Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate

Na Guo, ^{‡,†} Yongjie Xi, ^{‡,§,†}Shuanglong Liu,[†] and Chun Zhang^{*,†,§}

[†]Department of Physics and Graphene Research Centre, National University of Singapore, Singapore 117542 [§]Department of Chemistry, National University of Singapore, Singapore 117542

Figure S1. Possible adsorption sites of O2 on graphene-Zn@Fe/Ni (111). We tested four inequivalent sites near the impurity Zn (denoted as A, B, C, D in the figure). The calculated adsorption energies are $0.42 \ eV$ for site A, $0.02 \ eV$ for site B, and there are no binding of O2 on other sites.

Figure S2. Left: Two Zn impurities are close to each other; Middle: The adsorption of two O_2 molecules on graphene-Zn@Fe/Ni (111). Right: Side view. Note that in this case, only one O_2 is adsorbed.

Figure S3. Energy profile of O₂ dissociation on graphene-Zn@Fe/Ni (111). Simulations were done using c-NEB method. It was found that about 0.31 *eV* is needed to break the O-O bond of O₂ adsorbed on graphene surface. Initial State (IS): O₂ adsorbed on graphene with a bond length of 1.50 Å. Transition State (TS): the O-O bond length is 1.80 Å. Final State (FS): O₂ dissociated on graphene.