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Supplementary Methods 
 
Tool tree and API 
 
Components in the tool tree can be written in Perl, or in other languages such as R, 
Python, Ruby or Java with a small file describing essential meta-data. The meta-data for 
each component is a simple hash, and provides several features at once: automatic 
command-line interface generation, automatic tab-completion, dynamically generated 
documentation, input/output information for use in the workflow/build system, and a 
resource requirements specification for use in job scheduling on a compute cluster. The 
documentation generation for GMS components includes command-line help, manual 
pages, and web-based documentation for components when published on the Genome 
Modeling Tools web site (http://gmt.genome.wustl.edu). Automatically generated 
documentation is less prone to become outdated, since a component's documented 
parameters come from the same structure that specifies functionality to the command-
line, and to the compiler/interpreter. Because the documents are composed of free-form 
sections that the author can add to each module, rich documentation is possible for 
complex tools. 
 
Subjects and instrument data tracking 
 
The GMS tracks input data used for analysis with two flexible metaphors “Subjects” and 
“Instrument Data” (Box 1). One unit of instrument data might be a lane of sequence 
data from an Illumina flow cell, a region of a 454 run, or the microarray results for a 
given sample. All instrument data are linked to a subject record for the DNA/RNA 
sample in question. The subject sample is linked to a subject individual from which the 
sample came. This, in turn, is linked to a subject taxonomic umbrella. Additional 
subjects can be defined for cohorts, with arbitrary control over addition and removal of 
members. With this simple system the GMS summarizes a subset of typical laboratory 
information management system (LIMS) information, exposing it to both manual and 
automated analysis. A command-line interface is available for manipulation of these 
data, and all data are discoverable in the web-based search engine as well. Box 2 
demonstrates the use of the bioinformatics command-line to manipulate subjects and 
instrument data, and to launch analysis. 
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Reference sequences, annotation, and external databases 
 
The model/build metaphor extends throughout the system, such that the human 
reference sequence is represented as a model in the system, with each build from the 
Genome Reference Consortium being represented as a GMS build of that model. 
External data sets from sources such as dbSNP, UCSC, and Ensembl are also tracked 
and versioned with the model/build process. When reference genomes or annotation 
data sets are updated, models of individual genomes know that their inputs are no 
longer current, and can be rebuilt to reflect the latest data from the community. 
Annotation of genome models for individual subjects is typically a product of crossing 
the annotation of the reference genome with the variants found in the individual. Tools 
such as VEP [54] (the Ensembl Variant Effect Predictor) are integrated into the GMS, as 
well as a custom annotator that has been tuned to perform a similar task on somatic 
variants from cancer tumors. For pipelines processing RNA-seq data, the annotation 
build supplied is also used during alignment to assist in aligning across introns. 
 
Cohorts 
 
For analysis of a cohort, there is often one model for each member, producing 
conclusions about each genome in isolation, with an additional model for the entire 
cohort. The processing profile for the cohort describes how to analyze the initial models 
and draw further conclusions about the cohort as a unit (Box 1). In many cases, the 
cohort-level analysis draws directly from primary data behind the original models, or 
their intermediate results. For instance, a pedigree-aware variant detector may go back 
to the original alignments from members of a family rather than merely converge variant 
calling results from the individuals (See S12 Fig). 
 
Subsystem - sequence alignment 
 
One primary GMS subsystem is the alignment API which supports a variety of aligners, 
including DNA aligners such as BWA [15], Bowtie [55], and Maq [56]. RNA aligners 
currently include TopHat [16], and STAR [57]. New aligners may be added using the 
Tools Tree described above. The GMS alignment API leverages a sequence 
transformation (SX) API, allowing the user to write components that trim, filter, or 
subsample incoming instrument data in any order or combination. Filters may operate 
on individual reads or on read pairs. Each alignment module produces an "alignment 
result" data product with a standard API, and converts alignments into BAM format. The 
resulting BAMs are position-sorted, and made complete with indexes, flagstats, and the 
results of ‘Samtools fixmate’ to ensure that they meet common expectations across the 
system. 
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Subsystem - variant detection 
 
Another subsystem exists in the GMS for handling variant detectors, where ‘variant’ 
refers to single nucleotide as well as larger structural and copy-number differences from 
the reference genome. The production of high-quality variant detection results often 
involves multiple tools and a series of in-silico validation steps to confirm findings when 
the tools are tuned for high sensitivity. 
 
