Both TALENs and CRISPR/Cas9 directly target the *HBB* IVS2–654 (C>T) mutation in β-thalassemia-derived iPSCs

Peng Xu^{1,2#}, Ying Tong^{1,2#}, Xiu-zhen Liu^{1,2}, Ting-ting Wang^{1,2}, Li Cheng^{1,3}, Bo-yu Wang^{1,2}, Xiang Lv^{1,2}, Yue Huang^{1,3}, De-pei Liu^{1,2}*

¹State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

² Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

³Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China

These authors contributed equally to this study

*Correspondence: De-pei Liu, PhD, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, P.R. China. Telephone: 86-10-69156415; Fax: 86-10-69153086; Email: liudp@pumc.edu.cn

Supplementary information are as follows:

Figure S1. TALENs, CRISPR/Cas9 and piggyBac donor vector construction.

Figure S2. PCR identification of TALEN- and CRISPR/Cas9-mediated gene targeting in 654-hiPSC.

Figure S3. Human stem cell morphology of β -thalassemia patient-derived iPSCs.

Figure S4. Morphology change upon hematopoietic differentiation in OP9 co-culture.

Figure S5. Full-length gels which have been cropped in the main text are presented.

Table S1. Primer sequence summary.

Α.

TALEN-1- L-protein sequence: 960aa

MAPKKKRKVDYKDHDGDYKDHDIDYKDDDDKGTVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALV GHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQ LDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPAQ VVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQ VVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAI AIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAI ASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPDQVVAI SNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASN GGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNG GGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNG SGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNG GKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGG SKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGG SGKQALETVQRLLPVLCQAHGLTPAQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNGG PALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDAVKKGLPHAPALIKRTNRRIPERTSHRVAGSQLVK SELEEKKSELRHKLKYVPHEYIELIEIARNPTQDRILEMKVMEFFMKVYGYRGEHLGGSRKPDGAIYTVGSPI DYGVIVDTKAYSGGYNLPIGQADAMQSYVEENQTRNKHINPNEWWKVYPSSVTEFKFLFVSGHFKGNYK AQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVRRKFNNGEINF*

TALEN-1- R-protein sequence: 960aa

MAPKKKRKVDYKDHDGDYKDHDIDYKDDDDKGTVDLRTLGYSQQQQEKIKPKVRSTVAQHHEALV GHGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQ LDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQ VVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQ VVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPDQV VAIASHDGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAI ASNNGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIA SNNGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIAS NIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNG GGKQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGG KQALETVQRLLPVLCQAHGLTPAQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGG KQALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNGGK ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPDQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPAQVVAIASNNGGKQ ALETVQRLLPVLCQAHGLTPAQVVAIASNGGRVALESIVAQLSRPDPALAALTNDHLVALACLGGRPALDA VKKGLPHAPALIKRTNRRIPERTSHRVAGSQLVKSELEEKKSELRHKLKYVPHEYIELIEIARNPTQDRILEMKV MEFFMKVYGYRGEHLGGSRKPDGAIYTVGSPIDYGVIVDTKAYSGGYNLPIGQAREMQRYVEENQTRNK HINPNEWWKVYPSSVTEFKFLFVSGHFKGNYKAQLTRLNHITNCNGAVLSVEELLIGGEMIKAGTLTLEEVR RKFNNGEINF*

Β.

spCas9 protein sequence:1503aa

MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGIHGVPAADKKYSIGLDIGTNSVGWAVITDEYKVPSKKFK VLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEED KKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQ LVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVR QQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHL GELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKED YFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDK VMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSL HEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQI LKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDN VPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKY DENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVR KMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIV KKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERS SFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSP EDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKY FDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDKRPAATKKAGQAKKKK.EFLELADQPRLCLLVASHL LFAPPPCLP.PWKVPLPLSFPNKMRKLHRIV.VGVILFWGVGWGRTARGRIGKRIAGMLG

C.

