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S1 Descriptive statistics of the gene regulatory network structure 

In this study, we collected transcription factor (TF) and microRNA (miRNA) regulations to 

construct global human gene regulatory networks (GRN) from predicted and experimentally 

validated data, respectively. This predicted GRN consists of 107 TFs, 1,851 mature miRNAs, 

18,705 target genes, and 825,659 regulations among these molecules. The experimentally 

validated network consists of 10,046 regulations among 597 TFs, 497 miRNAs, and 2581 target 

genes. Detailed information regarding network structure for these two GRNs is depicted in Table 

S1. 

 

Table S1: Number of regulations in the GRNs 

Predicted 

Regulations Transcription 
Factors 

Mature 
miRNAs 

Target 
Genes 

Transcription 
Factors 4,555 43,882 571,877 

Mature 
miRNAs 3,029 

 
202,316 

 

Experimentally validated 

Regulations Transcription 
Factors 

Mature 
miRNAs 

Target 
Genes 

Transcription 
Factors 863 1,224 4,782 

Mature 
miRNAs 761 

 
2,416 

 



S2 Reliability of the gene regulatory network 

In the predicted GRN, we observed that in-degree, i.e. regulations to targets, showed scale-free 

distribution, but out-degree, i.e. regulations from regulators, did not (Figure S1A). To further 

confirm this, we investigated the degree distribution of the experimentally validated GRN. 

Interestingly, both the in-degree and out-degree of the experimentally validated GRN showed 

scale-free distribution (Figure S1B). These observations might uncover the high false positive 

rate of this predicted GRN. However, the experimentally validated GRN could be subject to 

publication bias, i.e. regulators studied more could possess more targets. Indeed, in the 

experimentally validated GRN, the TF and miRNA out-degree are both significantly and highly 

correlated with the number of publications (Spearman′s ρ, TF: 0.49, P < 2.2×10-16; miRNA: 

0.68, P < 2.2×10-16); this positive correlation was observed only for miRNA in the predicted 

GRN (Spearman′s ρ, TF: 0.18, P = 0.06; miRNA: 0.36, P = 6.7×10-13) (Table S2). The 

information regarding the publications was obtained from National Center for Biotechnology 

Information (NCBI) database. These observations implied that the predicted GRN might possess 

a high false positive rate, but the experimentally validated GRN might be potentially biased by 

the number of publications. 

Accordingly, we considered the expression correlation between regulators and target genes to 

filter out potential false positive regulations and publication bias. We incorporated the mRNA 

and miRNA expression profiles of seven cancer types from The Cancer Genome Atlas (TCGA). 

We then mapped the expression correlations of each regulation to the predicted GRN to contrast 

the correlated GRN for each cancer type. We observed that the highest out-degree of the 

correlated GRN can be controlled by around 1,000 when only the top 1%, 5%, or 10% highly 

correlated regulations are used for each cancer type (Figure S2). To note, the highest out-degree 

in the experimentally validated GRN is 648. Moreover, the averaged R
2
 of out-degree 

distribution for the top 1%, 5%, and 10% highly correlated GRN was increased to around 0.5 

(Normal: 1%: 0.48, 5%: 0.5, 10%: 0.45; Tumor: 1%: 0.51, 5%: 0.48, 10%: 0.49) (Figure S1). 

Notably, the R
2
 of out-degree distribution for the predicted GRN is 0.17. Interestingly, the 

publication bias could also be reduced by incorporating expression correlations between 

regulators and targets the predicted GRN (Table S2). The above results suggested that the 

application of the expression correlations between regulators and targets may be able to reduce 

the false positive rate of the predicted GRN, control the out-degree distribution as scale-free, and 



reduce publication bias.  

 

Figure S1: Regulation degree distribution of the GRNs 

The degree distributions of (A) predicted (B) experimentally validated GRN. Out-degree:  

regulations from regulators; In-degree: regulations to targets. 

 

 

Figure S2: Out-degree distribution profile of correlated GRNs 

The out-degree distribution profile of the top 1%, 5%, and 10% highly correlated GRN for each 

cancer type. The log10 frequency of regulators is shown as a function of the log10 out-degree of 

regulators. The R
2
 of the out-degree distribution is labeled on the top of each sub-chart. 