The GMS variant detection API includes a simple domain-specific language for 
specifying how variant detection should occur. Each type of variant detection has a 
formula specifying tool versions and parameters, and boolean logic to indicate the 
pattern of union, intersection, and filtering to employ for final results. The system has a 
single operation type of "variant detection" which takes these descriptions, composes a 
workflow, produces intermediate results, and ensures that the final product is a single 
VCF file per variant type (Fig. 3). Each step in a variant detection workflow will attempt 
to re-use previously generated results where all up-stream processing is identical, and 
then only executes the tools unique to that workflow.  
 
Adding a new variant detector involves adding a module into the tool tree, described 
above under ‘tool tree and API’, and installing the detector in the standard way, as 
described under ‘Packaging’. The module in the tool tree will prepare data from the 
GMS to launch the detector, and will convert detector native output into the VCF form 
expected by the system. 
 
Modules used to filter variants can vary greatly in complexity. The most complex tools, 
such as the TIGRA-SV [58] filter for structural variants, can go so far as to extract reads 
from the alignment BAM, generate miniature assemblies, align with alternate aligners to 
validate the assemblies, and then use conclusions from those alignments to pass or fail 
a variant. The GMS supports creation and maintenance of arbitrarily complex filters. 
 
Experimental pipelines under development 
 
Additional pipelines, also developed at The Genome Institute but not yet fully supported 
in this release, can be used at the analyst’s discretion. These include de novo assembly, 
gene prediction, somatic validation, and small RNA detection. Pipelines are also under 
development for cross-cohort analyses of cancer and inherited diseases. 
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Software testing 
 
Each day, pipelines released with the GMS are systematically tested to verify that the 
output is consistent and that pipeline conclusions are insulated from stochastic effects. 
If, in a given pipeline step, results for the process are found to vary when using the 
same inputs, the responsible pipeline development team at The Genome Institute will 
be alerted that the pipeline in question is not deterministic. 
 
Hardware, software and personnel requirements 
 
To install the GMS a minimum of a single dedicated Ubuntu 12.04 workstation is 
required. All software used by the GMS built-in pipelines can be downloaded during 
installation as follows: 
 
git clone https://github.com/genome/gms.git 
 
The default installation configures the host as a single-node OpenLava cluster, that can 
be expanded arbitrarily. Future versions of the GMS will be compatible with SGE, a 
primary target for the next release. It is recommended to have at least 64 GB of RAM on 
some hosts in the cluster. Some steps request 4 CPUs per step, and will queue if the 
necessary number/specification of hosts are not available. The GMS as used at TGI 
takes advantage of a cluster of approximately 4,000 cores. While the GMS makes a 
major portion of analysis as simple as running a few commands, interpretation of the 
data typically requires bioinformatics expertise. Further, extending the system to use a 
cluster is best done in the hands of a researcher with Linux administration capabilities. 
 
Development Environment 
 
Because GMS software targets Ubuntu Linux 12.04, development in that environment, 
or on a VM in that environment, is recommended. 
 
The GMS has been developed using the agile methodology of software development. 
This approach involves close interactions with the users of the software, short 
development cycles, pair programming, frequent communication (both between 
developers and with the users), and test-driven development. There is a concerted 
effort to develop tools and pipelines as a collaboration between analysts, software 
engineers, and research computing specialists. This enables tools to progress rapidly to 
usability in our analysis pipelines and affords the ability for significant code and pipeline 
optimizations. 
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Continuous integration is a cornerstone of the GMS development process, and is 
facilitated by the structure of the software and the database. Each build tracks the exact 
“snapshot” of software used by the system, allowing for the system code to be updated 
while long-running builds are still in-progress on older versions of the code. The GMS 
can be readily used with the Jenkins Continuous Integration server (http://jenkins-
ci.org/) and should readily adapt to other similar products.  
 
Packaging 
 
The packaging strategy behind the GMS (described below) ensures that different 
versions of a tool can exist at the same time on the same machine. Often, the exact tool 
to use at a given point in the workflow is itself a parameter in the processing profile 
(Box 1). A researcher can attach to the GMS APT server (http://apt.genome.wustl.edu) 
and receive updates to packaged versions of the software used by GMS pipelines 
through standard methods on Ubuntu/Debian Linux distributions. 
 