Figure S1 TALENs, CRISPR/Cas9 and piggyBac donor vector construction

- A. The amino acid sequences of TALEN-1 for targeting HBB IVS-2 654 loci
- B. The amino acid sequences of Cas9 from px330 for targeting HBB IVS-2 654 loci
- C. The vector map of piggyBac donor vector.

Figure S2 **PCR identification of TALENs and CRISPR/Cas9 mediated gene targeting in 654hiPSC.** After gene targeting, clones with correctly integrating into the HBB loci was selected by puromycin and further identified by 5' junction and 3' junction PCR primers. The upper lane showed the PCR gel results in TALEN targeted 48 cell clones; while the down lane showed the PCR results in CRISPR/Cas9 targeted 57 cell clones.

Figure S3

Figure S3 Human pluriptent stem cell morphology of β -thalassemia patient derived iPSC

- A. The morphology in bright field by respectively 50x (up) and 200x (down) in β -thalassemia iPS cells
- B. AP (alkaline phosphatase) staining showed the typical human stem cell morphology by respectively 50x (up) and 200x(down) in β -thalassemia iPS cells

Figure S4

Figure S4 Morphology change rapidly upon hematopoietic differentiation by using **OP9 co-culture.** Human iPSCs were digested and cocultured with overgrown OP9; After 9 d of coculture, differentiated blood-forming hPSC colonies with radial sac-like structures are formed; upon hematopoietic differentiation at D21, the cell showed erythrobalst progenetor morphology (D represents day).

Figure S5

В

С

Ε

D

F

Η

Figure S5 Full-length gels which have been cropped in the main text are presented.

A. PCR result in **Fig 1c** of the main text was in the upper pannel, red lines represent cropping lines;T7E1 result in Fig1c was in the down pannel, red lines represent cropping lines. All gels

have been run under the same experimental conditions.

- Fig 2c in the main text was shown here. 5' Junction PCR(red lines) and 3' Junction PCR results (green lines) are respectively cropped from the upper pannel, and the Hbb endogenous gene control PCR (1700bp) result (red lines) was cropped from the down pannel. All the gels have been run under the same experimental conditions.
- C. Fig 2d in the main text was shown here.5' Junction PCR(red lines) and 3' Junction PCR results (green lines)are respectively cropped from the upper pannel, and the Hbb endogenous gene control PCR (2830bp)result (red lines) was cropped from the down pannel. All the gels have been run under the same experimental conditions.
- D. PCR result in Fig 3a of the main text was in the upper pannel, red lines represent cropping lines;T7E1 result in Fig 3a was in the down pannel, red lines represent cropping lines. All gels have been run under the same experimental conditions.
- E. PCR result in **Fig 3b** of the main text was in the upper pannel, red lines represent cropping lines;T7E1 result in **Fig 3b** was in the down pannel,red lines represent cropping lines. All gels have been run under the same experimental conditions.
- F. PCR result in Fig 3c of the main text was in the upper pannel, red lines represent cropping lines;T7E1 result in Fig 3c was in the down pannel, red lines represent cropping lines. All gels have been run under the same experimental conditions.
- G. PCR result in **Fig 3d** of the main text was in the upper pannel, red lines represent cropping lines;T7E1 result in **Fig 3d** was in the down pannel,red lines represent cropping lines. All gels have been run under the same experimental conditions.
- H. PCR result in **Fig 5c** of the main text was shown here, the red lines represent the cropping lines.

TABLES

Table 1. The top 10 potential off-target sites of TALENs for the recognition of HBB IVS-2 654 loci.

