
Supplementary Material: MAD Bayes for Tumor
Heterogeneity – Feature Allocation with Exponential

Family Sampling

A: Derivation of Equation (9)

Let φ(x) = x log( x
N

) + (N − x) log(N−x
N

), we have ∇φ(x) = log( x
N−x) and

φ(n)− φ(µ) = n log(
n

N
) + (N − n) log(

N − n
N

)− µ log(
µ

N
)− (N − µ) log(

N − µ
N

)

= n log(
n

µ
) + (N − n) log(

N − n
N − µ

) + (n− µ) log(
µ

N − µ
).

Therefore,

dφ(n, µ) = φ(n)− φ(µ)− (n− µ)∇φ(µ)

= n log(
n

µ
) + (N − n) log(

N − n
N − µ

).

The right-hand side of equation (9) is:

exp{−dφ(n, µ)}fφ(n)

= exp

{
n log(

µ

n
) + (N − n) log(

N − µ
N − n

) + n log(
n

N
) + (N − n) log(

N − n
N

)− h1(n)

}
= exp

{
n log(

µ

N
) + (N − n) log(

N − µ
N

)− h1(n)

}
.

Given η = log( µ
N−µ), the left-hand side of (9) is:

p(n | µ) = exp

{
n log(

µ

N − µ
)−N log(

N

N − µ
)− h1(n)

}
= exp

{
n log(

µ

N − µ
)− (N − n+ n) log(

N

N − µ
)− h1(n)

}
= exp

{
n log(

µ

N
) + (N − n) log(

N − µ
N

)− h1(n)

}
.

Thus equation (9) holds.
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B: Derivation of (10)

L(Z,w) = p(Z) p(w | Z) p̃β(n |N ,p)

=
γC e−γHS

C!

C∏
c=1

(S −mc)!(mc − 1)!

S!

S∏
s=1

{
Γ(
∑C

c=0wsc)∑C
c=0 Γ(wsc)

C∏
c=0

wac−1sc

}

×
T∏
t=1

S∏
s=1

exp

{
−β
[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

]}
× exp

{
βnst

[
log(

nst
Nst

) + (Nst − nst) log(
Nst − nst
Nst

)

]
− h1(nst)

}
.

Let γ = exp(−βλ2) and consider β →∞, then

− logL(Z,w) = βCλ2 + exp(−βλ2)Hs + β
T∑
t=1

S∑
s=1

[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

−nst log(
nst
Nst

)− (Nst − nst) log(
Nst − nst
Nst

)

]
+O(1),

where u(β) = O(v(β)) indicates there exist constants U1 and U2 such that |u(β)| ≤ U1|v(β)|
for all β > U2.

It follows that

− 1

β
logL(Z,w) = Cλ2 +O(

exp(−βλ2)
β

) +
T∑
t=1

S∑
s=1

[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

−nst log(
nst
Nst

)− (Nst − nst) log(
Nst − nst
Nst

)

]
+O(1/β)

∼ Cλ2 +
T∑
t=1

S∑
s=1

[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

−nst log(
nst
Nst

)− (Nst − nst) log(
Nst − nst
Nst

)

]
∼ Cλ2 +

T∑
t=1

S∑
s=1

[
− nst log(pst)− (Nst − nst) log(1− pst)

]

since exp(−βλ2)
β

→ 0 and 1/β → 0 as β →∞.

Therefore, (10) holds.
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C: Separable Convexity of the Objective Function Q

The objective function is

Q(p) =
S∑
s=1

T∑
t=1

{−nst log(pst)− (Nst − nst) log(1− pst)}+ Cλ2.

Since log(x) and log(1− x) are both concave functions,∑S
s=1

∑T
t=1 {−nst log(pst)− (Nst − nst) log(1− pst)} is a convex function. Finally, since Cλ2

is a constant, the objective function Q(p) is separable convex.

D: Proof of Theorem 3.1

Proof. By construction, in any iteration, the first and second steps do not increase the

objective. We always choose the optimized values of zs and wt numerically.

Since no more than one feature is unique to any data point and no feature contains

identical indices using left order form, the number of feature allocations is finite, which

guarantees that the algorithm finishes in a finite number of iterations.

E: Derivation of Small-variance Asymptotics to Model-

ing Subclone

L(Z̃,w) = p(Z̃) p(w | Z̃) p(π | Z̃) p̃β(n |N ,p)

=
γC e−γHS

C!

C∏
c=1

(S −mc)!(mc − 1)!

S!
πmc1
c (1− πc)mc−mc1

S∏
s=1

{
Γ(
∑C

c=0wsc)∑C
c=0 Γ(wsc)

C∏
c=0

wac−1sc

}

×
T∏
t=1

S∏
s=1

exp

{
−β
[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

]}
× exp

{
βnst

[
log(

nst
Nst

) + (Nst − nst) log(
Nst − nst
Nst

)

]
− h1(nst)

}
.
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Let γ = exp(−βλ2) and consider β →∞, then

− logL(Z̃,w) = βCλ2 + exp(−βλ2)Hs + β

T∑
t=1

S∑
s=1

[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

−nst log(
nst
Nst

)− (Nst − nst) log(
Nst − nst
Nst

)

]
+O(1).

It follows that

− 1

β
logL(Z̃,w) = Cλ2 +O(

exp(−βλ2)
β

) +
T∑
t=1

S∑
s=1

[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

−nst log(
nst
Nst

)− (Nst − nst) log(
Nst − nst
Nst

)

]
+O(1/β)

∼ Cλ2 +
T∑
t=1

S∑
s=1

[
nst log(

nst
Nstpst

) + (Nst − nst) log(
Nst − nst

Nst −Nstpst
)

−nst log(
nst
Nst

)− (Nst − nst) log(
Nst − nst
Nst

)

]
∼ Cλ2 +

T∑
t=1

S∑
s=1

[
− nst log(pst)− (Nst − nst) log(1− pst)

]

since exp(−βλ2)
β

→ 0 and 1/β → 0 as β →∞.