Extendibility 
 
While pre-configured and optimized pipelines provide ease of use, their presence in no 
way limits the ability of the GMS to allow experimentation and extension. The GMS 
provides an application programming interface (API) to plug in new tools or implement 
them from scratch, to design and implement entire new pipelines/processing profiles, 
and to perform in silico experiments. For example, one could explore the effect of 
varying alignment parameters, base calibration, variant filters, localized assembly, etc. 
on the false positive and false negative rate of an entire analysis pipeline. These 
capabilities of the GMS help to solve the long-standing problem of supporting multiple 
computational environments, not just for a single tool or pipeline, but for nearly all tools 
and pipelines. 
 
Indirect subjects (Transcriptome, epigenome and microbiome models) 
 
The conclusions about the subject present in the data set produced by a given build 
typically relate directly to the genome sequence. Some models take inputs that are 
indirectly related to the genome. For example, cDNA reads from RNA, model the 
transcriptome as it relates to the genome. Similarly, bisulfite-treated reads might model 
the epigenome associated with the genome, and data collected from a microbiome 
sample might be considered the genome of the subject in only the broadest sense of 
the term. These all fall into the “genome” modeling system, as they still center around a 
genome as the underlying subject.  
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Workflow management 
 
The steps in a build process are managed by a workflow system that sits at the heart of 
the GMS. A graph of steps is generated, with edges representing dependencies 
between steps. As soon as all dependencies are available for a step, the workflow 
server submits a single job to the associated compute cluster, with resource 
requirements computed according to the inputs. As jobs start, run, and complete or fail, 
the GMS database is updated, allowing the analyst to monitor progress, examine logs, 
and inspect intermediate results. A web interface (S14 Fig) and command-line interface 
(S1 Fig-S2 Fig) are available for build tracking. The workflow system in the GMS has 
several useful characteristics including shortcutting to avoid reproducing data when it 
has been created previously, transparent nesting, and auto-parallelization when the 
number of outputs of a step varies. The workflow system distributes jobs to a compute 
cluster. For a standalone installation, a one-node cluster is installed that can be 
expanded later. The default installation uses OpenLava (http://www.openlava.org), an 
open-source fork of Platform LSF (http://www.platform.org). 
 
Database and disk management 
 
Data about models, processing profiles, builds and subjects are stored in a scalable 
relational database management system (RDBMS), built on PostgreSQL 9.2 
(http://www.postgresql.org). This data is accessible from an API with an implementation 
in both Perl (UR) (http://search.cpan.org/~sakoht/UR-0.30/lib/UR.pm) and Ruby 
(ActiveRecord) (http://rubygems.org/gems/activerecord). Detailed analysis results are 
represented in files as defined by the bioinformatics community and are stored in a 
fashion that is built to scale with computational tools. For example, Illumina DNA 
sequence reads are stored in BAM format, as are alignments. Variant detection results 
are stored in VCF files with block-gzip compression to allow querying without full 
decompression via Tabix [14]. The GMS includes a Disk Allocation System that stores 
data about each slice of disk used in the RDBMS, along with information about the 
owner of the data. The latter is typically a given build, or a "software result" that can be 
shared by builds (Box 1). Processes that require disk request an appropriate amount 
beforehand, and then re-size their allocation after processing completes to handle 
differences between expected and actual disk usage. The disk allocation system allows 
administrators to re-locate data as required without interrupting processing. 
 
Federation 
The GMS is “federation ready”, such that a researcher working on one machine could 
attach the GMS of another researcher, and perform analysis on these data, if 
permissions were granted on either side. The GMS uses globally unique identifiers for 
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all data, whether in a database table or on a file system. The data shared can be 
actively copied or virtually “mounted”, allowing for the transfer of data to occur in a 
fashion that does not consume resources prematurely. This is particularly useful for 
cases in which the final compute will occur later, at a more remote host. 
 
Workflow feature details 
 
Shortcutting 
Most significant data sets are generated only once in a given GMS model for a given set 
of inputs and parameters. Steps that repeat a deterministic process that have already 
been accomplished by another pipeline, or earlier in the same pipeline run, or during a 
previous build of the current model, will attach the previous results instead of 
reproducing them. Locking around this process prevents several pipelines from 
attempting to create the same set of data. Only one will actually perform the work, and 
all of the builds in question will share the result when it is ready. Each of these 
intermediate "software result" entities help the system operate like a large "make" 
(http://www.gnu.org/software/make/) system (Box 1). This system uses pessimistic 
concurrency (ISBN: 0470128720) intentionally (using locking instead of transaction 
repetition) to optimize use of CPU and disk. 
 
