Discovery of a small molecule targeting SET-PP2A interaction to overcome BCR-ABL^{T315I} mutation of chronic myeloid leukemia

Supplementary Material

Table of contents

Materials & Instrumentation	2
Synthesis	3
Reference	10
Supplementary Scheme 1: Synthetic route of TGI1002	11
Supplementary Scheme 2: Synthesis of TGI1002 derivative as an affinity probe	12
Supplementary Figure S1: HRMS, ¹ H and ¹³ C NMR and IR analyses of	
TGI1002	13
Supplementary Figure S2: Western blots of PDGFR α and EphB2 expression in	
K562 and BaF3-p210 ^{T315I} cells	16
Supplementary Figure S3: HRMS, ¹ H and ¹³ C NMR and IR analyses of 10	17
Supplementary Figure S4: HRMS, ¹ H and ¹³ C NMR and IR analyses of	
TGI1002-COOH	20
Supplementary Figure S5: IR spectral analysis of TGI1002-affinity probe	23
Supplementary Figure S6: SDS-PAGE of purified SET protein	25
Supplementary Table S1: In vitro profile on kinase inhibition of TGI1002	26
Supplementary Table S2: MALDI-TOF-TOF analysis of TGI1002 binding	
proteins	27

Materials & Instrumentation

The starting materials, other reagents and solvents for chemical synthesis were acquired from Sigma-Aldrich unless otherwise noted. Melting points were determined using YRT-3 melting point detector. High resolution mass spectra (HRMS) were obtained on 6200 series TOF/6500 series spectrometer (Agilent Technologies). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV300 NMR spectrometer. IR spectra were measured by Bruker Tensor 27 FT-IR spectrometer.

Synthesis

Preparation of 2-(methylthio)-4-(3-pyridinyl)pyrimidine (3). Sodium ethoxide (13.91 g, 0.2 mol) was dissolved in 150 mL anhydrous ethanol, then 15.55 g thiourea (0.2 mol) and 3-dimethylamino-1-(3-pyridin-2-yl)prop-2-en-one (1) (30 g, 0.17 mol) was added and heated to reflux for 2-3 h. Water (25 mL) was added into the solution. The mixture was then acidified with acetic acid to $pH\approx5$ and kept for 30 min under 0 °C to give yellow precipitate. After removing the solvent, the precipitate was washed with water to afford 2-methyl-4-(pyridin-2-yl)pyrimidine hydrosulfide (2). The above obtained compound 2, K_2CO_3 (23.46 g, 0.17 mol) and NaOH (4.76 g, 0.12 mol) were dissolved in 200 mL water. Dimethyl sulfate (25.79 g, 0.2 mol) was added dropwise with stirring at 0-5 °C within 30 min, after which 60 mL water was added to the reaction solution. The precipitate was washed with water and dried to give 3 as a yellow powder (23.7 g, purity>98%, yield 68.5%). Mp: 106-108 °C; MS-ESI⁺ m/z, 204 (MH⁺); ¹H NMR (300 MHz, CDCl₃): δ 9.28 (d, 1H, J=2.3 Hz), 8.74 (dd, 1H, J=1.5, 4.8 Hz), 8.61 (d, 1H, J=5.3 Hz), 8.42 (m, 1H), 7.45 (m, 1H), 7.41 (d, 1H, J=5.3 Hz), 2.65 (s, 3H).