F: Details of MCMC

1. Updating Z

We update zsc for s = 1, . . . , S and c = 1, . . . , Ĉ,

p(zsc = 1| rest ) ∝ m−s,c
S

T∏
t=1

(
Nst

nst

)
(p′st)

nst(1− p′st)(Nst−nst),

p(zsc = 0| rest ) ∝ S −m−s,c
S

T∏
t=1

(
Nst

nst

)
(p

′′

st)
nst(1− p′′

st)
(Nst−nst),
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where

m−s,c =
S∑

s′=1|s′ 6=s

zs′c,

p′st = wt0p0 +
Ĉ∑

c′=1|c′ 6=c

wtc′zsc′ + wtc,

p
′′

st = wt0p0 +
Ĉ∑

c′=1|c′ 6=c

wtc′zsc′ .

2. Updating w

To updatew, we assume τtc
i.i.d.∼ Gamma(a, 1) for c = 1, . . . , Ĉ and τt0

i.i.d.∼ Gamma(a0, 1).

Define wtc = τtc/
∑Ĉ

c′=0 τtc′ . This is equivalent to wt
i.i.d.∼ Dir(a0, a, . . . , a), t = 1, . . . , T .

(a) For c = 0

p(τt0| rest ) ∝ τa0−1t0 exp(−τt0)
S∏
s=1

pnst
st (1− pst)(Nst−nst).

We do the Metropolis-Hastings algorithm to update τt0 on its logarithmic scale.

Specifically, let τ ′t0 = exp(log(τt0) + u) where u ∼ N(0, ν2τ ). That is, a random

walk proposal in log(τt0). Then the acceptance probability is min(1, ρτ ) where

ρτ =
(τ ′t0)

a0 exp(−τ ′t0)
∏S

s=1(p
′
st)

nst(1− p′st)(Nst−nst)

τa0t0 exp(−τt0)
∏S

s=1 p
nst
st (1− pst)(Nst−nst)

,

where pst and p′st are evaluated with τt0 and τ ′t0, respectively. Note that the

Jacobian = τt0.

(b) For t = 1, . . . , T and c = 1, . . . , C

p(τtc| rest ) ∝ τa−1tc exp(−τtc)
S∏
s=1

pnst
st (1− pst)(Nst−nst).
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Let τ ′tc = exp(log(τtc) + u) where u ∼ N(0, ν2τ ). Then the acceptance probability

is min(1, ρτ ) where

ρτ =
(τ ′tc)

a exp(−τ ′tc)
∏S

s=1(p
′
st)

nst(1− p′st)(Nst−nst)

τatc exp(−τtc)
∏S

s=1 p
nst
st (1− pst)(Nst−nst)

,

where pst and p′st are with τtc and τ ′tc, respectively. The Jacobian = τtc.

G: Supplementary Figures

Figure S1: Calibration Results.
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Figure S1: Calibration results. Panel (a) shows how the estimated number of features
decreases with INCREASING λ2. Panel (b) plots objective values as λ2 increases.
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Figure S2: Estimated Mean Cellular Prevalence of Each Cluster by

PyClone

Figure S2: Estimated mean cellular prevalence of each cluster across all the 25 samples by
PyClone.
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Figure S3: Simulation for Modeling Subclones
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(a) Simulation Truth (b) Estimated (λ2=50)

Figure S3: shown are feature allocation matrix Z̃, with grey shaded area indicating z̃sc =
1 and black shaded area indicating z̃sc = 2. Rows are SNVs and columns are inferred
subclones. Panel (a) displays the simulation truth Z̃

o
. Panel (b) displays the estimated

feature allocation matrix
ˆ̃
Z when λ2 = 50, which is exactly the same as the simulation

truth.
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Figure S4: Differences of pst − p̂st
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Figure S4: The histogram of the differences of pst − p̂st in (a) haplotypes analysis, and (b)
subclonal analysis.
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Figure S5: Summary of PDAC Data
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Figure S5: Summary of PDAC data.
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Figure S6: Heatmaps of the Estimated Uncertainties for PDAC
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Figure S6: The heatmaps of the estimated uncertainties of (a) five estimated haplotypes for
118 SNVs using the PDAC data; (b) seven estimated haplotypes for 6,599 SNVs using the
PDAC data.

H: Bioinformatics Data Processing for the Lung Cancer

Data

Four surgically dissected tumor samples taken from the same patient with lung cancer were

whole-exome sequenced. We extracted genomic DNA from each tissue and constructed an

exome library from these DNA using Agilent SureSelect capture probes. The exome library

was then sequenced in paired-end fashion on an Illumina HiSeq 2000 platform. About 60

million reads - each 100 bases long - were obtained. Since the SureSelect exome was about 50

Mega bases, raw (pre-mapping) coverage was about 120 fold. We then mapped the reads to

the human genome (version HG19) (Church et al., 2011) using BWA (Li and Durbin, 2009)
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and called variants using GATK (McKenna et al., 2010). Post-mapping, the mean coverage

of the samples was between 60 and 70 fold.

A total of nearly 115,000 SNVs and small indels were called within the exome coordinates.

We restricted our attention to SNVs that (i) make a difference to the protein translated from

the gene, and (ii) that exhibit significant coverage in all samples with nst/Nst not being too

close to 0 or 1.
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