CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014

On the Role of Pre- and Post-Electron-Transfer Steps in the Sml₂/ amine/H₂O-Mediated Reduction of Esters: New Mechanistic Insights and Kinetic Studies

Michal Szostak,* Malcolm Spain, and David J. Procter*^[a]

chem_201400295_sm_miscellaneous_information.pdf

On the Role of Pre- and Post-Electron Transfer Steps in the SmI₂/amine/H₂O-Mediated Reduction of Esters: New Mechanistic Insights and Kinetic Studies

Michal Szostak,* Malcolm Spain, and David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

michal.szostak@manchester.ac.uk; david.j.procter@manchester.ac.uk

Supplementary Information

Table of Contents	1
List of Known Compounds/General Methods	2
Experimental Procedures and Characterization Data	2
Intermolecular Competition Experiments	2
Hammett and Taft Studies	7
Radical Clock Experiments	12
Epimerization Studies	18
• H ₂ ¹⁸ O Incorporation Experiments	19
Reagent Stoichiometry Studies	20
• Reduction of Esters using SmI ₂ –NaOH	21
Kinetic Experiments	23
References	27
¹ H and ¹³ C NMR Spectra	28
HPLC Traces	66

Corresponding Author:

Dr. Michal Szostak Professor David J. Procter School of Chemistry University of Manchester Oxford Road Manchester, M13 9PL United Kingdom

General Methods/List of Known Compounds

All compounds reported in the manuscript study have been described in literature or are commercially available. Esters were purchased from commercial suppliers or prepared by standard methods.¹⁻⁹ All experiments involving SmI₂ were performed using standard Schlenk or glovebox techniques under argon or nitrogen atmosphere unless stated otherwise. All solvents were purchased at the highest commercial grade and used as received or after purification by passing through activated alumina columns or distillation from sodium/benzophenone under nitrogen. All solvents were deoxygenated prior to use. All other chemicals were purchased at the highest commercial grade and used as received. Reaction glassware was oven-dried at 140 °C for at least 24 h or flame-dried prior to use, allowed to cool under vacuum and purged with argon (three cycles). Samarium(II) iodide was prepared by standard methods and titrated prior to use.¹⁰⁻¹⁴ ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on Bruker spectrometers at 300, 400 and 500 MHz (¹H NMR) and 75, 100 and 125 MHz (¹³C NMR). All shifts are reported in parts per million (ppm) relative to residual CHCl₃ peak (7.27 and 77.2 ppm, ¹H NMR and ¹³C NMR, respectively). All coupling constants (J) are reported in hertz (Hz). Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; br s, broad singlet. All flash chromatography was performed using silica gel, 60 Å, 230-400 mesh. TLC analysis was carried out on aluminium sheets coated with silica gel 60 F254, 0.2 mm thickness. The plates were visualized using a 254 nm ultraviolet lamp or aqueous potassium permanganate solutions. ¹H NMR and ¹³C NMR data are given for all compounds in the Supporting Experimental for characterization purposes. ¹H NMR, ¹³C NMR, IR and HRMS data are reported for all new compounds.

Intermolecular Competition Experiments

<u>*General Procedure.*</u> An oven-dried vial containing a stir bar was placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Samarium(II) iodide (THF solution, typically 0.20 mmol, 2.0 equiv, 0.10 M) was added followed by Et_3N (0.33 mL, 24 equiv) and H_2O (0.043 mL, 24 equiv) with vigorous stirring, which resulted in the formation of a characteristic dark brown color of the SmI₂– Et_3N – H_2O complex. A preformed solution of two substrates (each 0.10 mmol, 1.0 equiv, stock solution in THF, 1.0 mL) was added and the reaction mixture was stirred until decolorization to white had occurred. The reaction mixture was diluted with CH₂Cl₂ (30 mL) and HCl (1 *N*, 30 mL).

The aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL), the organic layers were combined, dried over Na_2SO_4 , filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion and yield using internal standard and comparison with authentic samples.

entry	_{کر} CO ₂ Me	Run 1^b	Run 2^b	RV^b
1	Ph [']	99.1:0.9	99.1:0.9	>100
2	Ph	90:10	90:10	9.14
3	Ph	81:19	81:19	4.29
4	C ₉ H ₁₉ ⁵	1.00	1.00	1.00
5	$R = nC_5H_{11}$	29:71	29:71	0.41
6	and the second s	20:80	21:79	0.26
7	Ph Y2 Me	49:51	46:54	0.91
8	n-Hex n-Bu	4.4:95.6	5.3:94.7	0.05
entry	PhC(O)XR	Run 1 ^b	Run 2^b	RV^b
9	R = OMe	1.00	1.00	1.00
10	$\mathbf{R} = \mathbf{OPh}$	87:13	87:13	6.88
11	$\mathbf{R} = \mathbf{Opfp}$	90:10	90:10	9.15
12	$\mathbf{R} = \mathbf{SEt}$	85:15	85:15	5.78

Table SI-1. Steric and Electronic Influence on the Relative Rates in the Reduction of Esters.^a

^{*a*}All reactions carried out using standard Schlenk techniques. Conditions: under argon, to SmI₂ (typically, 0.20 mmol), Et₃N (typically, 2.4 mmol) and H₂O (typically 2.4 mmol) an equimolar amount of the competition substrates (typically, 0.10 mmol) in THF (typically, 1 mL) was added, and the reaction mixture was vigorously stirred until decolorization to white had occurred. ^{*b*}Relative reactivity values determined from product distribution by ¹H NMR and/or GC of crude reaction mixtures and comparison with authentic samples. All data represent average of at least two experiments.

Methyl benzoate (Table 3, entry 1). ¹H NMR (500 MHz, CDCl₃) δ 3.83 (s, 3 H), 7.35 (t, J = 7.5 Hz, 2 H), 7.46 (tt, J = 1.5, 8.0 Hz, 1 H), 7.95 (dd, J = 1.5, 8.5 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 52.1, 128.4, 129.6, 130.2, 132.9, 167.1.

Methyl 2-phenylacetate (Table 3, entry 2). ¹H NMR (500 MHz, CDCl₃) δ 3.53 (s, 2 H), 3.59 (s, 3 H); 7.14-7.20 (m, 3 H), 7.21-7.25 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 41.2, 52.1, 127.1, 128.6, 129.3, 134.0, 172.1.

Methyl 3-phenylpropanoate (Table 3, entries 3, 9). ¹H NMR (300 MHz, CDCl₃) δ 2.68 (t, J = 7.8 Hz, 2 H), 3.00 (t, J = 7.5 Hz, 2 H), 3.71 (s, 3 H), 7.21-7.28 (m, 3 H), 7.30-7.37 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 31.0, 35.7, 51.6, 126.3, 128.3, 128.6, 140.6, 173.3.

