Table E1: Comparison of observational controls and active arm beforePNOIT

	Geometric Mean (95% CI) Observational controls	Geometric Mean (95% CI) Baseline in active arm	p-value
Number of multimer-positive memory cells per million B cells	3.1 (1.6,6)	4 (2.2,7.2)	0.37
Number of multimer-positive naive cells per million B cells	4.5 (2.4,8.5)	6.8 (3.9,12)	0.19
Number of multimer-positive plasmablasts per million B cells	1.5 (1,2.2)	1.3 (0.9,2)	0.60
Number of multimer-positive memory cells per million memory B cells	8.2 (4.1,16.5)	11.1 (6.1,20.5)	0.32
Number of multimer-positive naive cells per million naive B cells	8.2 (4.9,13.9)	13.1 (7.7,22.1)	0.14
Number of multimer-positive plasmablasts per million plasmablasts	11.8 (6.8,20.6)	9.7 (5.5,16.8)	0.47

Group	Ν	Median	Mean	Minimum	Maximum
		(weeks)	(weeks)	(weeks)	(weeks)
1	16	0	0	0	0
2	14	2	3	2	6
3	16	7	8	6	11
4	16	14	13	11	15
5	15	18	18	15	20
6	14	25	36	20	50
7	16	59	58	51	65
8	15	71	76	66	100

Table E2: Categorization of time in longitudinal model

Patient	Time	lgA	lgD	lgE	lgG	lgM	Total
1	2 weeks	2513	1243	666	3579	18842	26843
2	2 weeks	65241	26235	73	161465	361123	614137
3	2 weeks	93312	41716	771	133762	384236	653797
1	14 weeks	28388	14876	582	51793	250996	346635
2	14 weeks	94994	35160	809	224421	497492	852876
3	14 weeks	116127	31213	479	181498	388318	717635

Table E3: NGS sequences per sample

		NGS	S rep	ertoir	e mu	ltime	r-sim	nilar s	eque	ences	;			
		Sub	Subject 1 Sub				ject 2	2 Subject 3						
Subject of multimer seqeunce	Isotype of multimer sequences	gA	gD	gG	gM	gA	gD	gE	gG	gM	gA	gD	gG	gM
1	IgM	1	0	1	14	4	6	0	17	49	5	2	24	52
1	IgA	15	0	4	0	0	0	0	0	0	15	0	4	0
1	IgM	0	0	0	0	0	0	0	0	0	0	2	0	0
1	IgM	0	0	0	0	0	0	0	0	5	0	0	0	0
1	IgG	0	0	0	0	1	0	0	27	5	0	0	54	16
2	IgA	1	0	0	20	18	2	0	4	25	4	0	3	22
2	IgM	1	0	0	1	0	0	0	1	18	1	0	0	3
2	IgM	0	0	0	0	0	0	0	0	4	0	0	0	0
2	IgM	0	0	0	0	0	0	0	2	8	0	0	0	1
2	IgA	0	0	0	0	0	3	0	0	2	0	0	0	0
2	IgG	0	0	0	0	0	0	1	4	0	0	0	0	0
2	IgG	0	0	0	0	0	0	0	1	0	0	0	0	0
3	IgM	0	0	0	0	0	0	0	0	0	0	0	0	0
3	IgG	0	0	0	0	0	0	0	0	0	1	0	41	2
3	IgA	0	0	0	0	2	0	0	0	0	0	0	0	0
3	IgG	0	0	0	0	0	0	0	1	0	0	0	6	1
3	IgA	0	0	0	0	21	0	0	21	2	3	0	47	1
3	IgG	0	0	0	0	0	0	0	0	1	0	0	0	0
3	IgG	0	0	0	0	0	0	0	1	0	0	0	1	0
3	IgA	0	0	0	0	0	0	0	31	1	0	0	5	0
3	IgA	0	0	0	0	0	0	0	0	0	0	0	1	0
3	IgG	0	0	0	0	16	3	0	1	1	1	0	17	1
3	IgM	0	0	0	0	0	0	0	0	7	0	0	0	0
3	IgM	0	1	0	1	0	0	0	0	1	0	1	0	1
3	IgG	0	0	0	0	2	1	0	51	2	0	0	0	0
3	IgG	0	0	0	0	0	0	0	16	3	0	0	32	0
3	IgG	0	0	0	0	6	0	0	2	0	0	0	0	0
3	IgG	0	0	0	0	0	0	0	0	0	0	0	3	0
3	IgG	0	0	0	0	0	0	0	0	0	1	0	35	0
3	lgG	0	0	0	0	0	0	0	0	0	1	0	0	0
3	IgM	0	0	0	0	0	0	0	0	1	0	0	0	0
3	IgG	0	0	0	0	0	0	0	0	0	1	0	13	0

