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S1 Statistics of tweeting

In this section, we report statistics which capture usage patterns of Twitter. We find that

the distribution of the number of tweets among users in our dataset follows a fat-tailed

distribution, as shown in Figure S1(a). The result indicates that the frequency of tweeting

is not homogeneous across the population; it exhibits an 80/20 effect, where a majority of

registered Twitter users only contribute a small number of tweets and most tweets are posted

by only a small number of frequent users. As for other technologies, there is an inherent

effect that geotagged tweets can provide fine-grained data for heavy users and coarser data

for lighter users. This should be considered for individual-based modelling of mobility, but

on a population level, the observed dynamics still hold as in previous studies.

Next, we explore the sensitivity of our observations on mobility patterns to the number

of tweets from users. Figure S1(b) shows the displacement distribution ∆r separately for

user groups based on the number of available tweets N in the dataset. We observe the same

patterns as for the entire population in terms of movement modes. The main trend is the

Twitter users with a higher N tend to have shorter steps. This is expected as their higher
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Figure S1: Impact of the number of tweets per user on observed mobility dynamics: (a)

distribution of the number of tweets N per user; (b) displacement distribution for groups of

users with different N ; (c) distribution of the gyration radius for groups with different N .
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number of tweets provides more fine-grained sampling of their actual movement, leading to

shorter observed steps between position samples. Figure S1(c) shows the distribution of rg

split across the same user groups. Again, we observe the same three modes of movement

regardless of N and the distributions are broadly similar.
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Figure S2: Impact of the inter-tweet time on observed mobility dynamics: (a) distribution of

the time interval between tweets for the entire population; (b) distribution of the time interval

between tweets separated by number of tweets for each user; (c) displacement distribution

for groups of users with different ∆T .

We then study the inter-event time of tweeting, i.e. the time interval between a user’s two

consecutive tweets. As shown in Figure S2(a), the inter-event time distribution also follows

a fat-tailed distribution, which indicates, that unlike a homogeneous process with Poissonian
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distribution [10, 11], heterogeneous mechanisms or bursty dynamics such as prioritising task

execution [8] or reinforcement decision-making [9] may exist in tweeting behaviour. We also

observe a discontinuity in the plot around 86,400 corresponding to the day/night cycle. To

check whether our results depends on the individual tweeting frequency, we group users

into five categories based on their number of tweets and recalculate the inter-event time

distribution in each group. Figure S2(b) shows the results where the inter-event time in each

group exhibits a similar fat-tailed distribution showing no structural difference compared to

the aggregated result for the whole population presented in Figure S2(a). The relatively

flat distribution up to about 100 seconds with a minor peak around 1 minute confirms

the bursty nature of tweets compared to other modalities such as mobile phones. Finally,

we explore the sensitivity of the displacement distribution to inter-event times. We plot the

displacement distribution separately for tweets based on the inter event time in Figure S2(c).

The distribution for all tweet groups show no structural difference, though the plot for

∆T < 3600 clearly involves shorter displacements. This is expected since users can travel

within a bounded distance within one hour of their last tweet, which explains the faster

decay of this plot for larger distances.

S2 Technology Dependencies

To explore whether the observed irregularity in the distribution of d is merely due to GPS

resolution, knowledge of the error associated with each reported location is important. Zand-

bergen in [5] reports median errors of 8, 74 and 600 m associated with the locations obtained

from an iPhone 3G using respectively Assisted GPS (A-GPS), WiFi positioning and cellular

network positioning. However, the integration of High Sensitivity GPS (HSGPS) chipsets

in modern mobile phones allows for a relatively consistent availability of a GPS signal. In

fact, Zandbergen et al. in [6] reported an availability of valid GPS position fixes on HSGPS-

enabled mobile phones close to 100% in different outdoor and indoor settings, and found

errors not exceeding 30 m outdoor and 100 m indoor in their measurements. Mobile phones

with built-in HSGPS chipsets include devices as old as the iPhone 3GS and Nokia N95 [7],

suggesting that the technology is well incorporated in modern cellular phones. This indicates
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Figure S3: The radius of gyration(km) as a function of time(h)

that the locations reported by mobile phones and that are used in our study are relatively

reliable.

S3 Time evolution of rg

We find that the radius of gyration as a function of time rg(t), averaged over the whole

population, in Figure S3 increases ultra-slowly, which confirms that strong recurrent patterns

exist in human mobility. This information is of value for modelling disease risk, for instance,

as it indicates that observing the first few hours of tweets can strongly indicate the longer-

term rg for a particular person. Thus, limited empirical data can seed mobility models for

initial rg values of people, and these values remain relatively stable over time.

S4 Visitation frequency for different rg

We now explore how the visitation frequency changes for users with different rg, using the

same approach as Figure 2. The results are shown in Figure S4 for a cluster size of 250m.

Clearly, all rg groups follows Zipf’s law of preferential return, yet the likelihood to be at

the most popular location decreases with increasing rg (see insets). Similarly, the steepness

of the plots drops with increasing rg, indicating that people who move further have lower

preference to return to previously visited locations. This effect is likely to result from the
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Figure S4: P (L) vs L for users with different radius of gyration. The inset shows the results

for P (L = 1). The α values in the legend show the power law fit exponent.
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higher cost [2] people incur for long-distance movement, which firstly increases the return

cost, and secondly reduces the perceived value of returning.