Preparation of 2-(methylsulfonyl)-4-(pyridin-3-yl)pyrimidine (4). Compound **3** (9.81 g, 45 mmol) was dissolved in 45 mL acetone and heated to reflux for 30 min, and Na₂WO₄ (0.91 g) was added. After stirring for 10 min, H₂O₂ (12.34 g, 89 mmol) was added dropwise within 30 min. The solution was heated to reflux for 3-5 h, after which insoluble solid was formed. Na₂S₂O₃ (4.5 g) dissolved in 100 mL was added to the mixture with stirring, and kept for 30 min at 0-5 °C. After removing the solvent, the residue was dried at 60 °C to afford **4** (8.5 g, purity > 95%, yield 80%). Mp: 151-153 °C; MS-ESI⁺ m/z, 236 (MH⁺); ¹H NMR (300 MHz, CDCl₃): δ 9.34 (dd, 1H, J=0.8, 2.4 Hz), 9.01 (d, 1H, J=5.3 Hz), 8.82 (dd, 1H, J=1.6, 4.7 Hz), 8.54 (dd, 1H, J=1.6, 2.4 Hz), 7.99 (d, 1H, J=5.3 Hz), 7.52 (m, 1H), 3.45 (s, 3H).

Preparation of tert-butyl (4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)

-oxy)phenyl)-carbamate (6). 5-Amino-2-methylphenol (25 g, 0.203 mol) was dissolved in 400 mL ethyl acetate (EA), and (Boc)₂O (47 g, 0.203 mol) was then added with stirring. The solution was stirred for 24 h at room temperature (RT), washed with 10% NaOH and water, and dried and concentrated. After isolating by column chromatography (ethyl acetate/ethane 1/5), tert-butyl = (3-hydroxy-4-methylphenyl)carbamate (5) was obtained as a white solid (43 g, yield 95%). Compound 4 (20.75 g, 0.88 mol) and 5 (19.62 g, 0.88 mol) were dissolved in 100 mL N,N-dimethylformamide (DMF), and 60% NaH (6.02 g, 0.25 mol) was then added with stirring at 0 °C. The reaction was carried out at 40~50 °C for 0.5~1 h. The pH of the reaction solution was then adjusted with 300 mL 3N HCl to 5~6, followed by adding 200 mL ice-water, and stirred for 30 min at RT. After removing the solvent, the light yellow solid was dried to give compound 6 (32.17 g, purity > 95%, yield 80%). Mp:161-162 °C; MS-ESI⁺ m/z 379 (MH⁺); ¹H NMR (300 MHz, CDCl₃): δ 9.22 (dd, 1H, J=0.8, 2.3 Hz), 8.72 (dd, 1H, J=1.5, 4.6 Hz), 8.61 (d, 1H, J=5.1 Hz), 8.36 (m, 1H), 7.46 (d, 1H, J=5.1 Hz), 7.42 (m, 1H), 7.37 (br, 1H), 7.19 (d, 1H, J-8.3 Hz), 7.08 (m, 1H), 6.58 (br, 1H), 2.15 (S, 3H), 1.49 (S, 9H).

Preparation of 4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)oxy)aniline (7). Compound **6** (32.17 g, 85 mmol) was dissolved in 130 mL dichloromethane (DCM), in which 100 g trifluoroacetate was added at 0 °C. The solution was heated to reflux for 2-3 h, and then pH was adjusted to 8-9 with 10% NaOH. The organic phase was washed with water, and DCM was removed by evaporation. The residue was treated with 50 mL ethanol for 1 h, filtered and dried to afford yellow solid **7** (23.7 g, purity > 98%, yield 95%). Mp: 155-157 °C; MS-ESI⁺ m/z 279 (MH⁺); ¹H NMR (300 MHz, CDCl₃): δ 9.23 (d, 1H, J=2.3 Hz), 8.73 (dd, 1H, J=1.5, 4.7 Hz), 8.62 (d, 1H, J=5.3 Hz), 8.37 (m, 1H), 7.46 (d, 1H, J=5.3 Hz), 7.43 (m, 1H), 7.08 (d, 1H, J=8.0 Hz), 6.52-6.56 (m, 2H), 2.07 (S, 3H).

Preparation of 3-(chloromethyl)-N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin

-2-yl)-oxy)phenyl)-benzamide (8). 3-(Chloromethyl)benzoic acid (12.6 g, 74 mmol) and EDCl (17 g, 89 mmol) were dissolved in 110 mL DCM, followed by adding 13.7 g compound 7 at 10 $^{\circ}$ C, and heated to reflux for 1-2 h. The solution was washed successively with 250 mL water and NaHCO₃. After removing the organic phase, the yellow solid 8 was obtained (12.5 g, purity > 95%, yield 59%).