Table E4: Multimer selected sequence similarity to NGS repertoires

		NGS repertoire multimer-similar sequences												
		Sub	Subject 1 Subj					1			Sub	ject '	1	
Subject of multimer sequence	Isotype of multimer sequences	IgA	lgD	lgG	lgM	lgA	lgD	lgE	lgG	NgN	IgA	lgD	lgG	lgM
3	IgG	0	0	0	0	0	1	0	6	0	0	0	0	0
3	IgM	1	0	0	17	0	1	0	0	4	1	0	0	19
3	IgA	0	0	0	0	1	0	0	19	3	3	1	17	2
3	IgA	0	0	0	0	9	0	0	49	0	18	0	25	0
3	lgG	0	0	0	0	0	0	0	7	0	0	0	1	0
3	IgA	0	0	0	0	3	0	0	2	0	0	0	11	2
3	IgG	0	0	0	0	0	0	0	3	0	0	0	1	0
3	lgG	1	0	1	5	0	0	0	0	2	1	1	1	8
3	IgA	0	0	0	0	0	1	0	9	0	3	0	12	0
3	IgG	0	0	0	0	1	0	0	0	0	0	0	0	0
3	IgM	1	4	0	10	0	1	0	0	19	1	6	0	13
3	IgM	0	0	0	1	0	2	0	6	15	5	2	0	4
3	lgM	0	0	0	0	0	0	0	0	7	0	1	1	9
3	IgA	0	0	0	0	0	0	0	15	0	0	0	0	0

1	Table E1: Comparison of observational controls and active arm before
2	PNOIT
3	The frequency of multimer-positive B cells both within each B cell subset and
4	within the entire B cell population were compared between subjects in the
5	observational arm and the active arm before onset of PNOIT. No significant
6	differences are found.
7	
8	Table E2: Categorization of time in longitudinal model
9	Time period groups used in the longitudinal analysis are noted here with the
10	number of observations (N) as well as the median, mean, minimum, and
11	maximum number of weeks characterizing each time period.
12	
13	Table E3: NGS sequences per sample
14	Within each of the six samples, with 2 time points during PNOIT of each of the
15	three patients, the number of IgH sequences within each isotype are shown.
16	
17	Table E4: Multimer selected sequence similarity to NGS repertoires
18	Each individual multimer-positive sequence with similar sequences in the NGS
19	repertoire are listed, with both their originating subject and isotype, in each row.
20	Columns reflect the NGS repertoires from different subjects by isotype
21	compartment.

22 Figure E1: Frequency of multimer+ B cell subsets in allergic and non-

23 allergic subjects

24 The frequency of multimer-positive cells was normalized to the subset (naïve,

25 memory, or plasmablast) population and described as the number of cells per

²⁶ million subset cells or per million CD19⁺ B cells in either peanut allergic pateints

27 from the PNOIT trial before the start of PNOIT compared to non-allergic control

28 patients. Basophil staining of the non-allergic control patients is shown in

Figure1c.

30

31 Figure E2: Single cell immunoglobulin amplification

32 Immunoglobulin amplification of heavy and light chains was performed using

33 single cell, nested RT-PCR. In this example, gel electrophoresis demonstrates

recovery of 17 out of 24 paired heavy and light chains.

35

36 Figure E3: Antibody cloning vectors

37 Recombinant antibodies were produced after insertion of the multimer-positive

38 single cell amplified sequences into heavy or light (either kappa or lambda,

respectively) vectors, as previously published in Tiller, et.al.

40

41 Figure E4: NGS analysis pipeline

42 The next generation sequencing (NGS) analysis pipeline for processing of raw

43 Illumina MiSeq 2x250 reads is used to generate the heavy chain immunoglobulin

44 sequences used for downstream analysis.

45

46	Figure E5: Representative results from NGS data analysis
47	The numbers of reads retained at each step of the analysis pipeline for one of the
48	subjects' samples is shown.
49	Figure E6: Ara h 2 specific heavy chain clonal groups
50	The distribution of clonal groups (same V-J gene usage and similar CDR3)
51	demonstrates that a subset (20%) have more than one sequence.
52	
53	Figure E7: Inference of antigen selection of Arah2-positive B cell IgH
54	Heavy chain immunoglobulin sequences of Ara h 2 affinity selected B cells have
55	increased frequency of CDR replacement mutations (R_{CDR}) compared to the total
56	number of mutations in the V region (M_V), suggestive of antigen selection. The
57	gray area represents the 90-95% confidence interval for the probability of random
58	mutations.
59	
60	Figure E8: Recombinant antibody affinity for Ara h 2
61	Ara h 2 affinity of the recombinant IgG1 antibodies produced from multimer-
62	positive single cells was characterized using biolayer inferferometry (Octet). The
63	colors of the bars reflect the original multimer-positive single cell isotype from

64 which the recombinant antibody was produced.

Figure E1

Figure E2

Figure E5

Figure E6

Figure E8