Auto-parallelization 
Some steps in a pipeline produce a varied number of outputs. A subsequent step can 
be configured to auto-parallelize on the basis of one of its inputs. This allows a workflow 
to be uncertain up to a given point about the exact graph that will be used, and to allow 
that graph to dynamically expand. The most basic example of this is at the beginning of 
pipelines that perform alignment. Though it is declared as one step in the pipeline, it 
automatically expands the graph based on the number of units of instrument data 
supplied. The subsequent step, performing alignment merging, and marking of 
duplicates, is configured to wait for all of its predecessors, and to handle a dynamic 
number of inputs. 
 
Nesting 
When a given step in a workflow creates its own workflow and initiates execution of it, 
that workflow recognizes itself as subordinate to the step that initiated it, and 
visualization of the parent workflow will include child steps. This allows components to 
compose in a scalable way. For example, basic pipelines that perform alignment and 
variant detection have a single step for variant detection. The variant detection 
component, however, creates a subordinate workflow for each tool that must be run. 
Further, the Pindel indel detection component internally is built to perform per-
chromosome parallelization. The Breakdancer structural variant detector benefits from 
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per-chromosome parallelization, plus an additional step to detect cross-chromosome 
translocations. Fig. 3 shows this in detail. 
 
An upcoming release will replace the existing Workflow system with a new, Petri-net 
based system. The current system scales well for analyses shown here, but fails at 
workflows with tens of thousands of tasks. The new system should also relieve the GMS 
of dependency on OpenLava, the open-source fork of Platform LSF, and allow for use 
on SGE, PBS, or other job scheduling systems commonly used on compute clusters. 
The existing GMS leverages the ability to “mount” data (virtually attach remote data as 
though it were local disk), but expects any given GMS installation to mount or “auto-
mount” all disk used within the particular instance. While this has scaled to 15 PB of 
data for TGI, it is suboptimal in many regards, and would hopefully be replaced with a 
system to do just-in-time data attachment. 
 
Stability and security of analysis results 
 
The GMS has many features that attempt to ensure the provenance of results as well as 
their stability over time. Prominent among these is the GMS’s use of immutability. Data 
that are necessary as input to other analysis processes are never deleted under normal 
operation of the GMS. They might be superseded by an updated version, but the old 
version will remain in case it is already being used by other downstream analyses. For 
example, GMS ‘builds’ are never deleted, even if they are ‘abandoned’, this is noted in 
the database, but the actual underlying data remains in place. You can delete a GMS 
model, but only if no builds exist for that model. Furthermore, files are 
compartmentalized as 'software results', even if an analysis is updated, the old results 
are not deleted or over-written. The GMS enables a reversible archiving process to 
manage disk usage but during normal functioning of the GMS nothing is ever deleted or 
destroyed other than temporary files during analysis runs that are not meant to be 
stored. 
 
As for user security, within a trusted group you can use the same GMS. Between 
groups where trust is less complete, you would use different GMSs, and allow them to 
interact. Because the GMS leans on standard Unix protocols and security, it is as 
secure as those systems, and can be secured by non-bioinformatics technical staff. 
 
GMS principles and their relation to internationals standards of software design 
 
The ISO quality standards (ISO/IEC 9126 and subsequent ISO/IEC 25010:2011) 
attempt to define software quality across six dimensions: functionality, reliability, 
usability, efficiency, maintainability, and portability. This system, like most production 
systems, has room for improvement in each of these areas, but we believe it makes a 
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substantial showing in each as well. Following are details on the system’s status in each 
respect. 
 
Functionality 
The GMS has a fairly broad mandate in the genomics space: to handle all large-scale 
data processing for the variety of tasks involved in large-scale genome analysis. 
Because this involves processing large volumes of data consistently for large projects, 
but must also support methods development, it aims to be both a production and a 
research tool. It does not, however, step into the space of automated exploration, 
genetic algorithms, or self-tuning, though its structure is not opposed to it. It is also not 
built to provide data to naive users, or to provide an interface for public/untrusted users. 
 
