτ1
C1

)2
− γx

K + x
, (S2)
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which was studied in Ref. [1].

Several approximations were made to the oscillator model in Eq. S2 to arrive at the final model in the main text of

this Letter. We determined in Ref. [1] that in the limit K → 0, i.e. the zeroth-order degradation limit, followed by the

limit where C1 is sufficiently small but nonzero, i.e. the tight repression limit, the model in Eq. S2 exhibited sawtooth

“degrade-and-fire” (DF) oscillations. These oscillations are characterized by short bursts of repressor production

(the “fire” phase) of duration approximately 2τ1, followed by subsequent degradation of accumulated repressor. We

observed that the duration of the degradation phase can be much longer than the duration of the firing phase. These

results were not strictly dependent on the limit K → 0, though care must be taken to keep K sufficiently small to

ensure robust oscillations.

In Ref. [1], we also considered the effect of an activator (a positive regulator) A on the dynamics of the oscillator.

The corresponding model can be written as

dx

dt
=

α

(1 +
xτ1
C1

)2

f−1 + A
C2

1 + A
C2

− γx

K + x
(S3)

with f > 1 determining the positive feedback strength. In the main text of the present Letter, we effectively assume

that A is much smaller than C2, such that A influences dx/dt linearly

dx

dt
≈ α

(1 +
xτ1
C1

)2

(
f−1 + (1− f−1)

A

C2

)
− γx

K + x
(S4)

The activator A only influences the DDE in Eq. S4 during a firing event, i.e. when xτ1 is small. In the limit of K → 0

and C1 → 0, followed by the limit of τ1 → 0 while ατ1 remains fixed, a derivation similar to that in Ref. [1] then leads

to a firing amplitude for the oscillator

P = ατ1

(
f−1 + (1− f−1)

A(0)

C2

)
(S5)

where A is evaluated at a firing event arbitrarily set to occur at time t = 0. It is trivial to rewrite Eq. S5 in the form

P = X0 + νA(0) (S6)

as in Eq. 3 of the main text.

Ref. [1] additionally investigated the influence of stochastic noise on DF oscillations, with the finding that the

firing phase tended to generate most of the variability in amplitude and period of the oscillations. This was due

to the amplitude of the firing phase being determined when repressor count is small (x is small) and thus noisy.

Correspondingly, the model in the main text of this Letter only accounts for noise that occurs during firing rather

than degradation. This firing noise was furthermore assumed to be white (uncorrelated between firing events), since

the time between firing events can be long, i.e. comparable to or longer than a cell division period.

The magnitude and the distribution of fluctuations of firing amplitudes sensitively depend on the biochemical

details of protein synthesis. For example, in Ref. [1], we were able to determine approximate relationships between

firing variability (“noise strength”) and other parameters of the system, e.g. mean firing amplitude, and to find its

distribution (Poisson) for a particular stochastic model of firing kinetics. However, in the main text we make a

simplifying assumption of the uniform distribution of firing amplitudes [X0 − η/2, X0 + η/2] with magnitude η that

is treated as an independent parameter. In the Main text we keep the mean firing amplitude X0 fixed and vary η in

the bifurcation analysis. In Section VI below we also consider the example of the multiplicative noise when η linearly

depends on X0.

II. SIMULATION DETAILS

Simulation of the coupled oscillator system was done as follows. A time step dt = 0.01 was chosen for the simulation,

which is roughly 1/100 the magnitude of most rates. The oscillator with index n at simulation step m is represented

by a variable xn(m), while the mean field coupling variable at simulation step m is represented by A(m).
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The update operation A(m)→ A(m+ 1) uses the exact solution to the formula

dA

dt
=

1

N

∑
n

xn − βA (S7)

assuming an integration time of dt, the initial condition A(m), and the approximation that oscillator obeys the simple

dynamics dxn/dt = −γ. Thus, we do not assume that the oscillators “fire” when computing the update for A(m).

With each of these update steps, the value of A(m) is stored in a queue data structure of sufficient length, since

previous values of A will be needed to compute the delayed interaction.

The update for the oscillators initially computes the intermediate value xn(m)− γ dt. If xn(m)− γ dt < 0, this

indicates a “firing” event, where an impulse is added to give xn(m) = xn(m− 1)− γdt+X0 + νA(m−mτ ) + ξ̃,

where mτ is the appropriate number of simulation steps such that τ = mτ dt, and where ξ̃ is an independent (for each

firing) uniform random variable distributed in [−η/2, η/2].

