SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure 1: Structure of Cyclin D1^{WT} and cyclin D1^{KE} vectors and comparison of their abundance in rescued 3T3 cells. (A) Schematic representation of Cyclin D1^{WT} and cyclin D1^{KE} proteins. (B) Western blot analysis on randomly cycling *cyclin D1^{-/-Control}*, *cyclin D1^{-/-D1 Rescue}* and *cyclin D1^{-/-KE Rescue}* cells using anti-FLAG and anti- α Tubulin.

(Continued)

Supplementary Figure 1: (*Continued*) Structure of Cyclin D1^{WT} and cyclin D1^{KE} vectors and comparison of their abundance in rescued 3T3 cells. (C) Representative images of *cyclin D1^{-/-Control}, cyclin D1^{-/-D1 Rescue}* or *cyclin D1^{-/-KE Rescue}* 3T3 fibroblast cells stained for DAPI (blue) and anti-FLAG (red) to the N-terminal FLAG-tag of cyclin D1 to discern subcellular distribution by IHC, scale bars 50 µm (upper panels) and 10 µm (lower panels). (D) Average fluorescent intensity of anti-FLAG signal in *cyclin D1^{-/-Control}, cyclin D1^{-/-D1 Rescue} cyclin D1^{-/-KE Rescue}* 3T3 cells (n = 25 cells) within the nuclear compartment. Signal intensity from nuclear compartment normalized to cyclin D1^{WT}. No statistical difference was observed between cyclin D1^{WT} or cyclin D1^{KE} localization in the two lines.

Oncotarget, Supplementary Materials 2015

Supplementary Figure 2: Compartmentalization of exogenous cyclin D1^{KE} **mimics endogenous cyclin D1 during transition from G1 to S phase.** Three representative images of *cyclin D1*-*KE Rescue* 3T3 fibroblast cells and one wild type 3T3 fibroblast cell arrested in G1 phase by treating with aphidicolin (+ Aphidicolin (G1 phase)) for 16 hrs then released for 6 hours into S phase (-Aphidicolin (S phase)). Cells stained for DAPI (blue) and anti-FLAG (green) for exogenous cyclin D1^{KE} and anti-cyclin D1 for endogenous cyclin D1.

Supplementary Figure 3: Enlarged representative metaphases from Spectral karyotyping (SKY). Representative metaphases from Spectral karyotyping (SKY) on MEFs of *cyclin D1*-/-*Control* at 72 hours (P6) (**A**), *cyclin D1*-/-*KE Rescue* at 72 hours (P6) (**B**) and *cyclin D1*-/-*KE Rescue* at 120 hours (**C**). Each panel contains the following images: inverted 4',6-diamidino-2-phenylindole (DAPI) image of the metaphase (top left corner), raw spectral image of the metaphase (top right) and classified metaphase of the same metaphase (lower panel).

Supplementary Figure 4: Antagonist treatment of *cyclin D1*^{-/-D1 Rescue} **and** *cyclin D1*^{-/-KE Rescue} **MEF cells does not abrogate induction of aneuploidy. (A)** Western blot demonstrating phosphorylation of RB (S780) and exogenous cyclin D1 abundance in *cyclin D1*^{-/-Control}, *cyclin D1*^{-/-KE Rescue}, MEF cells and *cyclin D1*^{-/-D1 Rescue} 3T3 fibroblast cells treated with vehicle control or 1 μ M CDK4/6 antagonist-PD0332991 for 72 hrs (B) Representative metaphases from *cyclin D1*^{-/-Control} and *cyclin D1*^{-/-KE Rescue} MEF cellstreated with control vehicle or CDK4/6 antagonist-PD0332991 for 72 hours. Metaphases were stained with DAPI and images converted to gray scale. (C) Scatter plots of chromosome numbers for *cyclin D1*^{-/-Control} and *cyclin D1*^{-/-KE Rescue} MEF cells treated with vehicle control or PD0332991. The parallel lines represent expected deviation from normal at 2N and 4N (+/- 2 chromosome) (*n* = 18 metaphases per group). (D) Bar graphs showing the number of normal and abnormal karyotypes comparing *cyclin D1*^{-/-Control} and *cyclin D1*^{-/-KE Rescue} MEF cells at 72 hours from (D) vehicle treated and (E) PD0332991 treated MEF cells.