Methyl decanoate (Table 3, entry 4). ¹H NMR (300 MHz, CDCl₃) δ 0.84 (t, *J* = 6.6 Hz, 3 H), 1.18-1.31 (m, 12 H), 1.52-1.64 (m, 2 H), 2.27 (t, *J* = 7.8 Hz, 2 H), 3.62 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.0, 22.6, 24.9, 29.1, 29.2, 29.2, 29.4, 31.8, 34.0, 51.3, 174.2.

(1*S*,4*R*)-Methyl 4-pentylcyclohexanecarboxylate (Table 3, entry 5). ¹H NMR (300 MHz, CDCl₃) δ 0.83-0.98 (m, 2 H), 0.89 (t, *J* = 6.6 Hz, 3 H), 1.13-1.34 (m, 9 H), 1.42 (qd, *J* = 3.3, 12.6 Hz, 2 H), 1.77-1.86 (m, 2 H), 1.92-2.01 (m, 2 H), 2.24 (tt, *J* = 3.6, 12.3 Hz, 1 H), 3.67 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.1, 22.7, 26.5, 29.1, 32.2, 32.4, 36.9, 37.2, 43.5, 51.4, 176.8.

Methyl adamantane-1-carboxylate (Table 3, entry 6). ¹H NMR (300 MHz, CDCl₃) δ 1.62-1.75 (m, 6 H), 1.84-1.89 (m, 6 H), 1.95-2.02 (m, 3 H), 3.63 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 27.9, 36.5, 38.8, 40.7, 51.5, 178.2.

Methyl 2-methyl-3-phenylpropanoate (Table 3, entry 7). ¹H NMR (300 MHz, CDCl₃) δ 1.19 (d, J = 6.6 Hz, 3 H), 2.65-2.84 (m, 2 H), 3.07 (q, J = 6.3 Hz, 1 H), 3.67 (s, 3 H), 7.17-7.22 (m, 2 H), 7.24-7.35 (m, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 16.8, 39.7, 41.5, 51.6, 126.4, 128.4, 129.0, 139.4, 176.6.

Methyl 2-butyloctanoate (Table 3, entry 8). ¹H NMR (300 MHz, CDCl₃) δ 0.88 (t, *J* = 6.9, 3 H), 0.89 (t, *J* = 6.6 Hz, 3 H), 1.18-1.34 (m, 12 H), 1.38-1.51 (m, 2 H), 1.53-1.67 (m, 2 H), 2.29-2.39 (m, 1 H), 3.68 (s, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 13.9, 14.0, 22.6, 22.6, 27.4, 29.2, 29.7, 31.7, 32.2, 32.5, 45.7, 51.3, 177.1.

Phenyl 3-phenylpropanoate (Table 3, entry 10). ¹H NMR (300 MHz, CDCl₃) δ 2.96 (t, *J* = 7.5 Hz, 2 H), 3.15 (t, *J* = 7.2 Hz, 2 H), 7.05-7.11 (m, 2 H), 7.24-7.46 (m, 8 H); ¹³C NMR (75 MHz, CDCl₃) δ 31.0, 36.1, 121.6, 125.9, 126.5, 128.5, 128.7, 129.5, 140.2, 150.7, 171.5.

Perfluorophenyl 3-phenylpropanoate (Table 3, entry 11). ¹H NMR (300 MHz, CDCl₃) δ 2.88-2.95 (m, 2 H), 2.99-3.05 (m, 2 H), 7.14-7.21 (m, 3 H), 7.22-7.29 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 30.7, 25.0, 126.7, 128.3, 128.7, 139.3, 168.8; ¹⁹F (376 MHz, CDCl₃) δ -162.3 (m, 2 F), -158.0 (t, J = 21.5 Hz, 1 F), -152.5 (m, 2 F). Aromatic CF groups were not apparent in the ¹³C NMR spectrum despite long acquisition times. The ¹⁹F spectrum clearly indicates the presence of the pfp group.

S-Ethyl 3-phenylpropanethioate (Table 3, entry 12). ¹H NMR (500 MHz, CDCl₃) δ 1.14 (t, *J* = 7.5 Hz, 3 H), 2.75 (t, *J* = 7.0 Hz, 2 H), 2.78 (q, *J* = 7.5 Hz, 2 H), 2.88 (t, *J* = 8.0 Hz, 2 H), 7.07-7.12 (m, 3 H), 7.16-7.21 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 14.8, 23.4, 31.5, 45.5, 126.4, 128.4, 128.6, 140.2, 198.6.

Benzyl alcohol (Table 3, entry 1). ¹H NMR (500 MHz, CDCl₃) δ 1.75 (br, 1 H), 4.60 (s, 2 H), 7.19-7.24 (m, 1 H), 7.26-7.31 (m, 4 H); ¹³C NMR (125 MHz, CDCl₃) δ 65.4, 127.0, 127.7, 128.6, 140.9.

Phenethyl alcohol (Table 3, entry 2). ¹H NMR (500 MHz, CDCl₃) δ 1.65 (br, 1 H), 2.78 (t, J = 7.0 Hz, 2 H), 3.76 (t, J = 6.5 Hz, 2 H), 7.13-7.17 (m, 3 H), 7.21-7.25 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 39.2, 63.7, 126.5, 128.6, 129.1, 138.5.

3-Phenylpropan-1-ol (Table 3, entries 3, 10-12). ¹H NMR (400 MHz, CDCl₃) δ 1.32 (br, 1 H), 1.79-1.87 (m, 2 H), 2.64 (t, *J* = 7.6 Hz, 2 H), 3.61 (t, *J* = 6.4 Hz, 2 H), 7.09-7.24 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 32.1, 34.3, 62.3, 125.9, 128.4, 128.5, 141.8.

Decan-1-ol (Table 3, entry 4). ¹H NMR (500 MHz, CDCl₃) δ 0.81 (t, *J* = 6.9 Hz, 3 H), 1.15-1.33 (m, 15 H), 1.47-1.53 (m, 2 H), 3.57 (t, *J* = 6.6 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 14.1, 22.7, 25.8, 29.3, 29.5, 29.6, 29.7, 31.9, 32.8, 63.1.

((1*S*,4*R*)-4-pentylcyclohexyl)methanol (Table 3, entry 5). ¹H NMR (300 MHz, CDCl₃) δ 0.75-0.91 (m, 7 H), 1.02-1.27 (m, 10 H), 1.38 (br, 1 H), 1.71 (d, *J* = 8.7 Hz, 4 H), 3.37 (d, *J* = 6.4 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.1, 22.7, 26.6, 29.5, 32.2, 32.7, 37.4, 37.8, 40.7, 68.8.

SI-5

1-Adamantanemethanol (Table 3, entry 6). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (br, 1 H), 1.43-1.46 (m, 6 H), 1.55-1.70 (m, 6 H), 1.90-1.95 (m, 3 H), 3.13 (s, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 28.2, 34.5, 37.2, 39.0, 73.9.

