
Methods 

Additional files referred to throughout these methods can be found here: 

http://neomorph.salk.edu/SDEC_tissue_methylomes/processed_data/code_data.tar.gz 

Tissue Collection 

Adrenal, adipose, thymus, esophagus, vascular, bladder, pancreas, liver, stomach, lung, 

heart, skeletal muscle, ovary, small bowel, colon, and spleen tissues were obtained from 

deceased donors at the time of organ procurement at Mid-American Transplant Services (St. 

Louis, USA) after research consent from family was obtained.  Samples were flash frozen with 

liquid nitrogen. From the following tissues, the luminal epithelial lining was dissected free and 

flash frozen for this study: esophagus, bladder, stomach, small bowel and colon. For tissue from 

the aorta, the endothelial layer was dissected free and flash frozen. 

Genomic DNA Sequencing Library Construction 

Two µg of genomic DNA was extracted from ground, frozen tissue using the DNeasy Blood and 

Tissue kit (Qiagen, Valencia, CA). The DNA was fragmented with a Covaris S2 (Covaris, 

Woburn, MA) to 300-400 bp, followed by library preparation using the TruSeq DNA Sample 

Prep kit (Illumina, San Diego, CA) as per manufacturer's instructions. The library was run on a 

2% agarose gel and gel size selected to 400-500bp using the MinElute Gel Extraction kit 

(Qiagen). 

RNA-seq Library Construction 

Total RNA from tissues and primary cells was extracted using the RNeasy Lipid Tissue Mini Kit 

according to protocol (QIAGEN). The mRNA libraries were constructed using the TruSeq RNA 

Sample Prep Kit V2 (Illumina, San Diego, CA) with 4 µg total RNA, according to manufacturer's 

instructions with modifications to confer strand specificity. The RNA was incubated in the Elute, 

Prime, Fragment Mix at 94˚C for 4 min. After first strand synthesis, the product was purified 

using RNAClean XP beads (Beckman, Brea, CA) as per manufacturer's instructions and eluted 

in 18 µL nuclease free water. Second strand synthesis was performed by adding the RNAClean 



XP purified product to 2.5 µL 10x NEB Buffer 2 (New England Biolabs, Ipswich, MA), 2 µL dUTP 

mix (10mM dATPs, 10mM dGTPs, 10mM dCTPs, and 20mM dUTPs), 0.5 µL RNAse H (2 

U/µL), 1 µL DNA Polymerase I (E. coli) (New England Biolabs), and 1 µL DTT (100 mM). The 25 

µL mixture was incubated at 16˚C for 2.5 hours. The purified ligation products were incubated 

with 2 µL Uracil DNA Glycosylase (Fermentas) before PCR amplification. The completed library 

was then gel size selected to approximately 350-450 bp using the QIAquick Gel Extraction Kit 

(QIAGEN). RNA-seq libraries were sequenced using the Illumina HiSeq 2000 (Illumina) 

instrument as per manufacturer’s instructions. Sequencing of libraries was performed up to 2 × 

101 cycles. Image analysis and base calling were performed with the standard Illumina pipeline 

version RTA 2.8.0 

MethylC-seq Library Construction 

Genomic DNA was extracted from ground, frozen tissue using the DNeasy Blood and Tissue Kit 

(Qiagen, Valencia, CA). Two µg of genomic DNA was spiked with 10 ng unmethylated cl857 

Sam7 Lambda DNA (Promega, Madison, WI). The DNA was fragmented with a Covaris S2 

(Covaris, Woburn, MA) to 150-200 bp, followed by end repair and addition of a 3’ A base. 