Serial number	Gene name	TAL 1 Target	TAL 2 Target	Spacer Length
on target	HBB	T ATATGCAGAGATATT	T AACAGTGATAATTTCT	16
Site-1	C4orf21	T AAAAAAAGAAAAATT	Τ ΑΤΑΤΑCΑΑΑΑΑΤΑΤΤ	20
Site-2	TTLL7	T AGATGCAAAAATCCT	T ATATCCACAAATATT	25
Site-3	TEX41	T GAAAATCATAATCTCT	T AAATACAGAAATATT	18
Site-4	EGFR	T ATATGTACAAATAAA	Τ ΑΤΑΤΑCΑΑΑΑΑΤΑΤΑ	22
Site-5	CTNNA3	T ATATGCCGAAATATT	T AAAACTAATCACTTCT	25
Site-6	SMEK2	Τ ΑΤΑΤΑCΑΤΑΑΑΤΑΤΤ	T TACAATGCTAATTTAT	25
Site-7	PTPRD	Τ ΑΤΑΤΑCΑΑΑCΑΤΑΤΤ	T ATATGCACATATATG	20
Site-8	GPR98	Τ ΑΑCΑΑΤΑΑΤΑΑΤCTCT	T ATATACACACTCATT	26
Site-9	SLC9A6	T ATATGTAGATATATA	T ATATGCAGAAATATG	30
Site-10	TTC28	T ATATGCAGAAATATG	T AATAGATATAACTTCT	25

Table 2. The top 10 potential off-target sites of CRISPR/Cas9 for the recognition of HBB IVS-2 654 loci. Lowercase nucleotides represent a mismatch compared with the on-target sequences.

Serial number	Gene name	Sequence	Orientation	No. of mismatches
on target	НВВ	CAGTGATAATTTCTGGGTTAAGG	-	0
Site-1	HHAT	CAGTGATtATTTCTGGGTTATGG	-	1
Site-2	NTRK2	CAGTGATAATTTCaGGGgTATGG	+	2
Site-3	ATXN10	gAGTGATgATTTCTGGGTTAAGG	+	2
Site-4	TPRG1	CAGTGATtATTTCTGGGTggTGG	+	3
Site-5	EHF	tAGTGATAgTTTCTGGGTgAAGG	+	3
Site-6	CCDC178	CtaTGATAATTTCTtGGTTAGGG	+	3
Site-7	CDC7	CAGTGtTAATTTCTGttTTATGG	-	3
Site-8	RNF216	CAGTGActATTTCTGGGTaAGGG	+	3
Site-9	CNTNAP2	gAaTGATAcTTTCTGGGTTAGGG	-	3
Site-10	C2orf73	CAGTGgTAATTTCaGaGTTAAGG	-	3

Table S1

Primer used for PCR and vector construction.