Reliability  
Data flagged as successful must be trusted if it is to be built upon. In the context of the 
GMS "reliability" means being certain that things will fail cleanly when they cannot be 
trusted with high certainty. Most software results are created in a staging area to ensure 
that a failure even at the very end, causes all incomplete work to be discarded. 
Granularization of the tasks mitigates the loss of compute effort. Defensively written 
generic code around the processes allows the system to rely slightly less on the careful 
diligence of the programmer, though as always, this is still primary in good software. 
Many take a snapshot of new results and compare to previous results in a very broad 
way, allowing for a test to catch problems the author did not foresee. This is a 
maintenance burden as the test result must be re-verified for some incidental changes, 
but it provides significant confidence to the researchers. 
 
Usability  
The GMS is aimed at the genomics power-user. As such, it allows an organization with 
genomics data experts to operate at scale. It would not be considered usable by web-
only users, or researchers uncomfortable with the underlying tools it wraps. It does, 
however, encapsulate some of the logistical complexity of processing genomes. 
Features such as dynamic tab-completion for thousands of commands ensure that the 
target user, a bioinformatics specialist, is able to operate in agile fashion. 
 
Efficiency  
The core of the GMS result generation layer aims to follow the "DRY" (Don't Repeat 
Yourself) principle systematically. Any code run in the exact same way on the same 
data need run only once, and will be found by any other pipeline with a processing path 
that overlaps it. There are other approaches which create a different kind of efficiency, 
such as streaming, wherein data is transferred between steps without saving it. The 
GMS makes a trade-off to have reusability of intermediate units, and to allow the 
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endpoints to be asynchronously available. A streaming approach would avoid saving 
those units entirely, but would require the endpoints to be active simultaneously, and 
would contend with the associated fragility increase. In addition to avoiding repeating 
work, each process can identify the resources it will consume dynamically, allowing the 
compute cluster to optimally fit jobs on worker nodes. Many steps that use multi-
threaded underlying components are aware of this, and will consume a sufficient portion 
of a host node to use that feature as the component author specifies. 
 
Maintainability  
The GMS is agreeable to parallel development, and the ability to do this is the 
foundation of maintainability. One engineer can improve the way all builds process, 
while another adds features to a specific pipeline, and their results can operate in 
concert. A thorough testing framework, along with a clean separation of concerns, is 
foundational to this aspect of the system. Versioning of data sets is also a key part of 
maintainability. Without this, a software system calcifies around its first implementation. 
Parallel development is fostered by an organized software tree built on the "principle of 
least surprise". With a standard place to put things, one knows where to look to find 
prior work, and knows where to put the next contribution. 
 
Portability  
The GMS is a full system image, it is not meant to operate as an application installed in 
an unknown environment. It is, however, built to interact with other systems as an 
appliance, and integrate as seamlessly as possible through standard internet protocols. 
 
Tissue culture and nucleic acid isolation of HCC1395/HCC1395BL 
 
HCC1395 cells were purchased from the American Type Culture Collection (ATCC, 
Manassas, VA). The only data released with this manuscript are derived from a cell line. 
This material is considered by our institute to be 'non-human' research materials. The 
cells were grown at 37°C in 95% O2–5% CO2. HCC1395BL cells were cultured in 
Iscove’s Modified Dulbecco’s Medium (IMDM) with 20% fetal bovine serum (FBS), and 
1% penicillin/streptomycin (P/S). HCC1395 cells were cultured in RPMI with 10% FBS, 
and 1% P/S. Cells were minimally passaged from time of purchase to reach desired cell 
numbers. Genomic DNA and RNA were isolated from cells of the same passage. RNA 
was isolated using RNeasy Mini Kit (Qiagen, Valencia, CA) following the manufacturer’s 
instructions with the recommended on column DNase I (Qiagen) digestion. Genomic 
DNA was isolated with the DNA Blood and Tissue Kit (Qiagen) with a RNase A 
digestion (40ug/uL). All RNA and DNA were eluted in water. 
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Whole genome sequencing of HCC1395/HCC1395BL 
 