2-Methyl-3-phenylpropan-1-ol (Table 3, entry 7). ¹H NMR (300 MHz, CDCl₃) δ 0.85 (d, *J* = 6.9 Hz, 3 H), 1.33 (br, 1 H), 1.79-1.94 (m, 1 H), 2.36 (dd, *J* = 8.0, 13.5 Hz, 1 H), 2.69 (dd, *J* = 6.2, 13.4 Hz, 1 H), 3.37-3.50 (m, 2 H), 7.07-7.25 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 16.5, 37.8, 39.7, 67.7, 125.9, 128.3, 129.2, 140.6.

2-Butyloctan-1-ol (Table 3, entry 8). ¹H NMR (500 MHz, CDCl₃) δ 0.79-0.85 (m, 6 H), 1.09-1.14 (br, 1 H), 1.16-1.29 (m, 16 H), 1.35-1.42 (m, 1 H), 3.47 (d, *J* = 5.5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.7, 23.1, 26.9, 29.1, 29.8, 30.6, 30.9, 31.9, 40.5, 65.8.

Hammett and Taft Studies

<u>General Procedure.</u> An oven-dried vial containing a stir bar was placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Samarium(II) iodide (THF solution, typically 0.20 mmol, 2.0 equiv, 0.10 M) was added followed by Et_3N (0.33 mL, 24 equiv) and H_2O (0.043 mL, 24 equiv) with vigorous stirring, which resulted in the formation of a characteristic dark brown color of the SmI₂– Et_3N-H_2O complex. A preformed solution of two substrates (each 0.10 mmol, 1.0 equiv, stock solution in THF, 1.0 mL) was added and the reaction mixture was stirred until decolorization to white had occurred. The reaction mixture was diluted with CH_2Cl_2 (30 mL) and HCl (1 *N*, 30 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion and yield using internal standard and comparison with authentic samples.

Table SI-2. Electronic Influence on the Relative Rates in the Reduction of Esters – Hammett

 Correlation Study.^a

	<pre> </pre> CO₂M	e Sml	₂ –H ₂ O–Et ₃ N	OH
x			THF, RT	x
ρ=	+0.43			
	entry	Х	$k_{\rm X}/k_{ m H}{}^a$	Hammett constant
	1	CF ₃	1.79	0.54
	2	Cl	1.44	0.23
	3	F	1.22	0.06
	4	Н	1.00	0
	5	MeO	0.81	-0.27

^aRelative reactivity values determined from product distribution by ¹H NMR and/or GC of crude reaction mixtures.

Figure SI-1. Hammett plot in the Reduction of 4-Phenylacetic Methyl Esters with SmI_2 -Et₃N-H₂O.^{*a*}

	CO ₂ R	Sm	$H_2-H_2O-Et_3N$		`ОН
			THF, RT		
E _S =	+0.97				
	entry	R	$k_{\rm X}/k_{\rm Me}{}^a$	Taft $E_{\rm S}$ parameter	
	1	Me	1.00	0	
	2	Et	0.55	-0.07	
	3	<i>i</i> -Pr	0.19	-0.47	
	4	t-Bu	0.026	-1.54	
	5	Ph	6.20	-2.55	

Table SI-3. Steric Influence on the Relative Rates in the Reduction of Esters – Taft E_s Correlation Study.^{*a*}

^aRelative reactivity values determined from product distribution by ¹H NMR and/or GC of crude reaction mixtures.

Figure SI-2. Taft plot in the Reduction of Hydrocinnamic Acid Esters with $SmI_2-Et_3N-H_2O$.^{*a*}

Methyl 2-(4-(trifluoromethyl)phenyl)acetate (Table SI-2, entry 1). ¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 2 H), 3.72 (s, 3 H), 7.42 (d, *J* = 8.4 Hz, 2 H), 7.60 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 40.8, 52.2, 122.8, 125.5 (q, *J*³ = 3.7 Hz), 129.5 (q, *J*² = 32.1 Hz), 129.7, 138.0, 171.2; ¹⁹F (376 MHz, CDCl₃) δ -62.6.

Methyl 2-(4-chlorophenyl)acetate (Table SI-2, entry 2). ¹H NMR (300 MHz, CDCl₃) δ 3.61 (s, 2 H), 3.71 (s, 3 H), 7.23 (d, J = 8.4 Hz, 2 H), 7.31 (d, J = 8.4 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 40.4, 52.2, 128.7, 130.7, 132.4, 133.1, 171.6.

Methyl 2-(4-fluorophenyl)acetate (Table SI-2, entry 3). ¹H NMR (300 MHz, CDCl₃) δ 3.61 (s, 2 H), 3.70 (s, 3 H), 7.02 (t, J = 8.7 Hz, 2 H), 7.26 (dd, J = 5.4, 8.4 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 40.2, 52.1, 115.4 (d, $J^2 = 21.7$ Hz), 129.7 (d, $J^4 = 3.2$ Hz), 130.9 (d, $J^3 = 7.6$ Hz), 162.1 (d, $J^1 = 243.9$ Hz), 171.9; ¹⁹F (376 MHz, CDCl₃) δ -115.7.

Methyl 2-(4-methoxyphenyl)acetate (Table SI-2, entry 5). ¹H NMR (300 MHz, CDCl₃) δ 3.59 (s, 2 H), 3.71 (s, 3 H), 3.81 (s, 3 H), 6.89 (d, *J* = 8.7 Hz, 2 H), 7.22 (d, *J* = 8.7 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 40.3, 52.0, 55.3, 114.0, 126.1, 130.3, 158.7, 172.4.

Ethyl 3-phenylpropanoate (Table SI-3, entry 2). ¹H NMR (300 MHz, CDCl₃) δ 1.27 (t, J = 7.2 Hz, 3 H), 2.65 (t, J = 7.5 Hz, 2 H), 2.99 (t, J = 7.5 Hz, 2 H), 4.16 (q, J = 7.2 Hz, 2 H), 7.19-7.26 (m, 3 H), 7.28-7.36 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 31.0, 36.0, 60.4, 126.2, 128.3, 128.5, 140.6, 172.9.

Isopropyl 3-phenylpropanoate (Table SI-3, entry 3). ¹H NMR (300 MHz, CDCl₃) δ 1.24 (d, *J* = 6.3 Hz, 6 H), 2.63 (t, *J* = 7.8 Hz, 2 H), 2.99 (t, *J* = 7.5 Hz, 2 H), 4.99-5.11 (m, 1 H), 7.19-7.27 (m, 3 H), 7.28-7.36 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 21.8, 31.1, 36.3, 67.8, 126.2, 128.4, 128.5, 140.6, 172.5.

tert-Butyl 3-phenylpropanoate (Table SI-3, entry 4). ¹H NMR (300 MHz, CDCl₃) δ 1.46 (s, 9 H), 2.58 (t, *J* = 7.5 Hz, 2 H), 2.95 (t, *J* = 7.5 Hz, 2 H), 7.19-7.26 (m, 3 H), 7.28-7.36 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 28.1, 31.2, 37.1, 80.4, 126.1, 128.4, 128.4, 140.8, 172.3.

