Supplementary Material: MAD Bayes for Tumor
Heterogeneity — Feature Allocation with Exponential
Family Sampling

A: Derivation of Equation (9)

Let ¢(z) = zlog(£) + (N — ) log(¥5%), we have Vo(z) = log(7%

) and

)

6(n) —6(n) = nlog(ae) + (N —n)log(~"") — prlog(X) — (N — o) los(

= nlog(o) + (N = m)log(— ) + (n = ) log(57—)
Therefore,
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The right-hand side of equation (9) is:
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Given 1) = log(5), the left-hand side of (9) is:
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Thus equation (9) holds.



B: Derivation of (10)

L(Z,w) = p(Z)p(w]| Z)ps(n|N,p)
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Let v = exp(—3\?) and consider 8 — oo, then
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where u(f) = O(v(f)) indicates there exist constants U; and Us such that |u(8)| < U|v(5)]
for all g > Us.
It follows that

T

1 eXp B/\Q |: Tst Nst — Nst
——logL(Z,w) = CN+ )+ ng log( Ny — ng) log(—"F——"—
B & ( ) ( ; ; ! g stpst) ( ‘ t) g(Nst - Nstpst
Ng Ns — N
0B 32) = (N = ) oL+ 001/
T Ng —n
~ CN+ [ns log( Ty Ny — ng) log(—2—2—
g g L8 Nstpst) ( ! t) g(Nst - Nstpst
Ny — ng
S log(3) = (N = ) og( )
T
~ ON+ Y Z { — ng log(ps) — (Ny — ng) log(1 — pst)}
t=1 s=1
since%—ﬂ)and 1/8—0as f — oc.

Therefore, (10) holds.



C: Separable Convexity of the Objective Function ()

The objective function is

s T
Qp) = > Y {—nulog(pa) — (No — n) log(L — pu)} + CA*.
s=1 t=1
Since log(z) and log(1 — x) are both concave functions,
S S {—nglog(ps) — (Ny — ng) log(1 — py)} is a convex function. Finally, since C'\?

is a constant, the objective function Q(p) is separable convex.

D: Proof of Theorem 3.1

Proof. By construction, in any iteration, the first and second steps do not increase the
objective. We always choose the optimized values of z; and w; numerically.

Since no more than one feature is unique to any data point and no feature contains
identical indices using left order form, the number of feature allocations is finite, which

guarantees that the algorithm finishes in a finite number of iterations. m

E: Derivation of Small-variance Asymptotics to Model-

ing Subclone
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Let v = exp(—3A?) and consider 8 — oo, then
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F: Details of MCMC
1. Updating Z
We update z,. for s=1,...,5 and ¢ = ,...,C’,
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2. Updating w
ii.d. A ii.d.
To update w, we assume 7. '~ Gammal(a, 1) forc=1,...,Cand 1y '~ Gamma(ao,1).
> .. . 1id. .
Define wy, = 7./ ZSZO Tyr. This is equivalent to w; "~ Dir(ag, a,...,a),t=1,...,T.

(a) Forc=0

s
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We do the Metropolis-Hastings algorithm to update 74y on its logarithmic scale.
Specifically, let 7/, = exp(log(70) + u) where u ~ N(0,22). That is, a random

walk proposal in log(ry). Then the acceptance probability is min(1, p,) where
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where py and pl, are evaluated with 7,0 and 7/,, respectively. Note that the

Jacobian = 7.

(b) Fort=1,...,Tand c=1,...,C
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Let 7/, = exp(log(7s) + u) where u ~ N(0,22). Then the acceptance probability

is min(1, p,) where

— (77.)* exp(—T/,) Hf:1(p/st>n3t (1— plst>(NSt_nSt)
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where pg; and pl, are with 7. and 7., respectively. The Jacobian = 7.

G: Supplementary Figures

Figure S1: Calibration Results.
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Figure S1: Calibration results. Panel (a) shows how the estimated number of features
decreases with INCREASING A%, Panel (b) plots objective values as A\? increases.



Figure S2: Estimated Mean Cellular Prevalence of Each Cluster by
PyClone
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Figure S2: Estimated mean cellular prevalence of each cluster across all the 25 samples by
PyClone.



Figure S3: Simulation for Modeling Subclones
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(a) Simulation Truth (b) Estimated (A\?=50)

Figure S3: shown are feature allocation matrix zZ , with grey shaded area indicating zy. =
1 and black shaded area indicating z,. = 2. ROWSN%I‘G SNVs and columns are inferred
subclones. Panel (a) displays the simulation truth Z . Panel (b) displays the estimated

feature allocation matrix Z when A\?> = 50, which is exactly the same as the simulation
truth.



Figure S4:

Inferene on haplotypes
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Figure S4: The histogram of the differences of py; — ps; in (a) haplotypes analysis, and (b)

subclonal analysis.



Figure S5: Summary of PDAC Data
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Figure S5: Summary of PDAC data.
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Figure S6: Heatmaps of the Estimated Uncertainties for PDAC
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Figure S6: The heatmaps of the estimated uncertainties of (a) five estimated haplotypes for
118 SNVs using the PDAC data; (b) seven estimated haplotypes for 6,599 SNVs using the
PDAC data.

0

H: Bioinformatics Data Processing for the Lung Cancer

Data

Four surgically dissected tumor samples taken from the same patient with lung cancer were
whole-exome sequenced. We extracted genomic DNA from each tissue and constructed an
exome library from these DNA using Agilent SureSelect capture probes. The exome library
was then sequenced in paired-end fashion on an Illumina HiSeq 2000 platform. About 60
million reads - each 100 bases long - were obtained. Since the SureSelect exome was about 50
Mega bases, raw (pre-mapping) coverage was about 120 fold. We then mapped the reads to
the human genome (version HG19) (Church et al |[2011) using BWA (Li and Durbin} 2009)

11



and called variants using GATK (McKenna et al., [2010)). Post-mapping, the mean coverage
of the samples was between 60 and 70 fold.

A total of nearly 115,000 SN'Vs and small indels were called within the exome coordinates.
We restricted our attention to SNVs that (i) make a difference to the protein translated from
the gene, and (ii) that exhibit significant coverage in all samples with ng/Ng not being too

close to 0 or 1.
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