Α

в

CdK4/6^{-/-} 3T3 cells

CdK4/6^{-/-} 3T3 cells

Supplementary Figure 5: Cyclin D1 induces aneuploidy in $cdk4/6^{-/}$ **3T3 cells. (A)**Western blot demonstrating cdk4 and exogenous cyclin D1 abundance in $cdk4/6^{-/}$ 3T3 fibroblast cells transduced with MSCV-Control, MSCV-*Cyclin D1^{WT}* and MSCV-*Cyclin D1^{KE}*. 3T3 wild type fibroblast cells represent positive control for cdk4 abundance. (**B**) Representative metaphases from $cdk4/6^{-/}/control$, $cdk4/6^{-/}/cyclin D1^{WT}$ and $cdk4/6^{-/}/cyclin D1^{KE}$ 3T3 fibroblast cells. Metaphases were stained with DAPI and images converted to gray scale. (**C**) Scatter plots of chromosome numbers for $cdk4/6^{-/}/control$, $cdk4/6^{-/}/cyclin D1^{WT}$ and $cdk4/6^{-/}/cyclin D1^{KE}$ 3T3 fibroblast cells. The parallel lines represent expected deviation from normal at 2N and 4N (+/- 2 chromosome) (n = 15 metaphases per group). (**D**) Bar graph showing the number of normal and abnormal karyotypes comparing $cdk4/6^{-/}/control$, $cdk4/6^{-/}/cyclin D1^{WT}$ and $cdk4/6^{-/}/cyclin D1^{KE}$ 3T3 fibroblast cells at 72 hours.

Supplementary Figure 6: Overview of Tet-*CCND1*^{WT} **and Tet-***CCND1*^{KE} **mice.** (A)Schematic depiction of the tet-inducible mammary gland specific cyclin D1^{WT} and cyclin D1^{KE} transgenic lines. (B) Genotyping of Tet-*CCND1*^{WT}, Tet-*CCND1*^{KE}, and MMTV-rtTA transgenic mice. The cyclin D1^{WT} portion of figure has been published previously²⁰. (C) Schematic depiction of the mammary gland specific MMTV-*CCND1*^{KE} transgenic lines.

Α

PREGNANT

Cyclin D1^{KE} induced terms

- Asymmetric protein localization
- Oxidative phosphorylation
- Protein biosynthesis
- Cytokinesis
- Pre-mRNA processing
- Exocytosis
- Protein targeting and localization
- Mitosis
- Protein metabolism and modification
- Intracellular protein traffic
- Cell cycle
- Nucleoside, nucleotide and nucleic acid metabolism

Cyclin D1^{KE} repressed terms

- Olfaction
- Chemosensory perception
- Sensory perception
- Cell surface receptor mediated signal transduction
- G-protein mediated signaling
- Signal transduction
- Other receptor mediated signaling pathway
- Cell adhesion-mediated signaling

Supplementary Figure 7: Microarray analysis of Tet-CCND1^{WT} and Tet-CCND1^{KE} mouse mammary glands. (A) Hierarchical clustering of a superset of genes significantly differentially regulated between Tet-CCND1^{WT} vs control and Tet-CCND1^{KE} vs control mammary gland. (B) Pie chart representation of pathway analysis based on gene ontology (PANTHER-DAVID) of cyclin D1^{KE} induced and repressed genes charted using an enrichment score.