2-(4-(Trifluoromethyl)phenyl)ethanol (Table SI-2, entry 1). ¹H NMR (300 MHz, CDCl₃) δ 1.51 (br, 1 H), 2.95 (t, *J* = 6.6 Hz, 2 H), 3.92 (t, *J* = 6.6 Hz, 2 H), 7.37 (d, *J* = 8.1 Hz, 2 H), 7.59 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 38.9, 63.2, 122.5, 125.5 (q, *J*³ = 3.8 Hz), 129.3 (q, *J*² = 32.5 Hz), 129.4, 142.8; ¹⁹F (376 MHz, CDCl₃) δ -62.4.

2-(4-Chlorophenyl)ethanol (Table SI-2, entry 2). ¹H NMR (300 MHz, CDCl₃) δ 1.48 (br, 1 H), 2.86 (t, *J* = 6.6 Hz, 2 H), 3.87 (t, *J* = 6.6 Hz, 2 H), 7.19 (d, *J* = 8.4 Hz, 2 H), 7.31 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 38.5, 63.5, 128.7, 130.4, 132.3, 137.0.

2-(4-Fluorophenyl)ethanol (Table SI-2, entry 3). ¹H NMR (300 MHz, CDCl₃) δ 1.40 (br, 1 H), 2.77 (t, J = 6.6 Hz, 2 H), 3.77 (t, J = 6.6 Hz, 2 H), 6.93 (t, J = 8.7 Hz, 2 H), 7.12 (dd, J = 5.7, 8.7 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 38.3, 63.5, 115.4 (d, $J^2 = 21.2$ Hz), 130.4 (d, $J^3 = 7.7$ Hz), 134.2 (d, $J^4 = 3.2$ Hz), 161.7 (d, $J^I = 242.8$ Hz); ¹⁹F (376 MHz, CDCl₃) δ - 116.8.

2-(4-Methoxyphenyl)ethanol (Table SI-2, entry 5). ¹H NMR (300 MHz, CDCl₃) δ 1.55 (br, 1 H), 2.84 (t, *J* = 6.6 Hz, 2 H), 3.82 (s, 3 H), 3.85 (t, *J* = 6.6 Hz, 2 H), 6.88 (d, *J* = 8.7 Hz, 2 H), 7.17 (d, *J* = 8.7 Hz, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 38.3, 55.3, 63.8, 114.1, 130.0, 130.4, 158.3.

Radical Clock Experiments

General Procedure. An oven-dried vial containing a stir bar was placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Samarium(II) iodide (THF solution, typically 0.20-0.80 mmol, 2.0-8.0 equiv, 0.10 M) was added followed by Et₃N (0.33 mL, 24 equiv) and H₂O (0.043 mL, 24 equiv) with vigorous stirring, which resulted in the formation of a characteristic dark brown color of the SmI₂-Et₃N-H₂O complex. A solution of ester substrate (0.10 mmol, 1.0 equiv, stock solution in THF, 1.0 mL) was added and the reaction mixture was stirred for the indicated time. The excess of Sm(II) was oxidized by bubbling air through the reaction mixture, and the reaction mixture was diluted with CH₂Cl₂ (30 mL) and HCl (1 N, 30 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 30 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion and yield using internal standard and comparison with authentic samples. In all other cases, the Sm(II) reagent was preformed by adding the specified additive to the SmI₂ solution prepared as described above, and stirring until the color characteristic to the particular Sm(II) complex had appeared (SmI₂-H₂O: burgundy red; SmI₂-MeOH: dark brown; SmI₂–HMPA: purple; SmI₂–LiCl: green; SmI₂–Et₃N: dark blue).

Table SI-4. Summary of the Radical Clock Experiments using SmI_2 – Et_3N – H_2O and SmI_2 – H_2O Complexes in the Reductive Opening of **3**.

	CO ₂ Me	. .					Гон	
<	4	Sml ₂ -	-Et ₃ N–H ₂ O		∽⊳			
	Ph	TI	HF, RT				Ph	
	3			4, R = 5, R =	CO ₂ Me CH ₂ OH	6 , no	t detecte	d
				0,10	0112011			
entry	SmI ₂	Et ₃ N	H ₂ O	time ^a	conv. ^b	4 ^b	5 ^b	yield ^c
	(equiv)	(equiv)	(equiv)	(h)	(%)	(%)	(%)	(%)
1	4	24	24	1 min	80	75	5	80
2	8	48	48	2 h	>98	<2	98	98
3	2	-	415	1 min	1.7	1.7	-	1.7
4	4	-	833	15 min	4.1	4.1	-	4.1
5	4	-	200	5 min	11	11	-	11
6	8	-	200	2 h	53	53	-	53

All reactions carried out using standard Schlenk techniques. ^{*a*}Quenched with air after the indicated time. ^{*b*}Determined by ¹H NMR and/or GC-MS of crude reaction mixtures and comparison with authentic samples. ^{*c*}Combined yield of **4** and **5**. Conversion = (100-SM). In all entries **6** was not detected (<2.0%).

Table SI-5. Summary of the Radical Clock Experiments using Sm(II) Complexes with Different Redox Potentials in the Reductive Opening of **3**.

All reactions carried out using standard Schlenk techniques. ^{*a*}Quenched with air after the indicated time. ^{*b*}Determined by ¹H NMR and/or GC-MS of crude reaction mixtures and comparison with authentic samples. ^{*c*}Combined yield of **4** and **5**. ^{*d*}66:34 ratio of ester to acid. In all entries, >85% recovery of the SM. In all entries, **6** was not detected (<2.0%).

 Table SI-6.
 Summary of the Radical Clock Experiments using Sm(II) Complexes in the Reductive Opening of 3-SI.

Г

	< co	₂ Me Sml ₂ –add	litive	Me	~_	\langle	-он	
	3-SI	THF, R	т	4-SI , R = 5-SI , R =	CO ₂ Me CH ₂ OH	6-SI		
entry	SmI ₂ (equiv)	additive	(equiv)	time ^a (h)	conv. ^b (%)	4-SI ^b (%)	5-SI ^b (%)	6-SI ^b (%)
1	2	H ₂ O/morpholine	24/24	2 h	62.8	34.2	26.6	2.0
2	8	H ₂ O/morpholine	48/48	2 h	>98	<2	93.6	6.4
3	8	MeOH	980	2 h	<2	-	-	<2
4	8	H ₂ O	200	2 h	<2	-	-	<2
5	8	H_2O	800	2 h	<2	-	-	<2

All reactions carried out using standard Schlenk techniques. ^{*a*}Quenched with air after the indicated time. ^{*b*}Determined by GC-MS analysis of crude reaction mixtures and comparison with authentic samples. Morpholine was used a Brønsted base to facilitate analysis of the crude reaction mixtures. Similar results were obtained with Et_3N . Agilent 7890A GC System and Agilent 5975C inert XL EI/CI MSD, Agilent HP-5MS column (19091S-433) (length 30 m, internal diameter 0.25 mm, film 0.25 μ m), helium as the carrier gas at a flow rate of 1 mL/min, initial oven temperature of 40 °C. 15 °C/min ramp, after 40 °C hold for 3 min to 300 °C, then hold at 300 °C for 5 min: retention time: **3-SI**, 3.93 min; **4-SI**, 3.55 min; **5-SI**, 3.15 min; **6-SI**, 3.30 min.

