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The main text reports results concerning the a species of the Kob–Anderson 80:20 (a:b) Lennard–
Jones binary mixture. Here we show that species b behaves analogously. We thus illustrate in Figures S1–
S5 the same quantities we have studied in Figures 1–5 of the main text, but this time present data
concerning species b.
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Figure S1: Persistence and cage–jump properties. Panels a,b and c show the probability distribu-
tions of the persistence time tp, of the jump length ∆rJ , and of the waiting time tw. Panel d illustrates
the decay of the persistence. All data refer to species b of the KA LJ mixture. Analogous results for
species a are shown in Fig. 1 of the main text.
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Figure S2: Cage–jump time and length scales. Temperature dependence of the average time
particles persist in a cage before making the first jump, 〈tp〉, and of the average cage residence time,
〈tw〉. 〈tw〉 is well described by an Arrhenius 〈tw〉 ∝ exp (A/T ) (full line). 〈tp〉 grows á super–Arrhenius
law. The dashed line is a fit to 〈tp〉 ∝ exp

(

A/TB
)

, with B = 2.2, but other functional forms, including
the Vogel–Fulcher one, also describe the data. The inset illustrates the temperature dependence of the
average jump length. The line is a guide to the eye. All data refer to species b of the KA LJ mixture.
Analogous results for species a are shown in Fig. 2 of the main text.
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Figure S3: Structural relaxation and cage–jump properties. The diffusivity (panel a) and the
relaxation time at a generic length scale λ (panel c) versus their predictions in the CTRW approach.
Small deviations are observed at the lowest temperatures due to the emergence of a subdiffusive transient
in the dependence of the mean square displacement on the number of jumps, as in panel b at T = 0.45.
This indicates that successive jumps of a same particle becomes spatially correlated. All data refer to
species b of the KA LJ mixture. Analogous results for species a are shown in Fig. 3 of the main text.
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Figure S4: Distribution of the number of jumps per particle. Probability distribution of the
number of jumps per particle at different different times, at T = 0.5 (inset) and at T = 0.45 (main
panel). At low temperature, the distribution acquires a temporary bimodal shape. All data refer to
species b of the KA LJ mixture. Analogous results for species a are shown in Fig. 4 of the main text
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Figure S5: Variance to mean ratio of the distribution of the number of jumps per particle.

Time evolution of the variance to mean ratio of the distribution of the number of jumps per particle
(left panel), and temperature dependence of its asymptotic value (right panel). Data refer to species b.
Analogous results for species a are reported in Fig. 5.
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