Preparation of N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)oxy)phenyl)-3-((4-methylpiperazin-1-yl)methyl)benzamide hydrochloride (TGI1002). Compound 8 (12.4 g, 28 mmol), 1-methylpiperazine (3.45 g, 34 mmol) and ET₃N (1.74 mL, 17 mmol) were added to 75 mL of DCM and stirred for 15 h at RT. The organic phase was collected, dried and filtered to give 9. Compound 9 was then purified by column chromatograph (chloroform/methanol=20/1). Purified 9 (2 g) was dissolved in 5 mL methanol containing 10% HCl, and TGI1002 was then obtained as a yellow powder after removing the solvent. The total yield of TGI1002 was 60% and the purity was > 99% by HPLC analysis. Mp: 85.1-89.3°C; HRMS (m/z): $[M]^+$ calcd. for C₂₉H₃₀N₆O₂ 495.2430, observed 495.2525; ¹H NMR (300 MHz, D₂O): δ 9.39 (s, 1H), 9.14 (d, 1H, J = 8.2Hz), 9.01 (d, 1H, J = 5.6 Hz), 8.75 (d, 1H, J = 5.2 Hz), 8.23~8.28 (m, 1H), 8.05 (s, 1H), 7.84~7.95 (m, 3H), 7.67~7.72 (m,1H), 7.52 (s, 1H), 7.30 (brs, 2H), 4.68 (s, 2H), 3.84 (br, 8H), 3.17 (s, 3H), 2.09 (s, 3H); ¹³C NMR (75 MHz, D₂O): δ 165.4, 162.4, 160.0, 159.0, 148.4, 142.7, 141.2, 138.6, 134.4, 133.2, 133.1, 132.9, 130.0, 128.5, 128.2, 127.5, 126.5, 125.9, 125.7, 117.5, 113.3, 111.6, 58.1, 48.4, 46.5, 41.1, 13.1; IR (KBr) y 3408.0, 3061.2, 2927.4, 2644.3, 2562.0, 1635.8, 1582.6, 1566.9, 1505.9, 1454.9, 1385.8, 1284.9, 1263.0, 1207.7, 1095.3, 1012.5, 949.0, 812.2, 742.7, 670.6 cm⁻¹.

Preparation of N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)oxy)phenyl)-3-(piperazin-1-yl-methyl)benzamide (10). Synthesis and purification of compound 10 was performed with the same procedures as compound 9 except using piperazine to replace 1-methyl-piperazine. Mp: 86.2-90.1 °C ; HRMS (m/z): [M]⁺ calcd. for C₂₈H₂₈N₆O₂ 481.2274, observed 481.2349; ¹H NMR (300 MHz, D₂O): δ 9.33 (s, 1H), 9.11 (d, 1H, J = 8.2 Hz), 8.90 (d, 1H, J = 5.5 Hz), 8.68 (d, 1H, J = 5.2 Hz), 8.16~8.20 (m, 1H), 7.95 (br, 1H), 7.90~7.94 (m, 2H), 7.82 (d, 1H, J = 5.2 Hz), 7.60~7.75 (m, 2H), 7.46 (s,1H), 7.32 (brs, 2H), 4.55 (s, 2H), 3.62 (br, 8H), 2.06 (s, 3H); ¹³C NMR (75 MHz, D₂O): δ 170.6, 167.0, 165.0, 164.4, 163.8, 153.0, 147.7, 145.4, 143.1, 138.8, 137.9, 137.6, 137.5, 134.5, 133.0, 132.6, 132.0, 130.8, 130.7, 130.4, 122.6, 118.3, 116.2, 62.9, 50.7, 43.3, 17.5; IR (KBr) γ 3407.8, 2928.6, 2709.7, 2571.8, 1661.5, 1634.4, 1584.3, 1567.5, 1506.4, 1445.7, 1387.0, 1286.7, 1262.3, 1211.2, 1162.7, 1095.3, 1013.1, 951.2, 811.2, 669.7 cm⁻¹.