Unless otherwise mentioned, a transient time of 1 000 000 steps are always performed before measuring system

behavior. Statistics for trajectories over 20 000 subsequent iterations then are used to form the results in the main

text.

III. STRONGLY SYNCHRONIZED SINGLE CLUSTER

A. Mean Field Solution

For the very low noise case η ≈ 0, we consider the periodic solution of Eqs (3),(4) of the main text corresponding

to a highly synchronized single cluster of Degrade-and-Fire (DF) oscillators. We will make the assumption that the

period T satisfies τ < T , which will considerably simplify the analysis. The case where τ > T can also be considered

by iteration of the technique presented here.

The periodic solution can be found as follows. Write the periodic solution for the mean field of the oscillators as

xs(t), and write the periodic solution for the coupling signal as As(t). Suppose that a “firing” event occurs at t = 0,

such that xs(−ε) ≈ 0 and xs(ε) = Ps, for infinitesimal ε, and with Ps ≡ X0 + νAs(−τ). The solution for xs in the

vicinity of t = 0 is

xs(t) = −γt , − T < t < 0 (S8)

xs(t) = Ps − γt , 0 < t < T (S9)

Thus, T = Ps/γ. The dynamical equation for As(t) is as before

dA

dt
= xs(t)− βA (S10)

and can be solved for t ∈ [−T, T ] by knowledge of xs(t). In particular it can be shown

As(−τ) =
γ τ

β
+

γ

β2
+ eβ τ

(
As(0)− γ

β2

)
(S11)

As(T ) =
γ

β2
+ e−Ps β/γ

(
As(0)− Ps

β
− γ

β2

)
(S12)

Equation S11 can be used to determine an expression for Ps ≡ X0 + νAs(−τ), which in turn can be substituted into

Eq. S12 as a consistency condition for the unknown As(0) = As(T ), which provides the periodic solution. A general

analytic solution for As(0) is not known to us, but the solution for ν = 0 is simple, and it was be used as a starting

point for numerical continuation schemes.

B. Linear Stability

Here we consider the dynamics of a single DF oscillator driven by a periodic mean field solution As(t) with period

T . Label the firing times for the driven oscillator as tn for integer n. These times then obey the dynamics

tn+1 = tn +
X0 + νAs(tn − τ) + ξ̃n

γ
(S13)
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FIG. S1: Illustration of metastability, with plotted quantities similar to those in Fig. 1 of the main text, where “osc. mean”

refers to the mean value 〈x〉, and “osc.” refers to a randomly chosen set of 30 oscillators from the whole. A set of 1000 oscillators

were started in a near perfect single cluster state, uniformly distributed in [9.95, 10.05]. Parameters were chosen to be γ = 1,

β = 1, X0 = 5, τ = 4, ν = 0.3, and η = 0.01. (If η = 0 instead, it can be shown that the single cluster state is stable with these

parameters.) (a) After simulation for 10 000 time units, the system remains in the single cluster state. (b) After simulation

for 500 000 time units, the system was found in the two cluster state, more consistent with the results in Fig. 2c,d of the main

text.

where each ξ̃n is an independent uniform random variable distributed in [−η/2, η/2], and η is assumed in this case to

be small. If the entrained oscillator has the same parameters as the mean field ensemble in the previous subsection,

then if we assume each firing time tn is near the nth firing time, nT , of the ensemble, we can define the deviation

δtn = tn − nT . Then conditional on known tn, the entrained oscillator obeys to lowest order

δtn+1 − δtn = tn+1 − tn − T (S14)

=
X0 + νAs(tn − τ) + ξ̃n

γ
− T (S15)

=
X0 + νAs(nT + δtn − τ)

γ
− T +

ξ̃n
γ

(S16)

≈ ν

γ

∂As
∂t

(nT − τ) δtn +
ξ̃n
γ

(S17)

By periodicity of As(t)

δtn+1 ≈
(

1 +
ν

γ

∂As
∂t

(−τ)

)
δtn +

ξ̃n
γ

(S18)

Neglecting fluctuations, δt is stable towards zero if∣∣∣∣1 +
ν

γ

∂As
∂t

(−τ)

∣∣∣∣ < 1 , (stability, no fluctuations) (S19)

Since As tends to be decaying near the time before the next firing, we expect ∂As
∂t (−τ) < 0 for τ not too large, and

so we expect the single cluster solution to be stable for a range of parameters.