Cytosine-methylated adapters provided by Illumina (Illumina, San Diego, CA) were ligated to the 

sonicated DNA at 16˚C for 16 hours with T4 DNA ligase (New England Biolabs). Adapter-ligated 

DNA was isolated by two rounds of purification with AMPure XP beads (Beckman Coulter 

Genomics, Danvers, MA). Adapter-ligated DNA (≤450 ng) was subjected to sodium bisulfite 

conversion using the MethylCode kit (Life Technologies, Carlsbad, CA) as per manufacturer’s 

instructions. The bisulfite-converted, adapter-ligated DNA molecules were enriched by 4 cycles 

of PCR with the following reaction composition: 25 µL of Kapa HiFi Hotstart Uracil+ Readymix 

(Kapa Biosystems, Woburn, MA) and 5 µl TruSeq PCR Primer Mix (Illumina) (50 µl final). The 

thermocycling parameters were: 95˚C 2 min, 98˚C 30 sec, then 4 cycles of 98˚C 15 sec, 60˚C 

30 sec and 72˚C 4 min, ending with one 72˚C 10 min step. The reaction products were purified 

using AMPure XP beads. Up to two separate PCR reactions were performed on subsets of the 



adapter-ligated, bisulfite-converted DNA, yielding up to two independent libraries from the same 

biological sample. 

SNP Calling 

SNPs in each of the four donor genome sequences and the H1 genome were detected as 

follows. Tissue genome sequence fastq files of four donors were mapped using Bowtie21 and its 

default parameters; whereas, the H1 csfasta files were mapped with Bowtie using these 

parameters: “-C -k 1 -m 1 --best --strata -e 80”. The UnifiedGenotyper module of 

GenomeAnalyzerTK2 (GATK) version 2.4-7 was used to detect SNPs. Default parameters were 

used, with “-dcov 100”. The SNPs detected were compared against the dbSNP database 

(version 137) for classifying known and novel (individual-specific) SNPs. The confidence score 

threshold for SNP detection was selected as 30. This is the minimum phred-scaled Q-score 

threshold, provided as a default parameter for high-confidence SNP detection within the GATK 

package. 

SNP-substituted Reference Genomes 

We created four modified reference genomes to account for misclassification of CG sites as 

mCH sites. To that end, we took high-confidence homozygous SNPs and substituted the SNP 

bases for a particular individual into the hg19 FASTA file. 

MethylC-seq Mapping 

Sequencing reads were first trimmed for adapter sequence using Cutadapt3. All cytosines in the 

trimmed reads were then computationally converted to thymines and mapped twice, to a 

converted forward strand reference and to a converted reverse strand reference. A converted 

reference is created by replacing all cytosines with thymines (forward strand) or all guanines 

with adenines (reverse strand) in the reference FASTA file. For mapping we used Bowtie4 with 

the following options: "-S","-k 1","-m 1","--chunkmbs 3072","--best","--strata","-o 4","-e 80","-l 

20", and "-n 0". Reads were mapped to hg19 reference genome. Any read that mapped to 

multiple locations was removed and one read from each starting location on each strand from 



each library was kept (i.e., clonal reads were removed).  Note that our pipeline (methylpy) does 

not currently support paired-end reads. Consequently, for MSC, which only had paired-end 

reads available, we mapped the first read in each pair to avoid problems in processing 

overlapping reads. 

Methylation Calling 

To call methylated sites, we summed the number of reads that supported methylation at a site 

and the number of reads that did not. We used these counts to perform a binomial test with a 

probability of success equal to the non-conversion rate, which was determined by computing the 

fraction of methylated reads in the lambda genome (spiked in during library construction). The 

false discovery rate (FDR) for a given p-value cutoff was computed by calculating the fraction of 

sites in the lambda genome that had a p-value less than or equal to the cutoff and then dividing 

that quantity by the fraction of sites that had a p-value less than or equal to the cutoff across all 

other chromosomes. Because the p-value distributions for each methylation context are 

different, this procedure was applied to each three nucleotide context independently (e.g., a p-

value cutoff was calculated for CAT cytosines). All methylation data was visualized with the 

AnnoJ browser5. 