Preparation of 2-(4-(3-((4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)oxy)

-phenyl)carbamoyl)benzyl)piperazin-1-yl)acetic acid (TGI1002-COOH). TGI1002-COOH was synthesized from compound 10 based on previous report (1). Mp: 89.1-104.2 °C; HRMS (m/z): [M]⁺ calcd. for C₃₀H₃₀N₆O₄ 539.2329, observed 539.2440; ¹ H NMR (300 MHz, DMSO): δ 10.37 (s, 1H), 9.51 (s, 1H), 9.08 (d, 1H, J= 8.7Hz), 8.90 (d, 1H, J = 5.1Hz), 8.79 (d, 1H, J = 4.8Hz), 8.32 (s, 1H), 8.15~8.19 (m, 1H), 7.94 (d, 1H, J = 5.4 Hz), 7.81 (br, 1H), 7.64 (s, 1H), 7.46~7.49 (m, 3H), 7.32 (d, 1H, J = 8.1 Hz), 5.1 (s, 2H), 3.28 (br, 4H), 3.03 (br, 2H), 2.56 (br, 4H), 2.07 (s, 3H); ¹³C NMR (75 MHz, DMSO): δ 166.8, 165.2, 162.8, 161.2, 151.3, 147.5, 144.9, 143.0, 138.3, 138.0, 135.5, 135.2, 133.2, 131.9, 129.3, 128.9, 128.2, 127.2, 126.2, 118.8, 114.8, 114.0, 63.5, 61.7, 49.8, 43.7, 16.0; IR (KBr) γ 3443.7, 2961.7, 2823.0, 1590.8, 1383.1, 1352.8, 1288.3, 1206.2, 1125.8, 1099.2, 1002.4 cm⁻¹.

Reference

1. D'Alessandro PL, et al. The identification of structurally novel, selective, orally bioavailable positive modulators of mGluR2. Bioorg Med Chem Lett 2010; 20: 759-762.

Supplementary Scheme 1: Synthetic route of TGI1002.

Supplementary Scheme 2: Synthesis of TGI1002 derivative as an affinity probe.

C13-NMR D20 300K AV-300

Supplementary Figure S1: HRMS, ¹H and ¹³C NMR and IR analyses of TGI1002.

(A) Mass spectrum of TGI1002, chemical formula $C_{29}H_{30}N_6O_2$, calculated m/z

495.2430 $[M+H]^+$, observed m/z 495.2525 $[M+H]^+$. (B) ¹H NMR (300 MHz, D₂O).

(C) 13 C NMR (75 MHz, D₂O). (D) IR spectrum.

Supplementary Figure S2: Western blots of PDGFR α and EphB2 expression in K562 and BaF3-p210^{T3151} cells. Cell lysates from K562 and BaF3-p210^{T3151} cells were run on SDS-PAGE and Western blotted with anti-PDGFR α , anti-EphB2 or anti- β -actin antibodies. Neither PDGFR α nor EphB2 was observed in K562 and BaF3-p210^{T3151} cell lysates.

Supplementary Figure S3: HRMS, ¹H and ¹³C NMR and IR analyses of 10. (A)

Mass spectrum of compound 10, chemical formula $C_{28}H_{28}N_6O_2$, calculated m/z

481.2274 [M+H]⁺, observed m/z 481.2349 [M+H]⁺. (**B**) ¹H NMR (300 MHz, D₂O). (**C**) ¹³C NMR (75 MHz, D₂O). (**D**) IR.

Supplementary Figure S4: HRMS, ¹H and ¹³C NMR and IR analyses of TGI1002-COOH. (A) Mass spectrum of TGI1002-COOH, chemical formula

 $C_{30}H_{30}N_6O_4$, calculated m/z 539.2329 [M+H]⁺, observed m/z 539.2440 [M+H]⁺. (**B**) ¹H NMR (300 MHz, DMSO). (**C**) ¹³C NMR (75 MHz, DMSO). (**D**) IR.