The condition Eq. S19 can be used to demonstrate stability of a single cluster for regions of parameter space not

typically displaying single cluster oscillators. For instance, consider Fig. 2c,d of the main text. These panels use the

parameters γ = 1, X0 = 5, β = 1, τ = 4.0, with ν and η variable. Numerical investigation of the stability for the
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FIG. S2: Illustration of low sensitivity to initial conditions for Fig. 2a,c of the main text. Panels (a) and (c) are identical

to panels (a) and (c) in Fig. 2 of the main text (see main text Fig. 2 caption for details). Panel (b) is an identical scan of

simulations as in panel (a), but with all oscillators initialized at the same value, xn = 10. Negligible differences are noticed

between these panels. Similarly, panel (d) is panel (c) with the initial condition xn = 10. In this case, a band of single cluster

oscillations for small η but large ν are observed in (d) but not in (c). We believe these are mostly metastable states. Also,

some distortion of the boundary between the two cluster and three cluster regions can be noticed.

single cluster solution when η = 0 suggests ν > 0.1882197809 is stable for the range of ν considered in the plot. This

range is beyond where single clusters are observed in Fig. 2c of the main text. Simulation of this solution for finite η

may explain why; these solutions may tend to be metastable. Fig. S1 illustrates this point.

Despite the potential complexity associated with exploring a system with multiple metastable states, we do not find

that our results are very sensitive to the initial condition used. Figure S2 compares the results from the main text,

which used an initial condition reminiscent of the asynchronous state, to an initial condition where all oscillators are

identical. Only subtle differences are observed, including a new narrow band of single cluster oscillations for η small

and ν large. These oscillations are the metastable oscillations discussed in the previous paragraph.

IV. STEADY STATE SOLUTION AND LINEAR STABILITY ANALYSIS IN THE CONTINUUM

LIMIT: GENERAL TREATMENT

A. Steady State

The equations governing dynamics in the continuum limit are

∂tf(x, t) = γ∂xf(x, t) + γg(x,Aτ )f(0, t) (S20)

dA

dt
=

∫ ∞
0

x f(x, t) dx− βA (S21)
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where Aτ = A(t− τ) is a delayed variable. The steady state is defined by the solution to the coupled equations

(subscript “0” indicates steady state in this context)

0 = ∂xf0(x) + g(x,A0)f0(0) (S22)

0 =

∫ ∞
0

x f0(x) dx− βA0 (S23)

Equation S22 can be solved conditional on the steady state value A0

f0(x) = f0(0)

(
1−

∫ x

0

g(x,A0) dx

)
(S24)

which ensures that f0 → 0 as x→∞ if
∫∞
0
g(x,A)dx = 1. The value of f0(0) can be fixed by the condition∫∞

0
f0(x)dx = 1. We must then solve the consistency condition for A0, from Eq. S23

f0(0)

∫ ∞
0

x′

(
1−

∫ x′

0

g(x,A0) dx

)
dx′ = βA0 (S25)

which can be analytically computed given particular choices for g(x,A).

B. Linear Stability

Linear stability from this zeroth order solution can be done via a perturbation expansion. To lowest order

f(x, t) = f0(x) + f1(x)eλt (S26)

A = A0 +A1e
λt (S27)

where f1 and A1 are small. Substituting this into Eqs. S20–S21 and expanding to linear order provides

∂xf1(x) =

(
λ

γ

)
f1(x)− g(x,A0) f1(0)− ∂g

∂A
(x,A0) f0(0)A1e

−λτ (S28)

(λ+ β)A1 =

∫ ∞
0

xf1(x) dx (S29)

where we must satisfy the condition f1(∞) = 0.

V. STEADY STATE SOLUTION AND LINEAR STABILITY ANALYSIS IN THE CONTINUUM LIMIT:

UNIFORM RANDOM NOISE

A. Steady State

A particular choice for g(x,A) can greatly simplify the analysis for synchronized DF oscillators. One of the simplest

such choices is a uniform noise distribution within a range (−η/2, η/2) which corresponds to

g(x,A) =
Θ(X0 + νA− η/2)−Θ(X0 + νA+ η/2)

η
(S30)

where Θ(·) is the Heaviside function. Define x1 ≡ P − η/2 and x2 ≡ P + η/2, where P ≡ X0 + νA0 is the zeroth

order firing amplitude. To simplify the resulting expressions in this section, we rescale time to set γ = 1. Recovering

expressions for γ 6= 1 is straightforward.

