SUPPLEMENTARY FIGURES AND TABLE

A

Predicted SUMOylation sites of human Shp2 using the SUMOp lot program

No.	Position	Peptide	Score
1	K178	IRCQE L<u>K</u>YD VGGGE	0.91
2	К99	GDVIE L<u>K</u>YP LNCAD	0.80
3	K213	GTVLQ L<u>K</u>QP LNTTR	0.80
4	K244	ETTDK V<u>K</u>QG FWEEF	0.76
5	K445	LEEVH H<u>K</u>QE SIMDA	0.52
6	K157	VRTGD D<u>K</u>GE SNDGK	0.50
7	K131	LLTEK G<u>K</u>HG SFLVR	0.50
8	K199	LVEHY K<u>K</u>NP MVETL	0.37
9	K91	HGQLK E<u>K</u>NG DVIEL	0.33
10	K266	KLLYS R<u>K</u>EG QRQEN	0.27
11	K590	GLMQQ Q<u>K</u>SF R	0.15

http://www.abgent.com/tools

Supplementary Figure S1: Human Shp2 SUMO-sites predicted by SUMOplot software and identified by mutation SUMOylation assays. (A) SUMOylation sites of human Shp2 protein were predicted by the program of Abgent SUMOplot[™] (http:// www.abgent.com/tool/sumoplot). (B–C) Three highest-score sites K178, K99 and K213 were doubly (B) or triply (C) mutated, and performed with in vivo SUMOylation assay using Ni²⁺-NTA agarose beads. None of those mutants completely abolished Shp2 SUMOylation, suggesting that they are not SUMO-sites of Shp2 (These are related to Figure 2).

Supplementary Figure S2: Shp2-K590R mutant downregulated ERK activities compared to Shp2-WT in 293T cells. 293T cells were transfected with HA-Shp2WT or HA-Shp2K590R along with GFP-SUMO1 and Flag-Ubc9 plasmids. 24 h after transfection, Serum starved overnight and then stimulated with EGF for 5 minutes, ERK1/2 phosphorylations were detected by immunoblotting (This is related to Figure 3A).

Supplementary Figure S3: (A) Soft agar colony-forming assays, stable HepG2-shShp2 and re-expressing Shp2-WT or Shp2-K590R cell lines were seeded in 2 ml of medium containing 5% FBS with 0.35% agar at 5000 cells/well and layered onto the base. The photographs were taken 20 days later, and images were representative of three independent experiments (This is related to Figure 3D). (B) Haematoxylin and eosin staining of tumor sections from the mouse xenografts (This is related to Figure 3E).

1

Supplementary Figure S4: SUMO1 knockdown in SMMC-7721. (A) The efficiency of SUMO1knockdown with a short hairpin RNA in the lentiviral system in SMMC-7721 cells was assessed by immunoblotting (This is related to Figure 4C). **(B)** Soft agar colony forming assays, SMMC-7721-shSUMO1 stably expressing Shp2-WT or -K590R cells were seeded in 2 ml of medium containing 5% FBS with 0.35% agar at 2000 cells/well, respectively. The photographs were taken 20 days later, and the number of colonies was scored (This is related to Figure 4E) and images were representative of three independent experiments.

human	MQQQ <mark>K</mark> SFR	Ferrt	MQQQ <mark>K</mark> SFR	pig	MQQQ <mark>K</mark> SFR
mouse	MQQQ <mark>R</mark> SFR	fugu	MQQQ <mark>K</mark> S	Pika	MQQQ <mark>K</mark> SFR
rat	MQQQ <mark>R</mark> SFR	Gibbon	MQQQ <mark>K</mark> SFR	Platypus	MQQQ <mark>K</mark> SFR
alpaca	MQQQ <mark>K</mark> SFR	guinea pig	MQQQ <mark>K</mark> SFR	Rabbit	MQQQ <mark>K</mark> SFR
anole lizard	MQQQ <mark>K</mark> SFR	Hedgehog	MQQQ <mark>K</mark> SFR	Squirrel	MQQQ <mark>K</mark> SFR
Armadillo	MQQQ <mark>K</mark> SFR	Horse	MQQQ <mark>K</mark> SFR	Stickleback	MQQQ <mark>K</mark> SFR
Bushbaby	MQQQ <mark>K</mark> SFR	hyrax	MPQQ <mark>K</mark> SFR	Tarsier	MQQQ <mark>K</mark> SFR
cat	MQQQ <mark>K</mark> SFR	kangaroo rat	MQQQ <mark>K</mark> SFR	Tasmanian devil	VQQQ <mark>K</mark> SLR
chicken	MQQQ <mark>K</mark> SFR	Lesser hedgehog	MQQQ <mark>K</mark> SFR	tilapia	MQQQ <mark>K</mark> SFR
		tenrec			
Chimpanzee	MQQQ <mark>K</mark> SFR	Macaque	MQQQ <mark>K</mark> SFR	Tree shrew	MQQQ <mark>K</mark> SFR
cod	MQQQ <mark>K</mark> SFR	Marmoset	MQQQ <mark>K</mark> SFR	Wallaby	VQQQ <mark>K</mark> SFR
Coelacanth	MQQQ <mark>K</mark> SFR	megabat	MQQQ <mark>K</mark> SFR	Xenopus	MQQQ <mark>K</mark> SFR
cow	MQQQ <mark>K</mark> SFR	Mouse lemur	MQQQ <mark>K</mark> SFR	Zebra finch	MQQQ <mark>K</mark> SFR
dog	MQQQ <mark>K</mark> SFR	Opossum	lvqqq <mark>k</mark> sfr	Zabrafish	MQQQ <mark>K</mark> SHR
Dolphin	MQQQ <mark>K</mark> SFR	Orangutan	MQQQ <mark>K</mark> SFR		
Elephant	MQQQ <mark>K</mark> SFR	panda	MQQQ <mark>K</mark> SFR		