For each whole genome shotgun library, 350 ng DNA was fragmented in 5x DNA 
Terminator End Repair Buffer (Lucigen, Middleton, WI) using the Covaris S2 and micro-
TUBEs (Covaris, Woburn, MA) using the following settings: volume = 50 μL, 
temperature = 4 °C, duty cycle = 5, intensity = 4, cycle burst = 200, time = 90 seconds. 
The fragmented ends were converted to blunt ends by adding DNA Terminator End 
Repair Enzyme and following the manufacturer’s protocol. The blunt ended DNA was 
then purified using using MinElute columns per manufacturers protocol (Qiagen). DNA 
was eluted with 32 μL 10 mM Tris-HCl (pH 8.0). A 3’ A overhang was added to the blunt 
ended fragments by treating with 15 units of Klenow Fragment 3’->5’ exo- and 200 nM 
dNTP mix (New England BioLabs, Ipswich, MA) for 30 minutes at 37 °C.  
 
Each sample was then ligated with 2.5 μL of a 9 μM stock of Illumina TruSeq LT 
adapters. The ligation reactions were accomplished using 5,000 units of T4 DNA ligase 
(New England BioLabs, Ipswich, MA). We purified each adenylation reaction using 
MinElute columns and DNA was eluted with 20 μL 10 mM Tris-HCl (pH 8.0). Next, we 
ligated the Illumina TruSeq LT adapters, A03 (5’ TTAGGC) and A04 (5’ TGACCA), to 
DNA samples H_NJ-HCC1395_T (tumor) and H_NJ-HCC1395_BL (blood normal), 
respectively. The reaction set-up was as follows: DNA was suspended in 1x Quick 
Ligation Buffer (NEB), 450 nM Illumina TruSeq adapter, and to minimize adapter-dimer 
formations, we added 5,000 units of Quick Ligase (NEB) and incubated the reaction for 
15 minutes at 25 °C.  
 
Each ligated DNA sample was purified using MinElute columns and DNA was eluted in 
10 μL 10 mM Tris-HCl (pH 8.0). Following the Illumina standard protocol, we PCR-
amplified our ligated libraries with minor modifications. To prevent excessive over-
amplification during the PCR, we cycle optimized our libraries. Each 50 μL reaction 
included 1 μL of eluted ligated DNA, 1x Phusion PCR Master Mix, and 200 nM each 
forward primer and reverse primer pair: Forward 5’ – 
AATGATACGGCGACCACCGAGATCTACACTCT and Reverse 5’ – 
CAAGCAGAAGACGGCATACGAGAT. The reactions were cycled as follows: 9830sec, 
Cycle – 9,810 seconds, 6,530 seconds, 7,230 seconds, and after cycles 4, 6, and 8, the 
program was halted and a 5 μL aliquot was collected. After the final collections at 8 
cycles, each cycle amplification product was evaluated on a 1.1% agarose Flash Gel 
(Lonza). This qualitative assessment illustrated the cycle number where over-
amplification occurred as observed by shifts in DNA mobility on the gel. Based on the 
qualitative assessments, we determined our optimal cycle number for both H_NJ-
HCC1395 and HCC1395_BL WGS libraries to be 6 cycles.  
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We performed eight amplification reactions as described above using 1 μL template per 
reaction for 6 cycles in the PCR. Post PCR, we purified each library by (1) pooling the 8 
H_NJ-HCC1395_T reactions, and (2) pooling the 8 HCC1395_BL reactions. Each 
library pool was purified with MinElute columns and fractionated on the Caliper LabChip 
XT using the DNA 750 chip (Perkin Elmer, Hopkinton, MA). For both libraries, H_NJ-
HCC1395_T and H_NJ-HCC1395_BL, we collected three unique fractions: 375 bp, 475 
bp, and 650 bp. Each fraction was assessed for concentration and size to determine 
library molarity using the Qubit Fluorometer Quant-iT dsDNA HS assay (Life 
Technologies, Grand Island NY) and the Agilent BioAnalyzer DNA 1000 Assay (Agilent 
Technologies, Santa Clara, CA), respectively. 
 
To accurately quantify each library, we diluted each fraction to 5 nM and determined 
molarity using 425 bp qPCR standards serially diluted 10-fold from 20pM to 0.0002 pM 
supplied in the KAPA SYBR FAST qPCR Kit (KAPA Biosystems, Woburn, MA). Based 
on the qPCR results following the manufacturer’s protocol, each library fraction was 
diluted to 2 nM and processed for Illumina sequencing. 
 
