Supplementary Material

Supplementary Methods

GeLC-MS/MS

Plasma samples from the 10 COPD and 10 control subjects in the discovery group were pooled for further analysis by mixing $50 \,\mu$ L of each individual's sample. The

final volume of the pooled sample was 500 μ L for each group. Each of the pooled COPD and control samples was diluted at a 1:2 ratio with Laemmli sample buffer (BioRad, Hercules, CA) containing 5% β -mercaptoethanol, heated for 10 minutes at 90°C and loaded onto a 10–14% polyacrylamide gel. Electrophoresis was performed using a mini Protean II system (BioRad) at 200 V for 45 minutes. Separation was confirmed by staining with SimplyBlue

Figure S1. Individual 1D SDS PAGE gel of 10 COPD (rows #1 to #10) and 10 control subjects (rows #11 to #20) who comprise the discovery group. Gels show plasma samples in each subject prior to pooling.

Sunnlementary Table S1

Supplementary fubic off.			
	Control (n = 10)	COPD (n = 10)	<i>p</i> -value
Age (yrs)	64 ± 2	63 ± 4	0.42
Smoking History (pack-yrs)	61 ± 11	57 ± 19	0.61
Smoking Cessation (yrs)	13 ± 4	7 ± 4	< 0.01
FEV ₁ (% pred)	94 ± 10	23 ± 9	< 0.01
FVC (% pred)	95 ± 10	57 ± 13	< 0.01
FEV ₁ /FVC (%)	75 ± 3	30 ± 8	< 0.01
Emphysema (%)	3 ± 1	31 ± 4	< 0.01
Height (cm)	173 ± 12	170 ± 10	0.55
Weight (kg)	101 ± 32	93 ± 30	0.56
BMI (kg/m ²)	34 ± 10	31 ± 7	0.53

SafeStain (Invitrogen). Each sample lane was sliced into 20 sections, and each section further cut into $\sim 1 \text{ mm}^3$ slices in preparation for tryptic digestion.

The desalted tryptic peptides were dried in a vacuum centrifuge and resolubilized in 30 μ L of 0.1% (vol/vol) trifluoroacetic acid. The tryptic peptide sample was loaded onto a 2 μ g capacity peptide trap (CapTrapTM; Michrom Bioresources, Auburn, CA), separated by a C18 capillary column (15 cm 75 μ m, Agilent) at 300 nL/min (delivered by an Agilent 1100 LC pump). A mobile-phase gradient was run using mobile phase A (1% acetonitrile/0.1% formic acid) and B (80% acetonitrile/0.1% formic acid) from 0 to 10 minutes with 0-15% B followed by 10-60 minutes with 15-60 % B and 60-65 minutes with 60-100% B.

Nanoelectrospray ionization (ESI) tandem MS was performed using a Brukers HCT Ultra ion trap mass spectrometer. ESI was delivered using a distal-coating spray Silica tip (ID 20 μ M, tip inner ID 10 μ M, New Objective) at a spray voltage of -1300 V. Using automatic switching between MS and MS/MS modes, MS/MS fragmentation was performed on the two most abundant ions on each spectrum using collision–induced dissociation with active exclusion (excluded after two spectra, and released after 2 min). The complete system was fully controlled by HyStar 3.1 software.

Mass spectra (MS) processing was performed using Brukers Biotools (Version 2.3.0.0) with search and quantitation toolbox options. The generated de-isotoped peak list was submitted to an in-house Mascot server 2.2 and searched against the Swiss-Prot database (version 56.6 of 16-Dec-2008, 405506 sequences). Mascot search parameters were set as follows: Homo sapiens (20413 sequences); enzyme, trypsin with maximum 1 missed cleavage; fixed modification, cysteine carbamidomethylation; variable modification, methionine oxidation; 0.50 Da mass tolerance for precursor peptide ions; and 0.6 Da for MS/MS fragment ions. All peptide matches were filtered using an ion score cutoff of 10.