Supplementary Figure 8: Relative abundance of cyclin D1 and pRB phosphorylation status in mammary gland tumors derived from MMTV-*CCND1*^{WT} **and MMTV-***CCND1*^{KE} **mice.** Western blot demonstrating (A) cyclin D1 abundance WT mammary gland compared to tumors from MMTV-*CCND1*^{WT} and MMTV-*CCND1*^{KE} mice. MSCV-cyclin D1^{WT} from 3T3 fibroblast cells used as a control; migration slightly retarded due to 3xFLAG. The WT mammary gland and MMTV-D1 tumor lanes have been published previously. (B) Western blot analysis of pRB S780 phosphorylation status in tumors from MMTV-*CCND1*^{WT} and MMTV-*CCND1*^{KE} mice.

Oncotarget, Supplementary Materials 2015

Supplementary Figure 9: Microarray analysis of MMTV-*CCND1*^{WT} and MMTV-*CCND1*^{KE} mouse mammary tumors. (A) Venn diagram representing genes differentially regulated by MMTV-*CCND1*^{WT} (n = 3) and MMTV-*CCND1*^{KE} (n = 3) and visualized by (**B**) Hierarchical clustering of 1995 significantly regulated genes ($P \le 0.01$ and fold change > 2). (**C**) Pie chart representation of functional annotation clustering (DAVID) of cyclin D1^{KE} induced and repressed terms based on percentage enrichment score of the top hits.

Supplementary Table 1: Histological analysis of tumors from wild type FVB, MMTV-Cyclin D1WT and MMTV-Cyclin D1KE Mice

WT FVB Mice (6 tumors)
Adenocarcinoma with squamous differentiation
Papillary adenocarcinoma
Partially necrotic secretory adenocarcinoma
EMT-phenotype
Complex adenoacanthoma
EMT-phenotype
MMTV-Cyclin D1 ^{WT} Mice (10 tumors)
Keratoacanthoma
EMT-phenotype
Keratoacanthoma
Adenosquamous AC
Adenosquamous AC and Spindle cell tumor
Adenocarcinoma
Papillary Adenocarcinoma
Adenosquamous AC (Keratoacanthoma)
Lobular hyperplasia and secretory adenocarcinoma
EMT-phenotype
MMTV-Cyclin D1 ^{KE} Mice (7 tumors)
Partially necrotic adenocarcinoma
Adenocarcinoma
Papillary adenocarcinoma
EMT-phenotype
Complex adenoacanthoma
Papillary adenocarcinoma
EMT-phenotype

Supplementary Table 2: Interval data from cyclin D1^{KE} associated genomic regions generated by ChIP-Seq

Description	Act Regions
Number of Intervals Converted	4296
Number of Intervals within -10000/+10000 bp of NCBI Genes	3494
Number of Intervals NOT within -10000/+10000 bp of NCBI Genes	802
Number of NCBI Genes with Intervals within -10000/+10000 bp	4446
Number of Intervals within Promoter Region (-7500/+2500 bp of NCBI Gene Start)	3305
Number of NCBI Genes with intervals in Promoters (-7500/2500 bp of start)	3780

Supplementary Table 3: Full list of transcription factor binding sites identified in cyclin D1KE peak interval sequences

Transcription Factor Name	<i>P</i> -value	Experimental Hits
SP1	4.70E-07	1717
RREB1	2.64E-06	1233
GABPA	2.20E-08	810
EWSR1-FLI1	9.78E-07	805
ETS1	3.82E-07	729
ELK4	7.83E-08	551
FEV	8.19E-08	521
NR2F1	2.41E-06	512
MZF1_1-4	3.06E-07	489
CTCF	1.29E-07	483
ZFX	1.90E-07	477
ELK1	8.06E-08	471
GATA2	7.40E–07	471
NFYA	6.12E–08	422
MYF	6.45E-08	418
PLAG1	5.06E-07	384
ZNF143	4.06E-07	382
EGR1	2.25E-08	378
ZEB1	1.29E-07	351
IRF1	1.85E-06	343
ARNT	6.21E-07	337
USF1	6.21E–07	337
NR4A1	1.03E-06	316
PAX5	1.50E-07	304
CREB1	9.10E-08	299
STAT3	3.15E-07	294
SPIB	3.76E-08	290
NHLH1	4.61E-07	289
ESR1	1.65E-07	274
PPARG::RXRA	6.42E-08	274
SPI1	5.73E-07	267
STAT1	1.51E-07	261
REST	5.00E-08	255
FOXD3	1.09E-07	244
MZF1_5-13	1.51E-07	233
NFIC	7.09E–08	219