DMR Finding 

To find tissue-specific differentially methylated regions (DMRs), we used the method described 

in Ziller et al.6 Briefly, a beta-binomial distribution was used to model the methylation level of 

each single CG site in each of the tissues. Then, differentially methylated sites (DMS) were 

identified if the methylation levels of certain site were significantly different between tissues (p-

value <= 0.01) and the minimum methylation difference was greater than or equal to 0.3. In the 

next step, DMSs within 500 bp were merged into DMRs. Lastly, for each DMR, the methylation 

difference between each of tissue pairs (i.e. pairwise comparisons) was computed and only 

DMRs that have significant methylation difference (p-value <= 0.01) and the methylation 

difference is greater than or equal to 0.3 in at least one of the pairwise comparisons are 



retained. The scripts for running this pipeline are included as additional files 

(DDMR_Identification_CpG_mult.r, DDMR_Identification_RegionAnalysis_mult.r, 

parallel_run_Ziller.py). The results from this script can be found among the additional files 

(Ziller_et_al_DMR_finding/DMR_final_with_level.tsv) 

 

To statistically infer DMRs that may vary between individuals (i.e., those DMRs used in “Genetic 

Origins of Methylation Variation”), which the above methodology from Ziller et al.6 does not, we 

defined a stochastic model of our methylation data sets in which the observed number of reads 

supporting methylated and unmethylated cytosines at each position in each sample is drawn 

from a binomial distribution. In each sample at each cytosine in the CG context there is a single 

parameter, 𝑥!! , corresponding to the true fraction of methylated alleles in the population, or the 

methylation level, where i denotes the position of cytosine and n denotes the sample. Our null 

hypothesis is that the methylation level at this position is equal in all samples (𝑥!! = 𝑥! for all n). 

Our procedure is designed to test whether the observed data are consistent with the null 

hypothesis, or alternatively if there is a significant deviation from equal methylation levels. 

 To do this, first we compute a goodness-of-fit statistic, s, which was introduced and 

validated by Perkins et al7. Specifically, we arrange the observed data in an Nx2 table, with one 

row for each of N samples and a column for reads supporting methylated and unmethylated 

cytosines respectively. The number of observed reads in sample n at position i is 𝑜!"! , where j = 

1 for methylated reads and j = 2 for unmethylated reads. The expected number of reads in 

sample n with methylation state j under the null hypothesis is 𝑒!"! : 

𝑒!"! = 𝑜!"!
!

!!!

𝑜!"!
!

!!!

/𝑀! 
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!!!  is the total number of reads in all samples. The statistic for the 
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Next, we simulated read count data under our stochastic model assuming the null hypothesis in 

the following way: 

• Set all cell counts in the table to zero 

• Randomly select a cell in the table with probability equal to the expected counts divided 

by the total number of counts in the table (
!!"
!

!! ). Increment the value in this cell by one. 

• Repeat this procedure 𝑀! times. 

• Finally, calculate the value of the statistic, 𝑠!!!""! , for the randomly generated table. 

This randomization procedure was repeated until we observed 100 iterations with a value of 

𝑠!!!""! that was at least as extreme as that of the observed data, s, up to a maximum of 3,000 

iterations. The p-value at position i was then computed as: 

𝑝! =
𝑅! + 1
𝑇!

 

Where Ri is the number of randomized tables with a statistic greater than or equal to the original 

table’s statistic and Ti is the total number of randomized tables that were computed. Our 

adaptive permutation procedure ensures that any sites which we may potentially identify as 

significantly differentially methylated with 𝑝! < 0.01 will be sampled 3,000 times. At other sites, 

we have observed an appreciable number (100) of permutations more extreme than our original 

test statistic (s≥sshuff) and the p-value for these sites will be p ≥ (100+1)/3000 = 0.034; these 

sites will therefore not be called as differentially methylated. 