Table S2: Correlation between out-degree and the number of publications of regulators 

   
Tumor 

   

 
Gene 

   
miRNA 

 Top(%) SCC P-value 

 
Top(%) SCC P-value 

       

 
Exp. validated 

   
Exp. validated 

 100% 0.49 < 2.2e-16 

 
100% 0.68 < 2.2e-16 

       

 
Predicted 

   
Predicted 

 1% -0.03 0.61 

 
1% 0.26 0.28 

5% 0.01 0.74 

 
5% 0.24 0.14 

10% 0.07 0.54 

 
10% 0.30 0.01 

50% 0.16 0.10 

 
50% 0.50 < 0.01 

100% 0.18 0.06 

 
100% 0.36 < 0.01 

       

   
Normal 

   

 
Gene 

   
miRNA 

 Cancer SCC P-value 

 
Cancer SCC P-value 

       

 
Exp. validated 

   
Exp. validated 

 100% 0.49 < 2.2e-16 

 
100% 0.68 < 2.2e-16 

       

 
Predicted 

   
Predicted 

 1% 0.18 0.06 

 
1% 0.36 < 0.01 

5% 0.07 0.47 

 
5% 0.16 0.33 

10% 0.06 0.52 

 
10% 0.20 0.14 

50% 0.09 0.40 

 
50% 0.23 0.01 

100% 0.17 0.08 

 
100% 0.41 < 0.01 

SCC: Average Spearman′s ρ across seven cancer types 

P-value: Average P-value across seven cancer types 

100%: The GRN without correlation filtering 

 

 



S3 Differentially correlated regulations in cancers 

To probe the importance of differentially correlated (DC) regulations in cancers, we collected 

cancer-associated genes and miRNAs from public databases and literature (see Methods in the 

main text). The DC regulations were defined by the distance of Fisher transformed Spearman′s ρ 

between normal and tumor (see Methods in the main text). The cancer-associated regulations 

were those regulations formed by cancer-associated genes or cancer-associated miRNAs. We 

further categorized the cancer-associated regulations into three forms: 1) CN: only regulators are 

cancer-associated; 2) NC: only targets are cancer-associated; 3) CC: both regulators and targets 

are cancer-associated (C: cancer-associated, N: non-cancer-associated). Since there are two TFs 

as regulators in BiTT regulations, we combined CN and NC as CN, i.e. either one of the 

regulators of a BiTT is cancer-associated. On the other hand, because BiTM regulations possess 

two types of regulators, i.e. TF and miRNAs, we further specialized these three categories for 

BiTM as: 1) CN: only TFs are cancer-associated; 2) NC: only miRNAs are cancer-associated; 3): 

CC: both TFs and miRNAs are cancer-associated. 

We observed that the cancer-associated regulations were significantly underrepresented in 

DC TFout regulations across seven cancer types (Figure S3A), even though the cancer-associated 

genes are significantly enriched in TFs (Figure S3B, left panel). This result implies that the 

cancer association significance of the DC TFout regulations might be diminished by the 

abundance of non-cancer-associated targets. Additionally, regulations composed of non-cancer-

associated TFs and cancer-associated targets are significantly enriched in the DC TFout 

regulations (Figure S3A). Notably, the cancer-associated genes used in this study are required to 

be associated with cancer through mutation
1-3

. Therefore, this result proposes that these non-

cancer-associated TFs with differential regulatory activity might be involved in cancer 

development through the regulation of cancer-associated targets rather than mutations. 



Interestingly, BiTT regulations significantly overrepresented cancer-associated regulations across 

seven cancer types, especially for both of the TFs that are cancer-associated (Figure S3A). This 

observation might highlight the magnitude of regulatory FFL between two cancer-associated TFs 

across cancers. On the other hand, DC miRout regulations significantly overrepresented cancer-

associated regulations across seven cancer types (Figure S3A). Additionally, the regulations 

formed by cancer-associated miRNAs (CN and CC) are significantly enriched in DC miRout 

regulations across seven cancer types. This result could be due to the significant enrichment of 

cancer-associated miRNAs involved in miRNA regulations (Figure S3B, right panel). This 

investigation also implies that miRNAs with distinct regulation activity might be involved in 

tumorigenesis even through targeting cancer-associated genes/TFs.  

 

 

Figure S3: Cancer association of DC regulations 

(A) The enrichment of cancer-associated regulations within four regulation types in the seven 

TCGA cancer types. For each cancer type, the proportion of cancer-associated regulations is 

shown for each regulation type. The asterisk at the top of each bar represents the significance of 

cancer-associated regulations with P < 0.05 derived from Fisher′s exact test. In addition, we 



labeled the significance of the three sub-categorized cancer-associated regulations with P < 0.05 

from Fisher’s exact test at the bottom of each bar. The order of asterisks for the sub-categorized 

cancer-associated regulations is CN, NC, and CC from top to bottom (C: cancer-associated, N: 

non-cancer-associated). Red asterisk: significantly overrepresented. Green asterisk: significantly 

underrepresented. (B) The enrichment of cancer-associated TFs and cancer-associated miRNAs. 

The left panel shows the proportion of cancer-associated genes involved in TFs and the right one 

the proportion of cancer-associated miRNAs within miRNAs. The P-values are derived from 

Fisher’s exact test.  