The zeroth order solution to this particular problem can be derived from application of Eqs. S24–S25. Equation S24

has the piecewise linear solution

f0(x) =
2

x2 + x1
=

1

P
, x ≤ x1 (S31)

f0(x) =
2(x2 − x)

(x2 + x1)(x2 − x1)
=
P + (η/2)− x

P η
, x1 ≤ x < x2 (S32)

f0(x) = 0 , x ≥ x2 (S33)
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Using this solution, the mean value of x is calculated to be∫ ∞
0

x f0(x, t) dx =
P

2
+

η2

24P
(S34)

Consistency of the steady state condition (Eq. S25) then can be expressed as

βA0 =
P

2
+

η2

24P
(S35)

or using the definition P = X0 + νA0 (
β

ν

)
(P −X0) =

P

2
+

η2

24P
(S36)

which is a quadratic equation for P with a single physical solution

P =
βX0

2β − ν
+

1

6

√
36β2X0

2 + 6 η2ν β − 3 η2ν2

2β − ν
(S37)

This solution is divergent at ν = 2β and unphysical for ν ≥ 2β, which is a result of the simplistic functional form

X0 + νA for the firing amplitude. A more realistic firing amplitude function would include saturation, e.g. being

(X0 + νA)/(1 + κA) for some κ > 0, which would prevent this divergent behavior.

B. Linear Stability

The linear stability analysis follows from Eqs. S28–S29. Firstly, notice that

∂g

∂A
(x,A0) = −ν

η
(δ(x− x1)− δ(x− x2)) (S38)

where δ(x) is the Dirac delta function. This expression for ∂g/∂A substituted into Eq. S28 leads to the jump conditions

f1(x1 + ε)− f1(x1 − ε) =

(
f0(0)

η

)
νA1e

−λτ =

(
1

P η

)
νA1e

−λτ (S39)

f1(x2 + ε)− f1(x2 − ε) = −
(
f0(0)

η

)
νA1e

−λτ = −
(

1

P η

)
νA1e

−λτ (S40)

for infinitesimal positive ε. Away from these points, g(x,A0) is piecewise constant, and ∂g/∂A(x,A0) = 0, leading to

f1(x)

f1(0)
= eλx , x < x1 (S41)

f1(x)

f1(0)
=

1

λη
+

(
eλx1 +

(
1

P η

)
ν ζ e−λτ − 1

λη

)
eλ(x−x1) , x1 < x < x2 (S42)

where ζ ≡ A1/f1(0). We then have to satisfy the consistency condition f1(x2 + ε) = 0, which after minimal algebraic

manipulation is

0 = eλ(P+η/2) +
(
eλη − 1

)(ν ζ e−λτ
P η

− 1

λη

)
(S43)

Equations S41–S42 can also be used to compute piecewise the required integral
∫∞
0
x f1(x) dx in Eq. S29, which leads

to another equation that must be solved for the linear stability problem. Finally, we have a pair of equations to be

solved simultaneously for our eigenvalue problem

0 = eλ(P+η/2) +
(
eλη − 1

)(ν ζ e−λτ
P η

− 1

λη

)
(S44)

0 = (λ+ β) ζ − ν ζ e−λτ + P 2

λP
(S45)
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We will leave derivation of Eq. S45 to the reader.

A special case of Eqs. S44–S45 is in the case with no coupling, i.e. ν = 0. Then we only need to solve

0 = η eλ(P+η/2) − eλη − 1

λ
(S46)

Equation S46 describes the spectrum for an ensemble of stochastic, uncoupled oscillators. We can expand Eq. S46 in

η to find

0 =
(
eλP − 1

)
η +

1

2
λ
(
eλP − 1

)
η2 +O

(
η3
)

(S47)

To lowest order, Eq. S47 implies

λ ≈ 2πi n

P
, (ν = 0, η small, integer n) (S48)

From the eigenfunction expressions Eqs. S41–S42, we notice that each integer n in Eq. S48 corresponds (approximately)

to a Fourier mode with n oscillations. Thus, the branch in the eigenvalue spectrum corresponding to integer n should

be the branch corresponding to an n-cluster perturbation, where n clusters of oscillators break the asynchronous state.

This is indeed what we find in our numerical simulations (see Fig. 2 in the main text).

In our computational investigations, we solve Eqs. S44–S45 by numerical continuation of known analytic solutions

in the limit ν = 0 and η small but finite (see Eq. S48). We then plot the contours when the real value of λ crosses

zero. A variety of such bifurcation diagrams can be found in Supplementary Figs. S4–S5 (found at the end of this

document). In particular, notice in Supplementary Figure S5 that a large region only containing the single cluster

synchronous state often exists when η is sufficiently large.

VI. MULTIPLICATIVE NOISE MODELS

Most of the analysis in this Letter assumes that a single parameter η is sufficient to specify the firing noise strength

for all oscillators in the system. However, we mentioned at the end of Section I that in real gene circuits, the noise is

expected to be constrained in some way, in particular, the noise magnitude can be related to mean firing amplitude.