S5 Countrywide Tweeting Distributions

Figure S5 shows the density of tweets across all of Australia. Because of the sparse popula-

tion, the tweet distribution appears extremely sparse in the country that has a comparable

area to the continental USA yet with only 23 million people (about 1/15 of the popula-

tion density). We observe that tweets are mainly clustered around the 3 largest cities in

the southeast (Sydney, Melbourne, and Brisbane), with one cluster around Adelaide in the

south, another around Perth in the southwest. Lower density areas include the entirety of

the east cost of the mainland, and areas around Hobart in the southern island of Tasma-

nia and the city of Darwin in the Northern Territory. The countrywide tweet distributions

show similar patterns as in Figure 5, confirming that short and long distance movers remain

mainly around the key cities, while intermediate distance movers are more likely to be found

further away from key population centres.

S6 Statistical Validation and Goodness of Fit

We use the traditional least squares estimation (LSE) method to get the fitting function of the

displacement distribution P (d) and the gyration radius distribution P (rg). The estimated

parameters of the fitting functions for the two fitting schemes in the main text are shown in

Table 1-2. Here the probability density function (PDF) of the empirical data is obtained by

logarithmic binning [12].

λ1 λ2 β2 q R2 SSE

P (d) 0.073± 0.002 0.0110± 0.0011 0.545± 0.010 0.364± 0.008 0.999 0.120

P (rg) 0.122± 0.005 0.0015± 0.0001 0.768± 0.011 0.074± 0.003 0.997 0.099

Table 1: Fitting with the mixture function indicated by Eq.(1).
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(a) 1 < rg < 10 (b) 10 < rg < 100

(c) 100 < rg < 500 (d) rg > 500

Figure S5: Differences in tweet spatial distributions as the radius of gyration varies for all

of Australia. Tweet activity for 1 < rg < 10 and 500 < rg < 1000 is mainly concentrated in

large cities, while tweets for intermediate rg extend further along main highways and other

regions between cities.
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γ1 γ2 xS R2 SSE

P (d) 0.766± 0.012 2.072± 0.061 ≈ 10.6km 0.997 0.086

P (rg) 0.405± 0.011 1.600± 0.050 ≈ 4.4km 0.996 0.041

Table 2: Fitting with the double power-law function indicated by Eq.(2).

It is arguable that maximum likelihood estimation (MLE) method is usually more pow-

erful in the estimation of fitting parameters from broad distributions such as a power-law or

an exponential [3], especially when the sample size is small. However, using MLE to fit a

mixture function of broad distributions is not easy to implement and the performance is not

well understood. Indeed, recent studies suggested that, when the sample size is large (e.g.

in our study millions of displacements are used for fitting), traditional methods like LSE are

comparable to the state-of-the-art methods like MLE [1]. LSE combined with logarithmic

binning can even perform better than MLE in some cases [13].

To demonstrate that P (d) with d ∈ [100m, 50km] corresponding to the regime of urban

movements is better approximated by a stretched-exponential compared to other candidate

models with a single statistical function such as truncated power-law or log-normal, we use

Akaike’s information criterion (AIC) [14] to measure the relative goodness of fit for this part.

In particular, AIC for each candidate model i is given by

AICi = −2 logLi + 2Ki (1)

where Li is the maximum likelihood of the fitting function whose parameters are estimated

by MLE, and Ki is the number of parameters. The Akaike weight, which represents the

relative likelihood of each candidate model i, is then given by

wi =
e−∆i/2∑
i e−∆i/2

(2)

where ∆i = AICi − AICmin and AICmin = min{AICi}. Here we consider five commonly-

used statistical functions for heavy-tailed probability density, namely exponential (E), power-

law (PL), truncated power-law (TPL), log-normal (LN) and stretched-exponential (SE). It

is clear that stretched-exponential has a dominating Akaike weight over other candidate

functions, as shown in Table 3.
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E PL TPL LN SE

wi 0 0 0 0 1

Table 3: The Alkaike weight for each candidate model.

S7 Clustering Effects

For evaluating return probabilities, the trajectories of the users were adjusted in the following

way: Each point (xi, yi) of a trajectory was mapped to the point (xc, yc) where (xc, yc) is

the centroid of the cluster containing (xi, yi). The results for Figures 2, 4, and S4 use

cluster sizes of 250m. Here, we investigate the effect of cluster size on the trends that we

observe, in order to establish that these trends are independent of our cluster size selection.

We note that most studies that use cellular phone traces for mobility analysis [1, 4] do

not define explicit location clusters, as the spatial resolution of this data is based on tower

locations, and is typically in the order of 1km. In other words, most mobile-phone based

studies have implicit cluster sizes of 1 km. Because Twitter data provides a resolution of

up to 10m (the realistic resolution of GPS [15]), Twitter-based mobility analysis requires

the explicit clustering positions to account for multiple tweets from the same location. To

provide a comparison point with cellular phone data, we consider explicit clustering of 1km,

in addition to clusters of 50m and 500m.

Figure S6 plots the variation of the probability of return to the most popular location

P (L = 1) and the preferential return exponent α for the 3 cluster size values (50m, 500m,

1000m). Compared with Figure 4(b), the cluster size does not affect the dominant trends

in these plots. P (L = 1) consistently decreases and α increases with increasing rg, pointing

to weaker preferential return. P (L = 1) increases by about 0.08 as we increase cluster sizes

from 50m to 1km, and α decreases slightly indicating a mild strengthening of preferential

return for larger clusters. Despite these scale differences, it is clear that the cluster size

selection does not affect the observed trends in weaker preferential return for larger rg.
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Figure S6: The effect of cluster size on observed trends in P (L = 1) and α. Clearly, the

cluster size affects the scale but not the pattern of decreasing P (L = 1) and increasing α for

larger rg.
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