 Table SI-7.
 Summary of the Radical Clock Experiments using Sm(II) Complexes in the Reductive Cyclization of 7-SI.

All reactions carried out using standard Schlenk techniques. ^{*a*}Quenched with air after the indicated time. ^{*b*}Determined by ¹H NMR and/or GC-MS of crude reaction mixtures and comparison with authentic samples. ^{*c*}Combined yield of **8-SI** and **9-SI**. In all entries, **10-SI** was not detected (<2.0%). Entry 2, **9-SI**, dr = 41:33:15:11; entry 3, **9-SI**, dr = 39:32:18:11. **10-SI** was not detected in the reaction of **7-SI** with limiting Sm(II) (SmI₂-Et₃N-H₂O, 2-24-24 equiv). Standard procedure for reductions using SmI₂-amine-H₂O was followed.

Rac-(1*R*,2*R*)-**Methyl 2-phenylcyclopropanecarboxylate** (**3**, **Tables SI-4**, **SI-5**). ¹H NMR (500 MHz, CDCl₃) δ 1.22-1.27 (m, 1 H), 1.51-1.55 (m, 1 H), 1.81-1.85 (m, 1 H), 2.43-2.48 (m, 1 H), 3.64 (s, 3 H), 7.02 (d, *J* = 7.5 Hz, 2 H), 7.12 (t, *J* = 7.5 Hz, 1 H), 7.20 (t, *J* = 7.5 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 17.0, 24.0, 26.3, 51.9, 126.2, 126.5, 128.5, 140.0, 173.9.

Methyl 4-phenylbutanoate (4, Tables SI-4, SI-5). ¹H NMR (300 MHz, CDCl₃) δ 1.96-2.07 (m, 2 H), 2.38 (t, *J* = 7.5 Hz, 2 H), 2.70 (t, *J* = 7.2 Hz, 2 H), 3.71 (s, 3 H), 7.19-7.27 (m, 3 H), 7.30-7.37 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 26.6, 33.4, 35.2, 51.5, 126.0, 128.4, 128.5, 141.4, 173.9.

4-Phenylbutan-1-ol (5, Tables SI-4, SI-5). ¹H NMR (300 MHz, CDCl₃) δ 1.44-1.67 (m, 4 H), 1.71 (br, 1 H), 2.56 (t, *J* = 7.8 Hz, 2 H), 3.55 (t, *J* = 6.6 Hz, 2 H), 7.06-7.13 (m, 3 H), 7.16-7.23 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 27.6, 32.3, 35.7, 62.8, 125.8, 128.3, 128.5, 142.4.

Rac-((1*R***,2***R***)-2-Phenylcyclopropyl)methanol (6, Tables SI-4, SI-5). ¹H NMR (500 MHz, CDCl₃) \delta 0.82-0.91 (m, 2 H), 1.34-1.41 (m, 1 H), 1.65 (br, 1 H), 1.72-1.76 (m, 1 H), 3.49-3.57 (m, 2 H), 6.99 (dd,** *J* **= 1.5, 7.5 Hz, 2 H), 7.07 (tt,** *J* **= 1.5, 7.0 Hz, 1 H), 7.18 (t,** *J* **= 7.5 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) \delta 13.9, 21.3, 25.3, 66.6, 125.7, 125.9, 128.4, 142.5.**

Rac-(*1R*,*2R*)-2-Phenylcyclopropanecarboxylic acid (Tables SI-4, SI-5). ¹H NMR (300 MHz, CDCl₃) δ 1.39-1.48 (m, 1 H), 1.66-1.73 (m, 1 H), 1.90-1.97 (m, 1 H), 2.59-2.67 (m, 1 H), 7.09-7.16 (m, 2 H), 7.21-7.35 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 17.6, 24.1, 27.2, 126.3, 126.8, 128.6, 139.5, 180.2.

Methyl 2-benzylhex-5-enoate (7-SI, Table SI-7). ¹H NMR (300 MHz, CDCl₃) δ 1.56-1.68 (m, 1 H), 1.72-1.86 (m, 1 H), 1.98-2.19 (m, 2 H), 2.67-2.82 (m, 2 H), 2.89-3.03 (m, 1 H), 3.62 (s, 3 H), 4.96-5.07 (m, 2 H), 5.71-5.84 (m, 1 H), 7.14-7.33 (m, 5 H); ¹³C NMR (75 MHz, CDCl₃) δ 31.2, 31.5, 38.5, 47.0, 51.4, 115.2, 126.4, 128.4, 128.9, 137.7, 139.3, 175.9.

2-Benzylhex-5-en-1-ol (8-SI, Table SI-7). ¹H NMR (300 MHz, CDCl₃) δ 1.25-1.48 (m, 2 H), 1.62 (br, 1 H), 1.67-1.80 (m, 1 H), 1.94-2.12 (m, 2 H), 2.56 (d, *J* = 7.2 Hz, 2 H), 3.36-3.48 (m, 2 H), 4.83-4.97 (m, 2 H), 5.62-5.77 (m, 1 H), 7.07-7.14 (m, 3 H), 7.16-7.23 (m, 2 H); ¹³C NMR (75 MHz, CDCl₃) δ 29.9, 31.2, 37.6, 41.9, 64.6, 114.7, 126.0, 128.4, 129.2, 138.8, 140.7.

2-Benzyl-5-methylcyclopentanol (**9-SI, Table SI-7**). ¹H NMR (400 MHz, CDCl₃) δ (ca. 65:35 mixture of diastereoisomers) 0.90 (d, J = 6.8 Hz, 3 H, minor), 0.92 (d, J = 6.8 Hz, 3 H, major), 0.98-1.31 (m, 3 H), 1.58-2.03 (m, 3 H), 2.04-2.17 (m, 1 H), 2.48 (dd, J = 8.4, 13.6 Hz, 1 H, major), 2.55 (dd, J = 8.0, 13.6 Hz, 1 H, minor), 2.70 (dd, J = 7.2, 13.6 Hz, 1 H, major), 2.81 (dd, J = 7.2, 13.6 Hz, 1 H, minor), 3.61 (dd, J = 2.8, 5.2 Hz, 1 H, minor), 3.71 (dd, J = 4.8, 5.6 Hz, 1 H, major), 7.09-7.24 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ (ca. 65:35 mixture of diastereoisomers) 13.9, 19.8, 29.0, 29.1, 30.6, 31.0, 35.4, 37.5, 40.6, 42.4, 45.1, 48.6, 80.0, 80.9, 125.7, 125.9, 128.4, 128.4, 128.8, 128.9, 141.2, 141.9.

Scheme SI-1. Reductive Opening of Cyclopropyl Carbinol 6 using SmI_2 -Et₃N-H₂O - Control Experiment to C-C Bond Cleavage.