K590 is evolutionarily conserved in different species

Supplementary Figure S5: Amino acid sequence alignment of the C-terminus sequences of Shp2 from different species. The conserved lysines in the C-terminus region were highlighted (yellow). K590 is evolutionarily conserved in 44 different species but not in mouse and rat where it is arginine instead of lysine.

Supplementary Figure S6: Shp2 SUMOylation can not be regulated by EGF in 293T cells. 293T cells were transfected with HA-Shp2-WT, His-SUMO1 and Flag-Ubc9 plasmids. 36 h after transfection cells were serum-starved overnight, and then stimulated with EGF (100 ng/mL) for indicated time. The levels of Shp2 SUMOylation were detected by the SUMOylation assay with Ni-NTA resin.

Supplementary Table S1: Primers used in this study

Shp2-N-SH2domain-Fprimer	ccggaattcacatcgcggagatggtttcaccca		
Shp2\-N-SH2domain-Rprimer	ataagaatgcggccgcttaatctgcacagttcagaggatat		
Shp2-C-SH2domain-Fprimer	ccggaattccctacctctgaaaggtggtttcatg		
Shp2-C-SH2domain-Rprimer	ataagaatgcggccgcttaacgagtcgtgttaaggggctgc		
CD513B-HAShp2-Fprimer	ccggaattcatgtatccttacgacgttccagact		
CD513B-HAShp2-Rprimer	ataagaatgcggccgctcatctgaaacttttctgctgttgc		
CD513B-HAShp2(K590R)-Rprimer	ataagaatgcggccgctcatctgaaacttctctgctgttgc		
shShp2-1-F(3'UTR)	gatccgcagttaaattgtgcgctgtacttcctgtcagatacagcgcacaatttaactgctttttg		
shShp2-1-R(3'UTR)	aattcaaaaagcagttaaattgtgcgctgtatctgacaggaagtacagcgcacaatttaactgcg		
Shp2-1769(590)F	gaagtttcagatga		
Shp2-1769(590)R	tetgetgttgcate		
Shp2-296F	gatatcctctgaactgtgcagatcc		
Shp2-296R	taageteaatgacateteeattett		
Shp2-533F	gatacgacgttggtggaggagaac		
Shp2-533R	tcagttcctgacagcgaatcataac3'		
Shp2-638F	ggcagccccttaacacgactcgtat		
Shp2-638R	tgagttgtagtactgtacccaatgt		
hGab1-Fprimer	ccggaattcgccaccatggattacaaggatgacgacgataagatgagcggtggtgaagtgg		
hGab1-Rprimer	ataagaatgcggccgctcatttcacactcttcgctgg		
Gab1-SIM 1-Fprimer	gccgcggctgctgatttaaatttatgtcaacaagtag		
Gab1-SIM 1-Rprimer	aggettettggcatgatcatttttg		
Gab1-SIM 2-Fprimer	gccgcggctgctccaccacacctggaaactcttggc		
Gab1-SIM 2-Rprimer	ctgatatggaggaggtagagtagcag		
Shp2-587aa-Fprimer	ccggaattcatgacatcgcggagatggtttcacc		
Shp2-587aa-Rprimer	ataagaatgcggccgctcattgcatcaggcccacgttttcatag		
Shp2-CD513B-587aa-Fprimer	tgagcggccgcaaggatctgcgatcg		
Shp2-CD513B-587aa-Rprimer	ttgcatcaggcccacgttttcatagac		
mShp2-Fprimer	ccggaattcatgacatcgcggagatggtttcacc		
mShp2-Rprimer	ataagaatgcggccgctcatctgaaactcctctgctgctgc		
mShp2-R590K-Fprimer	agagtttcagatgagcggccgc		
mShp2-R590K-Rprimer	tctgctgcatgaggcccac		
SUMO1(2-96AA)-Fprimer	cgcggatcctctgaccaggaggcaaaaccttc		
SUMO1(2-96AA)-Rprimer	ataagaatgcggccgcctaccccgtttgttcctgataaac		
K590R-Rprimer(TGA deletion)	cgcggatcctctgaaacttctctgctgttgc		
587AA-Rprimer(TGA deletion)	cgcggatccttgcatcaggcccacgttttcatag		