Protein AC	Gene Name	Protein ID	Protein Name	Molecular Weight	MOWSE Score Ratio	Peptide COPD	s Ratio /CON	Sequence Coverage Ratio	emPA Ratio
P26927	MST1	HGFL	Hepatocyte growth factor-like	80268	1.81	1.90		1.93	2.16
P43121	MCAM	MUC18	Cell surface glycoprotein	71563	2.7	3		2.4	3.5
P11021	HSPA5	GRP78	78 kDa glucose-regulated protein	72288	2.76	2		2.3	2.25
P12259	F5	FA5	Coagulation factor V	251514	3.6	4		5	4
Q86VB7	CD163	C163A	Scavenger receptor cysteine-rich type 1 protein M130	125355	0.37	0.25		0.25	0.25
P13591	NCAM1	NCAM1	Neural cell adhesion molecule	94515	0.45	0.67		0.56	0.429
Q92954	PRG4	PRG4	Proteoglycan 4	150984	0.50	0.50		0.51	0.53
Q15113	PCLCE	PCOC1	Procollagen C-endopeptidase enhancer 1	47942	0.56	0.	5	0.59	0.583
P13796	LCP1	PLSL	Plastin-2 OS=Homo sapiens	70245	0.57	0.57		0.89	0.74
P00488	F13A1	F13A	Coagulation factor XIII A chain	83215	0.60	0.33		0.36	0.429
Q9UGM5	FETUB	FETUB	Fetuin-B	42028	0.65	0.31		0.54	0.589
Protein AC	Gene Name	Protein ID	Protein Name		Molecular Weight	MOWSE Score	Peptides	Sequence Coverage	emPA
Q96JM7	LMBL3	LMBL3	Lethal(3)malignant brain tumor-like	3 protein	88280	82	2	3	0.04
P49913	CAMP	CAMP	Cathelicidin antimicrobial peptide		19289	112	2	10	0.36
Q12860	CNTN1	CNTN1	Contactin-1		113249	112	3	4.3	0.03
P19320	VCAM1	VCAM1	Vascular cell adhesion protein 1		81224	120	3	4.5	0.08
Q9NPH3	IL1RAP	IL1AP	Interleukin-1 receptor accessory protein		65377	145	5	7	0.10
AF144011	DCD	DCD	Dermcidin		11277	70	1	10	0.08
P22891	PROZ	PROZ	Vitamin K-dependent protein Z		44715	197	6	16.5	0.46

JOURNAL OF CHRONIC ORSTRUCTIVE

PULMORIGHTS LINK()

The following two criteria were used to evaluate protein identification: one peptide with ion score \geq 35, two or more peptides with at least one ion score ≥ 20 (p < 0.05 threshold) and the cumulative Mascot scores \geq 35. For all proteins with cumulative MOWSE scores ≥ 20 and \leq 35, the theoretical and experimental gel molecular weights had to be consistent. When these criteria were used to search against a reversed decoy Swiss-Prot database, no false positive match was obtained (false discovery < 0.5%). For added stringency, proteins with scores above 40 were used for comparisons between samples. Protein quantitation using label-free methods was performed by averaging the results of: 1) the relative intensities of extracted ion chromatograms determined by Mascot Distiller; 2) the number of peptide fragments of a given protein isolated; 3) sequence coverage; and 4) the exponentially modified Protein Abundance Index (emPAI).

Western Blotting/ELISA of Individual Samples

Western blotting was used to assess expression of 3 proteins increased in the COPD pooled sample i.e., glucose regulated protein 78 (GRP 78), interleukin 1 receptor accessory protein (IL1AP), and macrophage stimulating protein 9 (MSTP9). Proteins ($30 \mu g$) were separated by 10–14% gradient SDS-PAGE and transferred to a nitrocellulose membrane in a semi-dry blotting chamber (Biorad, Hercules, CA). Blots were blocked with 5% milk in Tris-buffer saline solution (pH 7.6) containing 0.05% Tween-20 (TBS/T), and probed with the following rabbit anti-human antibodies (Santa Cruz Biotechnology, Santa Cruz, CA): GRP78, IL1AP and MSTP9. Primary antibodies were used at a concentration of 0.4 μ g/mL. Goat anti-human IgG HRP (Santa Cruz Biotechnology) was used as a loading control. Blots were incubated with primary antibody overnight at 4°C with gentle shaking and then incubated with a mouse, anti-rabbit HRP-conjugated secondary Ab (1:10000) (Biomeda Corp, Foster City, CA) for 1 hr at room temperature. Blots were exposed by a chemiluminescent method (Enhanced ECL Detection System, Amersham Biosciences) and scanned by FLA 5100 (FujiFilm, Edison, NJ). The density of protein bands was determined using NIH free-ware (ImageJ software).

Soluble CD163 (sCD163) was measured by ELISA using a commercially available 96-well plate immunoassay kit according to the manufacturers' directions (Macro163, Trillium Diagnostics, Groningen, Netherlands). A 1:500 dilution of plasma was assayed in each well in a final volume of 100 μ L in each well. Assays were run in duplicate. Optical density changes were read in a microtiter plate reader (BioRad, model 550).

www.copdjournal.com