According to the general procedure, an oven-dried vial containing a stir bar was charged with samarium(II) iodide (THF solution, 0.40 mmol, 8.0 equiv, 0.085 M), Et₃N (0.50 mL, 72 equiv) and H₂O (0.065 mL, 72 equiv) with vigorous stirring, which resulted in the formation of a characteristic dark brown color of the SmI₂–Et₃N–H₂O complex. A solution of ((1*R*,2*R*)-2-phenylcyclopropyl)methanol (0.05 mmol, 1.0 equiv, stock solution in THF, 1.0 mL) was added and the reaction mixture was stirred for 18 h at room temperature. After the standard work-up as described above, the sample was analyzed by ¹H NMR to obtain conversion and yield using internal standard: conversion <5%; yield of recovered starting material: 96%, indicating that the reductive opening of phenyl-activated cyclopropyl carbinols with SmI₂–Et₃N–H₂O is not operative under these reaction conditions. We thank Prof. Chaozhong Li (Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences) for suggesting this experiment.

Additional Discussion. To determine the rate of the reduction of acyl-type radicals with Sm(II), three types of radical probes with gradually increasing sensitivity¹⁵ were selected and subjected to the standard reaction conditions with SmI_2 -amine- H_2O :

a) trans-cyclopropyl-phenyl containing radical clock **3** (Tables 4-SI and 5-SI) ($k_{\text{frag}} = \text{ca. 3 x}$ 10¹¹ s⁻¹ at 25 °C).¹⁵

b) cyclopropyl-containing radical clock **3-SI** (Table 6-SI) ($k_{\text{frag}} = \text{ca. } 9.4 \times 10^7 \text{ s}^{-1} \text{ at } 25 \text{ °C}$).¹⁵ c) substituted 5-exo-hexenyl radical clock **7-SI** (Table 7-SI) ($k_{5-\text{exo}} = \text{ca. } 2.3 \times 10^5 \text{ s}^{-1} \text{ at } 25 \text{ °C}$).¹⁵ The relative product distribution obtained in these experiments allows to approximate a bimolecular rate constant for the reduction of acyl-type radicals using Sm(II).¹⁵⁻¹⁸ The rate constant k_{SmI2} was estimated as follows: $k_{\text{SmI2}} = (\text{red/cycl}) \times k_{5-\text{exo}} \times [\text{SmI}_2]^{-1}$.¹⁵⁻¹⁸ In all cases the concentration of SmI₂ was corrected for changing the reaction volumes as indicated in Tables 4-SI to 7-SI. The product distribution was quantified by ¹H NMR and GC-MS analysis of the crude reaction mixtures and comparison with authentic samples. The approximated k_{SmI2} rate constant as estimated from the results obtained in Table 6-SI using

cyclopropyl-containing radical clock **3-SI** indicates that the reduction of acyl-type radicals under these reaction conditions is comparable to a unimolecular reaction with *k* of about 10^8 s⁻¹. The approximated k_{Sm12} rate constant as estimated from the results obtained in Table 7-SI using the substituted analogue of 5-exo-cyclohexenyl radical clock **7-SI** indicates that the reduction of acyl-type radicals is comparable to a unimolecular reaction with *k* of about 10^7 s⁻¹. Overall, these results demonstrate that the reduction of acyl-type radicals with SmI₂– amine–H₂O is remarkably fast (previously, the rate constant of 7 x 10^6 M⁻¹s⁻¹ was determined for the reduction of primary alkyl iodides with SmI₂–HMPA complexes, which is a benchmark reaction in this field).¹⁶⁻¹⁸ Equally importantly, these results indicate that acyltype radicals generated using SmI₂–amine–H₂O can participate in a wide range of crosscoupling reactions with unactivated radical acceptors.¹⁹ Studies in this direction are a subject of current research in our laboratory and these results will be reported shortly.

Szostak, Spain and Procter

Epimerization Studies

Scheme SI-2. Epimerization Study of Enantioenriched Ester **7** under SmI₂–Et₃N–H₂O Reaction Conditions.

$$\begin{array}{c} Me \\ Ph \\ \hline CO_2Me \\ \textbf{7}, >99.5\% \text{ ee} \end{array} \xrightarrow{\text{Sml}_2-\text{Et}_3N-\text{H}_2O} \\ \hline THF, RT \\ \textbf{8}, 99\%, 98.4\% \text{ ee} \end{array}$$

According to the general procedure using the preformed Sm(II) complex, (*R*)-methyl 2phenylpropanoate (0.10 mmol, >99.5% ee), was reacted with samarium(II) iodide (0.8 mmol), water (4.8 mmol) and triethylamine (4.8 mmol) for 2 h at rt to afford the title compound in 99% yield. ¹H NMR (500 MHz, CDCl₃) δ 1.21 (d, *J* = 7.0 Hz, 3H), 1.33 (br, 1H), 2.84-2.91 (m, 1H), 3.63 (d, *J* = 7.0 Hz, 2H), 7.14-7.18 (m, 3H), 7.24-7.28 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 17.6, 42.5, 68.7, 126.7, 127.5, 128.7, 143.7. HPLC analysis (chiralpak IA 28C, hexanes/*i*-PrOH 99/1, 1.0 mL/min, 220 nm) indicated 98.4% ee: t_R (minor) = 18.42 minutes, t_R (major) = 19.48 minutes. In addition, the reaction of (*R*)-**7** (0.1 mmol, >99.5% ee) was stopped at half-conversion (conditions: SmI₂ (0.6 mmol), water (3.6 mmol) and triethylamine (3.6 mmol), preformed Sm(II) complex, 5 min, room temperature) to give the title product in 44% yield (44% conv.). HPLC analysis chiralpak IA 28C, hexanes/*i*-PrOH 99/1, 1.0 mL/min, 220 nm) indicated 98.9% ee: t_R (minor) = 17.75 minutes, t_R (major) = 19.02 minutes. Taken together, these results indicate that enolization does not occur to an appreciable extent under these reaction conditions, which is consistent with fast first electron transfer.

H₂¹⁸O Incorporation Studies

<u>*General Procedure.*</u> According to the general procedure using the preformed Sm(II) complex, methyl 3-phenylpropanoate (0.10 mmol), was reacted with samarium(II) iodide (0.6 mmol), $H_2^{18}O$ (4.8 mmol) and triethylamine (4.8 mmol) for 18 h at rt to afford the title compound in 99% yield, <2.0% of ¹⁸O incorporation (determined by HRMS analysis) (Table SI-8, entry 1). In addition, the reaction of a hindered isopropyl 3-phenylpropanoate (Table SI-8, entry 2) and electronically-activated phenyl 3-phenylpropanoate (Table SI-8, entry 3) under the reaction conditions described above afforded the title compound in 92% and 98% yield, respectively, with <2.0% of ¹⁸O incorporation (determined by HRMS analysis). These results are consistent with direct electron transfer to the ester carbonyl groups even in the case of sterically-hindered (Table SI-8, entry 2) and electronically-activated substrates (Table SI-8, entry 3). See also Scheme SI-3 (Page SI-21) for experiment using the SmI₂–NaOH–H₂¹⁸O system.