Name	Sequence(5'-3')	
HBB-Larm-F	GAACGTGGATGAAGTTGGTGGTGAG	
HBB-Larm-R	CCCAGAAATTATCACTGTTATTCTT	
HBB-Rarm-F	GGCAATAGCAATATtTCTGCATATAA	
HBB-Rarm-R	AGACTGTGAAAGAGTGATAGTTCCG	
5' Junction-F	AGAGTTTTCATCCATTCTGTCCTG	
5' Junction-R	ACGTGCTACTTCCATTTGTCACGT	
3' Junction-F	AATCGCGAACATCTACACCACAACACCG	
3' Junction-R	AGAGAGGACAAGGACCACTTGAGACTCATA	
HBB-Endo-F	GTGAGTCTATGGGACGCTTGATGTT	
HBB-Endo-R	CTGTGGGAGGAAGATAAGAGGTATG	
HBB-T7E1-F	ATCTCTTTCTTTCAGGGCAATAATG	
HBB-T7E1-R	TGGGAGGAAGATAAGAGGTATGAAC	
Puro∆tk-F	GTCACCGAGCTGCAAGAACT	
Puro∆tk-R	GCCCGAAACAGGGTAAATAA	
TALEN-OT1-F	GAGATTACAGACTCCTGCCACTACG	
TALEN-OT1-R	ACTCCATCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
TALEN-OT2-F	AGGTTTTTTGTACCTGCTCTTTACG	
TALEN-OT2-R	CTGAAAAAGAAATGTCCAGACCAAG	
TALEN-OT3-F	TGTTTGAAACCAGGGAGAATAAATA	
TALEN-OT3-R	ATACTTGCCATAAAAGGTTTCGTT	
TALEN-OT4-F	CTTTGACGATGAAAACATCAAGTTC	
TALEN-OT4-R	TACGTATGAACAGTGCCCAGTGTAC	
TALEN-OT5-F	AGCTGAGATTAGAGTCCAAAGCTAA	
TALEN-OT5-R	GGCTATTTCATCTGTGACAACAAGA	
TALEN-OT6-F	AGAATGGTCTCAAACTCCTGACCTC	
TALEN-OT6-R	CTGGTCTCTAACTCCTGGGCTCAAC	
TALEN-OT7-F	AGATGAAGCTAACATTTGAATTGGC	
TALEN-OT7-R	AGTAAAAGACAGAACTCTGGTGGTG	
TALEN-OT8-F	GAATGTAATTCTTGTGAATGGCAAA	
TALEN-OT8-R	ATCTAAAACCCTCATCTGTCAAGCT	
TALEN-OT9-F	ACTCCCTGGAACTATAAGATGCTTC	
TALEN-OT9-R	ATGGGAACACTGGTTAACAATTCTG	
TALEN-OT10-F	CCTGACTGAAGTGGATTTTTTGTTT	
TALEN-OT10-R	TCTGGATGAGTGCGTGATCTTAGAT	
CRISPR/Cas9-OT1-F	GCTGAGAGATAAAAGAGGAAAAAGA	
CRISPR/Cas9-OT1-R	TTTTACTCAAAATTGGAATAGCTGG	
CRISPR/Cas9-OT2-F	TCATTTATGGATTATCTATGGCTGC	
CRISPR/Cas9-OT2-R	TTTGTACACATAAGGTTTGGACACC	

CRISPR/Cas9-OT3-F	GTTGCAGGGAAGAAGATAATTGACT
CRISPR/Cas9-OT3-R	AGACTATCCTTCATTAAATGATCCT
CRISPR/Cas9-OT4-F	GTATTGTTATGCTTTTAACCCCACG
CRISPR/Cas9-OT4-R	ATGCCAGGATCCTTCTGTTATTTCT
CRISPR/Cas9-OT5-F	AACTAACTCCCTGACACTTAAGGCC
CRISPR/Cas9-OT5-R	CTTTCAACCATTTCCCACACTGTAC
CRISPR/Cas9-OT6-F	AGTTTATGTTGTGTGGGATTTATGC
CRISPR/Cas9-OT6-R	AACAAGGGAATTAAATTTTAGTGGC
CRISPR/Cas9-OT7-F	TCAAGTGATCCCCTCCTATCTTGGC
CRISPR/Cas9-OT7-R	GTTTCCTCTGTTTGGAATGCTCTTC
CRISPR/Cas9-OT8-F	AAATGAAAATAAGTGTGATACCATT
CRISPR/Cas9-OT8-R	CTATCCCCAGAGTTCAGTAGTTCTG
CRISPR/Cas9-OT9-F	TTATTATTGAAGGCCCAAAGTAACT
CRISPR/Cas9-OT9-R	TAGTGGCACACGCCTATAATCCTAC
CRISPR/Cas9-OT10-F	TCTGTTGTCTGAGGATTTTTCAGAT
CRISPR/Cas9-OT10-R	TGGTGGACTCTAAGATTAAAGACCT
HBBcDNA-F	CCTGAGGAGAAGTCTGCCGTTACTGCC
HBBcDNA-R	GCATTAGCCACACCAGCCACCACTT
qHBB-F	TCTGTCCACTCCTGATGCTGTTATG
qHBB-R	GTTGGACTTAGGGAACAAAGGAACC