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Mathematical analysis of root fraction in Thornley’s model
In order to address the inversions of RF systematically, we analyzed mathematically the
behavior of RF in Thornley’s and our model as follows.

Proposition: Let X (t) = (Ws(6), W;(¢), Cs(t), Cr(t), Ps(£), B(t)) be the solution of Thornley’s

model with initial condition X(t,) = x, € RS, . Let R(t) = #(x(t) be the RF. After a slight

. . k S . ,
increase/decrease of the maximal P; uptake rate ¢, = —£ attime t; = tyi.e.
Ky kpp +

of =op + 6,
the RF of the perturbed system R9(t) has the property:

RO() >R(t) if 6>0
RE(t) <R() if §<0

for t in a sufficiently small neighborhood of ¢;.

Proof:

Let J be the right maximal interval of definition of X(t) (one can prove that J = [t,, ) ).
Assume that t; € J. Let X%(t) = (WS (t), W2 (t), CS (), CA(t), PE(t), PS(t)) be the solution
of Thornley’s model with perturbed maximal P; uptake rate ¢ = o + & and initial condition
X9(ty) = X(t;). There exists € > 0 such that X%(t) is defined on [t; — €, t; + €). P; uptake of
the perturbated system is given by

Us(e) = op Wr _ op Wy ‘s W,
(1+ Km;) (1+ ;’_;) (1+ Km};) (1+ ;’_;) A+ W, /Kn) (L + B/Jp)
=U(t)

We then computed the Taylor development of RO(t) around t;:
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as X%(t;) = X(t;). Then the second derivative at t; was computed:
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using X%(t;) = X(t;) and the fact that the concentrations C2(t), CZ(t) and PJ(t) have
derivatives in t; equal to the derivative of the corresponding component of X(t). We can now
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We have, for t > t;:
a
RO(6) = R() +58(t = t2)* + o((t = t2)*)

where o is the Landau-Symbol i.e. we write f(h) = o(g(h)) for h — 0 if limh_mLh) = 0.
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It means that for t >t; in a small neighborhood of t;, RO(t) is larger than R(t) when
6 >0 (as a > 0), thatis when P; uptake increases.

This mathematical analysis shows that Thornley’s model inevitably produces an inversion of the
RF, in which RF at low and high P; supply develops first in the wrong direction (opposite to the
balanced growth hypothesis). The same holds for our model with a similar proof (not shown).
Hence, both models predict an inversion of RF at the onset of the experiment. The difference
between the two models is the time point at which the RF returns to balanced growth (i.e. the
crossing time between the lines representing the two treatments), that is the time t* > t; at
which the RT of the perturbed R%(t) (with § > 0) becomes equal to R(t) and then smaller
than R(t) when t > t".

We observed in our experimental data that plants indeed exhibited an inverted behavior of the
RF until approximately 4 days, and a similar development is predicted by our model (see Figure
A in S3_File), whereas Thornley’s model predicted more than 45 days (Figures B in S3_File) or
even two crossing times and an inverted asymptotic behavior of RF (see Figure C in S3_File) with
another parameter set in the Pareto front of Thornley’s model. This behavior was never
observed with any of the parameter sets of the Pareto front of our model. All of them had a
crossing time less than 20 days and none of them crossed a second time (at least until 500
days).
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Figure A. Dynamic behavior of root fraction in our model.

RF was modeled during the first 10 days (a), 30 days (b), and 500 days (c) after the start of
Experiment 2 (treatments A and B). Experimental data are provided with standard deviations
(compare with Figure 4). Das: Days after sawing.
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Figure B. Dynamic behavior of root fraction in Thornley’s model.

RF was modeled during the first 10 days (a), 70 days (b), and 3000 days (c) after the start of the
experiment. Experimental data are provided with standard deviations in (a) (compare with
Figure A in S3_File and with Figure 4). Das: Days after sawing.
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Figure C. Dynamic behavior of root fraction in Thornley’s model.

RF was modeled during the first 10 days (a), 70 days (b), and 3000 days (c) with a different
parameter set of the same Pareto front for Thornley’s model (compare with Figures A and B in
S3_File). Das: Days after sawing.