Table SI-8. Determination of $H_2^{18}O$ Incorporation in the Reduction of Esters of Hydrocinnamic Acid using SmI₂-Et₃N-H₂¹⁸O.

			CO ₂ R	Sml ₂ –Et ₃ N–H	H₂ ¹⁸ O ►		∕ОН	
entry	R	SmI ₂ (equiv)	Et ₃ N (equiv)	H ₂ O (equiv)	time ^a (h)	conv. ^b (%)	yield ^b (%)	$^{18}O^{c}$ (%)
1	Me	6	48	48	18 h	>98	99	<2
2	<i>i</i> -Pr	6	48	48	18 h	>98	92	<2
3	Ph	6	48	48	18 h	>98	98	<2

All reactions carried out using standard Schlenk techniques. ^aQuenched with air after the indicated time. ^bDetermined by ¹H NMR. ^cDetermined by HRMS.

Reagent Stoichiometry Studies

<u>General Procedure.</u> An oven-dried vial containing a stir bar was placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Samarium(II) iodide (THF solution, 0.45 mmol, 4.5 equiv, 0.10 M) was added followed by Et_3N (4-24 equiv) and H_2O (4-24 equiv) with vigorous stirring, which resulted in the formation of a characteristic dark brown color of the SmI₂– Et_3N-H_2O complex. A solution of ester substrate (0.10 mmol, 1.0 equiv, stock solution in THF, 1.0 mL) was added and the reaction mixture was stirred for the indicated time. The excess of Sm(II) was oxidized by bubbling air through the reaction mixture, a small aliquot (typically, 1.0 mL) was removed from the reaction mixture, diluted with diethyl ether (2 mL) and HCl (0.1 N, 0.25 mL) and analyzed by GC-MS to obtain product distribution. All data represent values corrected for response factors obtained by analyzing known quantities of the starting materials/products. The required amounts are: H_2O (3 equiv); Et_3N (2 equiv); SmI_2 (1 equiv).

Table SI-9. Determination of the Reagent Stoichiometry of Required for the Reduction of Esters of using SmI_2 -Et₃N-H₂O.^{*a*}

	CO ₂ Me THF	F, RT	∕∕он
entry	H ₂ O (equiv)	Et ₃ N (equiv)	$\begin{array}{c} \text{conv.} \\ \left(\%\right)^{b} \end{array}$
1	4	4	21.1
2	8	4	17.1
3	4	8	10.0
4	8	8	52.3
5	12	8	82.7
6	8	12	52.8
7	12	12	86.4
8	24	24	>98
9	4	12	7.4
10	12	4	17.1
11	-	12	<2
12	12	-	<2

^{*a*}All reactions carried out using standard Schlenk techniques. Conditions: SmI₂ (4.5 equiv), rt, 24 h. Quenched with air after the indicated time. ^{*b*}Determined by GC-MS. Agilent HP-5MS (19091S-433) (length 30 m, internal diameter 0.25 mm, film 0.25 μ m), He as the carrier gas, flow rate 1 mL/min, initial oven temp. 50 °C, 25 °C/min ramp, after 50 °C hold for 3 min to 300 °C, then hold at 300 °C for 5 min: retention time: **1**: 9.11 min; **2**: 8.87.

Reduction of Esters using SmI₂-NaOH

<u>General Procedure.</u> An oven-dried vial containing a stir bar was charged with sodium hydroxide (pellets, ground in a mortar immediately prior to use), placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Samarium(II) iodide (THF solution, typically 0.60 mmol, 6.0 equiv, 0.080 M) was added followed by ester (0.10 mmol, 1.0 equiv, stock solution in THF, 1.0 mL) and H₂O (typically, 24-48 equiv) with vigorous stirring, which resulted in the formation of a characteristic dark green color of the SmI₂–NaOH–H₂O complex. The excess of Sm(II) was oxidized by bubbling air through the reaction mixture, and the reaction mixture was diluted with CH₂Cl₂ (30 mL) and HCl (1 N, 30 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 30 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The sample was analyzed by ¹H NMR (CDCl₃, 500 MHz) and GC-MS to obtain conversion and yield using internal standard and comparison with authentic samples.

	\land	CO ₂	Me Sml ₂ –	NaOH–H ₂ O	\wedge		
			T	HF, RT		Υ OH	
ontru	SmI_2	NaOH	H ₂ O	time ^b	conv. ^c	acid ^c	yield ^c
enti y	(equiv)	(equiv)	(equiv)	ume	(%)	(%)	(%)
1	6	12	167^{d}	2 h	40	<5	35
2	6	24	333^{d}	60 s^e	31	51	31
3	6	72	1000^{d}	$2 \min^{e,f}$	8	34	7
4	6	12	24	2 h	95	<5	92
5	6	12	48	2 h	87	<5	81
6	6	12	12	2 h	84	<5 ^g	81
7	8	12	24	2 h	84	<5	79
8	6	12	24	30 s	5.0	<5	5
9	6	12	0	2 h	44^h	25	33
10	6	12	48	18 h	>95	<5	90

Table SI-10. Reduction of Unactivated Esters using the SmI_2 -NaOH-H₂O Complex (Modified Kamochi and Kudo Conditions²⁰⁻²²).^{*a*}

^{*a*}Conditions: entries 1-3: SmI₂ was added to ester, followed by NaOH_(aq); entries 4-10: SmI₂ was added to NaOH_(solid), followed by ester and H₂O. ^{*b*}Quenched with air after the indicated time. ^{*c*}Determined by ¹H NMR; conversion is based on reduced starting material and does not include the hydrolysis product. ^{*d*}4 N NaOH_(aq) was used. ^{*e*}Oxidation of the Sm(II) reagent was observed after the indicated time. ^{*f*}Heterogenous mixture formed immediately upon addition of NaOH. ^{*g*}Acid formed in 4.5%. In other entries, when <5, hydrolysis to acid was not observed. ^{*h*}Homo-coupling product formed in 23% yield.

To determine whether ester hydrolysis contributes to the mechanism of ester reduction using SmI_2 -NaOH-H₂O under these reaction conditions, the reduction was carried out in the presence of $H_2^{18}O$ (Scheme SI-3, see also Table SI-8, page SI-18).

Scheme SI-3. Determination of $H_2^{18}O$ Incorporation in the Reduction of Esters of Hydrocinnamic Acid using SmI₂-NaOH-H₂¹⁸O.

<u>*General Procedure.*</u> According to the general procedure using for the reduction of esters using SmI₂–NaOH–H₂O, methyl 3-phenylpropanoate (0.10 mmol), was reacted with samarium(II) iodide (0.6 mmol), sodium hydroxide (1.2 mmol) and H₂¹⁸O (4.8 mmol) for 18 h at rt to afford the title compound in 89% yield, >95% conversion, <2.0% of ¹⁸O incorporation (determined by HRMS analysis). This result demonstrates that the reduction of esters under these reaction conditions occurs via direct electron transfer to the ester carbonyl groups, which is consistent with the proposed role of amine/H₂O in the general reduction mechanism as described in the manuscript.