Exome capture and sequencing of HCC1395/HCC1395BL 
 
To prepare libraries for exome capture, we fragmented 500 ng H_NJ-HCC1395 _T and 
H_NJ-HCC1395_BL DNA as described above for the WGS libraries with a minor 
modification to the shearing parameters and ligated Illumina TruSeq LT adapters to 
each sample with index sequences, ATCACG and CGATGT, respectively (Shearing 
Parameters: volume = 50 μL, temperature = 4 °C, duty cycle = 20, intensity = 5, cycle 
burst = 500, time = 120 seconds). Each library was PCR-optimized as described above 
requiring six cycles. Again, we performed eight amplification reactions for each library, 
pooled each reaction, and purified the amplified library with MinElute columns. Library 
yields were 1,554 ng and 1,090 ng for H_NJ-HCC1395_T and H_NJ-HCC1395_BL, 
respectively. Each library was size-fractioned using solid-phase reversible 
immobilization using Ampure paramagnetic particles activated with carboxyl functional 
groups (Beckman Coulter, Inc.). To obtain a ~300-500 bp library fraction prior to going 
into targeted-enrichment, we used a 1:0.6 sample to AMpure bead ratio to which 
fragment sizes ~500 bp and below are retained within the supernatant. We then 
combined the supernatant with 0.9 X volumes of beads to which fragment sizes >300 bp 
are bound to the paramagnetic particles. The resulting supernatant was discarded, 
beads washed, and the size-fractioned capture libraries were eluted and quantified.  
 
For target-enrichment, we pooled 500 ng of each PCR-amplified, SPRI-fractioned library 
and added 5 μg Human Cot-1 DNA, 1 mM adapter blockers, and SeqCap EZ Human 
Exome Library v3.0 capture probes (Roche NimbleGen, Madison, WI.). Each 



13 

hybridization reaction was denatured with heat and allowed to reassociate at 47 °C for 
72 hours. Hybridized library fragments and capture probes were bound to Dynabeads 
M-270 Steptavidin-coated paramagnetic particles (Invitrogen) and stringently washed 
with provided buffers. Enriched single-stranded (ss) DNA library fragments were 
denatured from the capture probes with 0.125 N NaOH, neutralized with 1 M Tris-HCl 
(pH 8.8), and recovered from solution using a 1.5:1.0 Ampure bead-to-sample ratio. The 
enriched ssDNA library fragments were eluted and recovered in 20 μl 10 mM Tris-HCl 
(pH 8.0).  
 
Each sample was amplified in the PCR using 20 µl of enriched ssDNA library fragments, 
1X Phusion PCR Master Mix, and 200 nM each forward primer and reverse primer pair: 
Forward 5’ – AATGATACGGCGACCACCGAGATCTACACTCT and Reverse 5’ – 
CAAGCAGAAGACGGCATACGAGAT. Each enriched library was assessed for 
concentration and size to determine library molarity using the Qubit Fluorometer Quant-
iT dsDNA HS assay (Life Technologies, Grand Island NY) and the Agilent BioAnalyzer 
DNA 1000 Assay (Agilent Technologies, Santa Clara, CA), respectively. Samples were 
diluted to 2 nM prior to Illumina sequencing.  
 
RNA sequencing of HCC1395/HCC1395BL 
 
Isolated total RNA from sample(s) was DNase-treated using 2 units of TURBO DNase 
(TURBO DNA-free Kit, Life Technologies, Grand Island, NY). The DNase-treated RNA 
samples were concentrated using a ratio of 1:1.8 sample to RNAClean XP beads 
(Beckman Coulter, Indianapolis IN), and RNA mass was determined using the Qubit 
Fluorometer and the Quant-iT RNA Assay (Life Technologies, Grand Island, NY). We 
used 1 µg of DNase-treated total RNA and selected poly(A) RNA using the 
Dynabeads® mRNA DIRECT Micro Kit (Life Technologies, Carlsbad CA). Isolated 
poly(A) RNA was suspended in 10 µl nuclease free water at a final concentration of 2.3 
ng/µl and diluted to 1 ng/µl. Generation of cDNA used 1 ng poly(A)-selected RNA as 
input into NuGEN's Ovation RNA-Seq System V2 (NuGEN, San Carlos, CA). The 
generated cDNA was assessed for concentration (93.5 ng/µl; total yield: 2,711 ng). 
1000 ng of the NuGEN generated cDNA was fragmented in 5X DNATerminator End 
Repair Buffer (Lucigen, Middleton, WI) using the Covaris S2 and micro-TUBEs (Covaris, 
Woburn, MA) using the following settings: volume = 50 µL, temperature = 4 °C, duty 
cycle = 5, intensity = 4, cycle burst = 200, time = 90 seconds. Illumina TruSeq LT 
adapter AD05 was used in library construction and amplified as outlined for WGS 
requiring seven PCR cycles (8 reactions). We used Ampure paramagnetic particles to 
size select ~300-500 bp cDNA library fragments as described for exome capture. The 
size-selected cDNA library was diluted to 2 nM based on KAPA qPCR results and 
processed for subsequent Illumina sequencing. 
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Analysis of HCC1395/HCC1395BL data 
 