Transcription Factor Name	<i>P</i> -value	Experimental Hits
MAX	1.02E-07	217
YY1	1.41E–07	204
ESR2	2.57E-07	186
MYCN	7.59E–08	176
REL	7.61E–08	174
ESRRB	7.10E–07	168
HNF4A	2.37E-07	165
RUNX1	1.80E-08	161
NFE2L1::MAFG	6.41E-07	157
FOXA1	2.92E-07	144
RXR::RAR_DR5	4.72E–08	141
HAND1::TCFE2A	1.00E-08	140
NFKB1	6.46E–08	137
ARID3A	1.07E-06	136
FOXO3	1.37E-07	136
MYC::MAX	2.33E-07	132
PAX2	1.95E-08	130
TP53	3.05E-07	121
NF-KAPPAB	2.05E-08	120
NR2E3	2.99E-08	120
IRF2	1.00E-08	118
GFI	2.75E-07	117
KLF4	4.63E-07	116
SPZ1	9.76E–08	115
RELA	7.28E–08	112
MAFB	3.95E-08	111
PPARG	1.00E-08	111
TAL1::TCF3	4.13E-02	108
МҮС	6.75E–08	107
AP1	8.31E-08	106
NFE2L2	1.25E-05	103
AR	1.00E-08	101
FOXA2	1.12E–05	101
MEF2A	2.24E-07	101
E2F1	2.36E-06	99
NFATC2	1.59E–05	90
INSM1	2.47E-03	89

Transcription Factor Name	<i>P</i> -value	Experimental Hits
NR1H2::RXRA	4.96E-04	88
RORA_1	1.41E-07	88
EVI1	1.29E-02	87
SOX2	1.19E-04	87
SRY	2.12E-07	87
RXRA::VDR	7.53E–07	86
GATA3_1	1.00E-08	81
NR3C1	1.27E-07	80
GATA1	2.60E-07	78
SOX5	2.23E-06	78
NKX2–5	2.00E-06	76
FOXF2	7.68E–03	75
DDIT3::CEBPA	4.84E-04	73
MIZF	1.00E-08	72
FOXL1	1.17E–05	66
МУВ	1.04E-07	66
SOX17	8.70E-03	65
HIF1A::ARNT	4.34E-04	64
HNF1A	2.39E-03	63
LHX3	1.90E-02	62
NKX3-2	8.93E-04	62
CEBPA	2.73E-08	61
PAX6	3.81E-03	59
TAL1::GATA1	4.12E–04	59
SOX9	5.15E-06	58
FOXC1	3.81E-05	55
HLF	6.66E–08	54
NOBOX	1.07E-06	54
FOXD1	2.14E-05	53
HNF1B	2.61E-06	53
RORA_2	3.55E-04	52
SRF	1.35E-04	51
Т	2.91E-02	51
BRCA1	8.58E-05	48
PAX4	1.34E-04	48
PRRX2	2.62E-03	45
HOXA5	1.90E-02	43
PDX1	7.33E-03	39
HLTF	3.41E-02	35

Supplementary Dataset 1: Full list of genes regulated by cyclin D1^{WT} and cyclin D1^{KE} in mammary gland of transgenic mice

Supplementary Dataset 2: Full gene list of the mammary tumors for MMTV-cyclin D1^{KE} and MMTV-cyclin D1^{WT} mice, includes list of genes common to the two sets

Supplementary Dataset 3: Complete list of cyclin D1^{KE} bound genes by ChIP-Seq analysis