Kinetic Experiments

<u>*General Procedure.*</u> An oven-dried vial containing a stir bar was placed under a positive pressure of argon, and subjected to three evacuation/backfilling cycles under high vacuum. Samarium(II) iodide (THF solution, 0.10 M) was added followed by Et₃N and H₂O with vigorous stirring, which resulted in the formation of a characteristic dark brown color of the SmI₂–Et₃N–H₂O complex. A solution of ester substrate (stock solution in THF) was added and the reaction mixture was vigorously stirred under argon. Small aliquots (typically, 0.25 mL) were removed from the reaction mixture at set time intervals, immediately quenched by bubbling air through the reaction mixture, diluted with diethyl ether (2.0 mL) and HCl (0.1 N, 0.25 mL), and analyzed by GC and/or GC-MS to obtain yield and product distribution using internal standard and comparison with authentic samples. Agilent HP-5MS (19091S-433) (length 30 m, internal diameter 0.25 mm, film 0.25 μ m), He as the carrier gas, flow rate 1 mL/min, initial oven temp. 90 °C, 10 °C/min ramp, after 90 °C hold for 3 min to 220 °C, then hold at 220 °C for 5 min: Product: 11.50 min, starting material: 12.55 min, standard: 12.45 min.

Ester Order. Conditions: SmI_2 (6.0 equiv), Et_3N (12.0 equiv), H_2O (18.0 equiv), Ester (0.05-0.15 equiv).

Figure SI-3. Determination of Ester Rate Order in the Reduction of **1** using SmI₂–Amine–H₂O.

Samarium(II) Iodide Order. Conditions: SmI₂ (5.0-8.0 equiv), Et₃N (12.0 equiv), H₂O (18.0 equiv), Ester (1.0 equiv).

Amine Rate Order. Conditions: SmI_2 (6.0 equiv), amine (6.0-96.0 equiv), H_2O (18.0 equiv), Ester (1.0 equiv).

Figure SI-5. Determination of Amine Rate Order in the Reduction of 1 using SmI_2 -Amine- H_2O .

Water Rate Order. Conditions: SmI_2 (6.0 equiv), amine (12.0 equiv), H_2O (6.0-96.0 equiv), Ester (1.0 equiv).

Figure SI-6. Determination of H_2O Rate Order in the Reduction of 1 using SmI_2 -Amine- H_2O .

Figure SI-7. Determination of H_2O Rate Order in the Reduction of 1 using SmI_2 -Amine- H_2O .

 pK_{BH+} of Amines. Conditions: SmI₂ (6.0 equiv), amine (12.0 equiv), H₂O (18.0 equiv), Ester (1.0 equiv).

Figure SI-8. Plot of Initial Rates vs. pK_{BH+} in the Reduction of 1 and 1-Chlorodecane²³ using SmI₂-Amine-H₂O.

References

- 1. B. S. Bodnar and P. F. Vogt, J. Org. Chem., 2009, 74, 2598.
- C. A. Mosley, S. J. Myers, E. E. Murray, R. Santangelo, Y. A. Tahirovic, N. Kurtkaya, P. Mullasseril, H. Yuan, P. Lyuboslavsky, P. Le, L. J. Wilson, M. Yepes, R. Dingledine, S. F. Traynelis and D. C. Liotta, *Bioorg. Med. Chem.*, 2009, *17*, 6463.
- 3. B. D. Hosangadi and R. H. Dave, Tetrahedron Lett., 1996, 37, 6375.
- 4. L. J. Goossen and A. Döhring, Synlett, 2004, 263.
- V. V. Rekha, M. V. Ramani, A. Ratnamala, V. Rupakalpana, G. V. Subbaraju, C. Satyanarayana, and C. S. Rao, *Org. Process Res. Dev.*, 2009, 13, 769.
- 6. J. Yamazaki, T. Watanabe and K. Tanaka, *Tetrahedron Asymmetry*, 2001, 12, 669.
- P. C. Bulman Page, M. J. McKenzie, S. M. Allin and D. R. Buckle, *Tetrahedron*, 2000, 56, 9683.
- S. Khatib, O. Nerya, R. Musa, S. Tamir, T. Peter and J. Vaya, J. Med. Chem., 2007, 50, 2676.
- S. W. Wright, D. L. Hageman, A. S. Wright and L. D. McClure, *Tetrahedron Lett.*, 1997, 38, 7345.
- 10. P. Girard, J. L. Namy and H. B. Kagan, J. Am. Chem. Soc., 1980, 102, 2693.
- 11. T. Imamoto and M. Ono, Chem. Lett., 1987, 501.
- 12. A. Dáhlen and G. Hilmersson, Eur. J. Inorg. Chem., 2004, 3020.
- 13. J. A. Teprovich, Jr., P. K. S. Antharjanam, E. Prasad, E. N. Pesciotta and R. A. Flowers, II, *Eur. J. Inorg. Chem.*, **2008**, 5015.
- 14. M. Szostak, M. Spain and D. J. Procter, J. Org. Chem., 2012, 77, 3049.
- 15. M. Newcomb, Tetrahedron, 1993, 49, 1151-1176.
- 16. E. Hasegawa and D. P. Curran, Tetrahedron Lett., 1993, 34, 1717-1720.
- 17. D. P. Curran, T. L. Fevig, C. P. Jasperse and M. J. Totleben, Synlett, 1992, 943-961.
- 18. G. A. Molander and C. Kenny, J. Am. Chem. Soc., 1989, 111, 8236-8246.
- 19. C. Chatgilialoglu and A. Studer, *Encyclopedia of Radicals in Chemistry, Biology and Materials*; Wiley-Blackwell: 2012.
- 20. Y. Kamochi and T. Kudo, Chem. Lett., 1991, 893.
- 21. Y. Kamochi and T. Kudo, Tetrahedron Lett., 1991, 32, 3511.
- 22. Y. Kamochi and T. Kudo, Bull. Chem. Soc. Jpn., 1992, 65, 3049.
- 23. A. Dáhlen and G. Hilmersson, J. Am. Chem. Soc., 2005, 127, 8340.

110 100 90 f1 (ppm)

180 170 160 150 140 130 120

210 200

190

70

80

60

50

40

30 20 10 0 -10

DAD1A.ch

17.0 17.5 18.0 18.5 19.0 19.5 20.0 Retention Time (m								
17.0 17.5 18.0 18.5 19.0 19.5 20.0 Retention Time (m	 							
	17.0	17.5	18.0	18.5	19.0	19.5	20.0	Retention Time (mir

No.	t _R	Peak Area (Y units/ms)	Area Percent	Height
1	18.420	45232.68	0.783	1942.88
2	19.487	5731476.07	99.217	260776.40

DAD1A.ch

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 Retention Time (mir

No.	t _R	Peak Area (Y units/ms)	Area Percent	Height
1	17.947	7914426.500	49.575	381518.344