Supplementary Figure S5: IR spectral analysis of TGI1002-affinity probe. (A)

EAH-Sepharose 4B. (B) TGI1002-affinity probe.

Supplementary Figure S6: SDS-PAGE of purified SET protein. *Lane M*, protein molecular weight markers. Arrow shows purified recombinant SET.

Kinase name	Inhibitory	IC ₅₀	Kinase name	Inhibitory	IC ₅₀
	effect (%)	(µM)		effect (%)	(µM)
ABL1	4.30	N.D.	GSK3a	2.60	N.D.
ABL2	19.18	N.D.	GSK3β	2.59	N.D.
AKT1	5.07	N.D.	HER2	7.88	N.D.
AKT2	4.72	N.D.	IGF1R	8.65	N.D.
AKT3	3.62	N.D.	InsR	3.70	N.D.
ALK	4.27	N.D.	JNK1	0.20	N.D.
AMPK (A1/B1/G1)	0.19	N.D.	KDR	0.64	N.D.
AMPK (A2/B1/G1)	2.57	N.D.	LCK	5.82	N.D.
Aurora A	24.58	N.D.	NEK2	1.56	N.D.
Aurora B	0.00	N.D.	p38a	2.17	N.D.
AXL	3.03	N.D.	p38β	0.20	N.D.
BLK	3.39	N.D.	PDGFRa	43.53	3.28
BRAF	2.30	N.D.	PDGFRβ	17.16	N.D.
BRAF(v599E)	3.61	N.D.	РКАсα	5.96	N.D.
CAMK1	4.93	N.D.	ΡΚΑϲβ	6.50	N.D.
CDK1/CyclinA2	5.27	N.D.	PKAcr	1.45	N.D.
CDK2/CyclinA2	1.54	N.D.	РКСа	5.57	N.D.
CDK1/CyclinB	3.24	N.D.	РКСү	0.79	N.D.
CDK4/CyclinD1	7.54	N.D.	РКСξ	13.29	N.D.
CHK1	3.61	N.D.	PLK1	1.63	N.D.
c-KIT	15.25	N.D.	PLK2	3.52	N.D.
c-KIT(V654A)	11.68	N.D.	PLK3	4.71	N.D.
EGFR	0.00	N.D.	RAF1	5.37	N.D.
EGFR(T790M,L858R)	8.74	N.D.	RET	12.16	N.D.
EphA1	1.58	N.D.	RON	0.14	N.D.
EphB2	46.69	1.27	SRC	1.09	N.D.
ERK1	0.01	N.D.	TrkA	3.11	N.D.
ERK2(MAPK1)	0.00	N.D.	TrkB	5.58	N.D.
FGFR1	9.71	N.D.	ΡΙ3Κα	2.66	N.D.
FGR	7.53	N.D.	ΡΙ3Κβ	0.00	N.D.
FLT1(VEGFR1)	1.97	N.D.	ΡΙ3Κγ	2.65	N.D.
FLT3	2.97	N.D.	ΡΙ3Κδ	0.71	N.D.

Supplementary Table S1: In vitro profile on kinase inhibition of TGI1002 (1 µM).

Data represent the means of two independent experiments. N.D. = not determined.

Supplementary Table S2: MALDI-TOF-TOF analysis of TGI1002 binding proteins.

Name	NCBI ID	Peptide	Sequence	Theroetical	Protein Name
		Matched	Coverage (%)	Mr/pI	
BP1	<u>gi 12654329</u>	22	46	64749/5.1	HSP90AA1 protein
BP2	<u>gi 338695</u>	20	53	50240/4.75	Beta-tubulin
BP3	gi 512485	14	44	47498/8.39	Acetylcholine
					receptor-associated
					protein (Rapsyn)
BP4	<u>gi 145843637</u>	7	35	26593/4.73	SET protein