In the main text, we kept X0 fixed, and therefore changing η without changing X0 can be thought of as changing

the parameters of a specific functional relationship between X0 and η (for example, the relative contributions of

transcriptional and translational noise). However, one can also study the bifurcation diagram for a fixed function

η(X0) by varying X0. In this section, we present our calculations for a simple multiplicative noise model in which

η = ρX0, with a new parameter, the relative noise strength ρ. In the corresponding simulations and the bifurcation

analysis, we vary X0 for several fixed ρ. However, to facilitate the comparison with the main text, we as before present

them in the plane (ν, η).

Sample results for a model with given relative noise strength are presented in Fig. S3, which can be directly compared

to Fig. 2 in the main text. Further exploration of the mode structure for these models appears in Fig. S6 at the end

of this document. Based on these results, we can make a number of observations. Firstly and not surprisingly based

on other results in this Letter, cluster dynamics in discrete simulations matches and therefore can be predicted by the

mode stability analysis about the asynchronous state. Secondly, unlike the additive noise case, we find multiple bands

of values for η where the first mode is unstable (and similarly for higher modes, results not shown). This is likely

due to resonance effects: in the multiplicative noise case scanning η corresponds to scanning X0 and with it changing

the natural period of the underlying oscillators. This period may then resonate with the timescale τ for the global

feedback delay. Finally, greater relative noise magnitude tends to decrease the complexity of the mode bifurcation

diagram over a given a range of ν (Fig. S6).

A related but much less trivial modification of our model would be to suppose that the firing noise strength η

depends instantaneously on the current mean firing amplitude P = X0 + νA:

η = ρP = ρ (X0 + νA) (S49)

(we as before assumed a linear dependence between η and P ).
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FIG. S3: Entirely analogous to Fig. 2 in the main text, but for the “multiplicative noise” case with η = 0.2X0, i.e. 20% noise.

(a) For τ = 2, the standard deviation (over time) of the mean oscillator value 〈x〉 for 1000 oscillators. Boxed numerals indicate

the number of clusters associated with the given region of parameter space. Other parameters are γ = 1.0 and β = 1.0. (b)

Associated linear stability analysis of the continuum asynchronous state with respect to the mode j, calculated up through the

fifth mode (note that we did not detect instability of modes 3 – 5 in these particular plots). Regions right of the presented

lines are unstable to growing oscillations of the density function. (c) and (d) are the same as (a) and (b), respectively, but for

τ = 4. The “speckling” between boundaries in part (a) is consistent with multistability, as suggested by coexistence of several

unstable modes in part (b). Refer to Fig. S6 for a more complete exploration of mode structure.

Our preliminary results (not shown) suggest that for the values of parameters considered in our investigation, the

qualitative dynamics of the model obeying Eq. S49 match the model where η is a constant across all cells. This might

be expected for weak coupling, i.e. νA� X0, since then η ≈ ρX0, which is the example discussed above. We leave

for future studies to explore the dynamics of the coupled DF oscillators with multiplicative noise more thoroughly.

[1] W. Mather, M. Bennett, J. Hasty, and L. Tsimring, Physical Review Letters 102, 68105 (2009).

[2] J. Stricker, S. Cookson, M. R. Bennett, W. H. Mather, L. S. Tsimring, and J. Hasty, Nature 456, 516 (2008).



10

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 0.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 1.0

j = 1
j = 2
j = 3
j = 4
j = 5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 1.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 2.0

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 3.0

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 2.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 3.5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

et
a

nu

tau = 4.0

FIG. S4: A more complete linear stability analysis that augments Fig. 2b,d of the main text. Plotted is the stability of the

j-cluster perturbation away from the homogenous state. Regions below the respective lines are unstable with respect to the

mode perturbation.
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FIG. S5: A more complete linear stability analysis that augments Fig. 3 in the main text. Plotted is the stability of the j-cluster

perturbation away from the homogenous state. Regions roughly above the respective curves are unstable with respect to the

mode perturbation.
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FIG. S6: Entirely analogous to Fig. S3b,d, but for a wider array of parameters. Presented is the associated linear stability

analysis of the continuum asynchronous state with respect to the mode j, calculated through the fifth mode. Regions right of

the presented lines are unstable to growing oscillations of the density function. Vertical columns share a common relative noise

strength: (left) 40% noise (η = 0.4X0), (middle) 20% noise (η = 0.2X0), (right) 10% noise (η = 0.1X0).