Five lanes of Illumina paired 2x100 bp data were produced for whole genome 
sequencing of HCC1395, three lanes for whole genome sequencing of HCC1395BL, 
one lane for the exome data for both HCC1395 and HC1395BL, and one lane for 
HCC1395 and HCC1395BL transcriptomes. 
 
Genotype calls were calculated from the Illumina Infinium microarray data (see above) 
using the GMS genotype microarray processing profile: ‘infinium wugs’ (2575175). 
Alignment of WGS and Exome reads was performed using the GMS processing-profile: 
‘Nov 2011 Default Reference Alignment’ (2635769). This version of the pipeline uses 
BWA [15] version 0.5.9 for alignment with default parameters except for the following: ‘-t 
4 -q 5’. Alignments were performed on a lane-by-lane basis and then merged with 
Picard. All alignments were against build37 (hg19) of the human reference genome. 
After reference alignment, germline variant calling was performed on each sample 
independently using samtools and filtered using custom filters internal to the GMS. 
Genotypes from the sequence data were compared back to genotypes from the 
corresponding genotype microarray results for each sample. A combination of SNVs, 
small insertions and deletions (indels), CNVs, and SVs were detected by analyzing the 
WGS tumor and normal, and again independently analyzing the exome tumor and 
normal. Somatic variant detection from WGS data occurred as shown in Fig. 3, using 
the GMS processing profile: ‘Oct 2012 Default Somatic Variation WGS’ (2762562). 
Somatic variant detection from Exome data was performed using the GMS processing 
profile: ‘Oct 2012 Default Somatic Variation Exome’ (2762563). Somatic SNV detection 
was performed in this pipeline using a combination of Strelka [46], VarScan [47] and 
SomaticSniper [48]. Somatic small indels were detected by a combination of Pindel [49], 
GATK [59], Varscan, and Strelka. Annotation of variants was performed using the GMS 
transcript variant annotator against a GMS ‘annotation’ build based on Ensembl v67 
transcripts [60]. SNVs and indels were compared against a GMS ‘previously discovered 
variations’ build based on dbSNP version 137. SNVs and Indels were also compared 
against Cosmic v65.1 variants mutation data [39]. Copy number variants were detected 
by ‘cnv-hmm’ and structural variants were detected by a combination of BreakDancer 
[43] and SquareDancer (http://tvap.genome.wustl.edu/tools/squaredancer/). RNA-seq 
data analysis was performed using the GMS processing profile ‘October 2012 Default 
Ovation V2 RNA-seq’ (2762841). RNA-seq data for both the tumor and the normal was 
aligned with TopHat [16]. Initial expression data was generated using Cufflinks on a per-
sample basis, and also with HTSeq [18]. Fusion detection results were produced with 
ChimeraScan [45] for later comparison with SV detection results from BreakDancer [43]. 
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The WGS somatic variation genome model, along with the exome somatic variation 
model, and the independent tumor and normal RNA-seq models were used as inputs to 
the integrative MedSeq model, as shown in Fig. 4. The MedSeq (aka ClinSeq) pipeline 
produces 10 directories of data, with a total of approximately 2,000 files and images (a 
sampling of which are provided in the results). Results include convergence between 
WGS, exome and RNA-seq data, differential expression measurement, extensive 
annotation with public databases, and also annotation with DGIdb [11], suggesting 
hypotheses for drug target investigation. The output of the MedSeq pipeline is used to 
prepare an overview for clinicians on high-priority research cases but is also a 
convenient starting point for cancer biomarker survey studies. 
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