 



S4 Identification of STAT1-regulated functional modules 

To discover the STAT1-regulated downstream functional modules, we collected STAT1 target 

genes that are significantly 1) positively co-expressed with STAT1 and 2) up-regulated in tumor 

samples for each cancer type. Through these two conditions, we obtained those functional 

modules potentially activated by STAT1 in a tumor. The significantly positive co-expression was 

defined as the absolute standard score ≥ 2.5 (the corresponding significance is P < 0.01). The 

significant up-regulation in tumor is defined as edgeR P < 0.05, adjusted by the Benjamini and 

Hochberg multiple testing procedures
4
. 

Next, we performed functional enrichment analysis using Gene Ontology (GO)
5
 annotations 

to determine the enriched functions in which these selected target genes are involved. Of note, 

we conducted the functional enrichment analysis in two ways, conventional and network-wise
6,7

. 

With the conventional way, the overrepresentation of selected STAT1 target genes defines the 

significance of STAT1-regulated functions. On the other hand, the network-wise enrichment 

analysis evaluates the significance of STAT1-regulated functions through the overrepresentation 

of functional protein-protein interactions (PPIs) among selected STAT1 targets. The PPIs were 

obtained from the Protein Interaction Network Analysis (PINA) v2
8,9

. Notably, the functional 

PPIs are PPIs formed by the two proteins involved in the same functions. Moreover, because we 

applied network-wise enrichment analysis, we further stipulated that the selected STAT1 target 

genes must be collected in the PPI network in the following analyses. The significance of each 

function is determined by the P-value produced from Hypergeometric test. For the conventional 

way, the hypergeometric distribution is: 

       
 
 
 
  
   
   

 

 
 
 
 

 



where X denotes the evaluated function. N represents the number of GO annotated genes in the 

used expression profiles, as well as in PINA PPI network, while m indicates that in the selected 

STAT1 target genes. n represents the number of genes with the evaluated GO annotations in the 

used expression profiles as well as in PINA PPI network, while k indicates that in the selected 

STAT1 target genes. Thus, this formula calculated the probability of the evaluated GO 

annotations that contains k selected STAT1 target genes. For the network-wise way, we applied a 

modified hypergeometric distribution as below: 

         
 
  

  
  

     

     
 

 
  

  
 

 

e is the abbreviation of the functional PPIs. Each symbol represents the same meaning as the 

previous one in the conventional hypergeometric distribution, but the counting objects are 

changed from genes to functional PPIs. All the P-values are adjusted by the Benjamini and 

Hochberg multiple testing procedures to control the false discovery rate (FDR). 

For each GO annotations, the two P-values produced by the conventional and network-wise 

method are further combined as a summarized P-value by Fisher′s method
10

. For each cancer 

type, a GO annotation is provided with a summarized P-value. We further combined these 

summarized P-values of a GO annotation as a combined P-value across the seven studied cancer 

types by Fisher′s method again. That is, we used the combined P-value to assess the enrichment 

consistency of the GO annotation across the studied seven cancer types. Furthermore, we utilized 

these combined P-values to rank the GO annotations in which the selected STAT1 target genes 

are involved. Finally, we considered the top 20 significant enriched GO annotations as potential 

STAT1-regulated downstream functions.   

 

 



S5 mRNA and miRNA expression profiles 

The mRNA and miRNA expression profiles of seven cancer types in The Cancer Genome Atlas 

(TCGA) were investigated: breast cancer (BRCA), head and neck squamous cell carcinoma 

(HNSC), clear cell kidney carcinoma (KIRC), lung adenocarcinoma (LUAD), lung squamous 

cell carcinoma (LUSC), papillary thyroid carcinoma (THCA), and uterine corpus endometrial 

carcinoma (UCEC). The data was downloaded from TCGA on 10/02/2013. We used the 

normalized read counts inferred via RSEM (RNA-Seq by Expectation Maximization) algorithm
11

 

from RNA-Seq V2 as gene expressions. The RPM (Reads Per Million) values of miRNA-Seq 

data were used to represent the expression level of miRNA in the seven selected cancer types. Of 

note, to calculate Spearman′s ρ between miRNAs and target genes/TFs, only patient-matched 

samples between miRNA and mRNA expression profiles were used in this study. The numbers of 

samples for each cancer type are listed in Table S3. 

 

Table S3: The number of samples for each cancer type. 

 
BRCA HNSC KIRC LUAD LUSC THCA UCEC 

Normal 85 37 71 19 37 58 17 

Tumor 654 264 208 400 325 485 118 

 

 

S6 List of the drugs differentially regulated STAT1 expression 

Supplementary file S1 
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