To control the false discovery rate (FDR) at our desired rate of 1%, we used a 

computationally efficient procedure designed for comparing multiple sequential permutation-

derived p-values8. This procedure is designed to account for the effect of our adaptive 

permutation procedure on the form of the distribution of p-values. First we generated a 



histogram of the p-values across all cytosines in CG context. We also calculated the expected 

number of p-values to fall in a particular bin under the null hypothesis. This expected count is 

computed by multiplying the width of the bin by the current estimate for the number of true null 

hypotheses (m0), which is initialized to the number of tests performed. We then identified the 

first bin (starting from the most significant bin) where the expected number of p-values is greater 

than or equal to the observed value. The differences between the expected and observed 

counts in all the bins up to this point are summed, and a new estimate of m0 is generated by 

subtracting this sum from the current total number of tests. This procedure was iterated until 

convergence, which we defined as a change in the m0 estimate less than or equal to 0.01. With 

this m0 estimate, we were able to estimate the FDR corresponding to a given p-value cutoff by 

multiplying the p-value by the m0 estimate (the expected number of positives at that cutoff under 

the null hypothesis) and dividing that product by the total number of significant tests we detected 

at that p-value cutoff. We chose the largest p-value cutoff that still satisfied our FDR 

requirement.  

In the next stage of analysis, we combined significant sites (DMSs) into blocks if they 

were within 250 bases of one another and had methylation changes in the same direction (e.g., 

sample A was hypermethylated and sample B was hypomethylated at both sites). A sample was 

considered hypo or hyper methylated if the deviation of observed counts from the expected 

counts was in the top or bottom 1% of deviations. These residuals were calculated for a position 

i using the following formula for a given cell in row n and column j of the table: 

𝑜!"! − 𝑒!"!

𝑒!"! ∗ (1 −
𝑒!"!

𝑀! ) ∗ (1 −
𝑒!"!

𝑀! )
!
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The distinction between hypermethylation and hypomethylation was made based on the sign of 

the residuals. For example, if the residual for the methylated read count of sample A was 



positive, it was counted as hypermethylation. Furthermore, blocks that contained fewer than 10 

differentially methylated sites were discarded. The DMRs called with this methodology, along 

with their methylation levels, are in the additional files 

(https://bitbucket.org/schultzmattd/methylpy and DMR_by_methylpy/DMR_methylpy_matrix). 

Benchmark methylpy and other DMR identification methods 

To further evaluate the performance of the DMR finder (methylpy) used to find inter-individual 

DMRs in the section “Genetic Origins of Methylation Variation”, methylpy was compared with 

three published DMR finding methods: BSmooth9, DSS10 and MOABS11. The test was done on 

methylome data of adrenal gland samples from individual 2 and individual 3 (AD-2 and AD-3) 

and two aorta samples from the same individuals (AO-2 and AO-3). Data and code for this 

benchmark can be download from this link 

(https://drive.google.com/folderview?id=0B1BhFMhr3HTATjdWLUx3d1ZtZHM&usp=sharing). 

For BSmooth and MOABS, the default settings were used. For DSS, we used 1% FDR cutoff for 

calling differentially methlyated locus (DMLs). Then DMLs within 300bp were merged and 

regions containing at least 3 DMLs were called as DMRs. Note that these two parameters are 

the same as the default settings in MOABS. Only data of chromosome 1 was used in this 

analysis. 

Methylation Levels 

Throughout the paper we refer to the methylation levels of regions in various contexts. Unless 

otherwise noted, these methylation levels are more specifically weighted methylation levels as 

defined here12. Sites predicted to be unmethylated (based on the binomial test) had their 

methylation level set to zero. 

RNA-seq Analysis 

RNA-seq mapping was done using Tophat213 with default parameters (“-r 200”, “--library-type fr-

firststrand”) against the human reference genome version hg19. The genomic features were 



obtained from GENCODE version 1414. We used htseq-count to map reads to GENCODE 

features and generate read counts using (http://www-huber.embl.de/users/anders/HTSeq) using 

default parameters except “-s reverse”. 

RNA-seq Expression Quantification 

In order to quantify expression levels of each of the annotated genomic feature, we 

implemented the “cufflinks” module of the Cufflinks suite version 2.1.115. Cufflinks produces 

FPKM (Fragments per kilobase of feature per million) for each of the annotated features. We 

used default parameters, except for the use of –-upper-quartile-norm option and --max-bundle-

frags as 50,000,000. This extreme limit was set to avoid skipping of regions with several 

fragments. The default value of 1,000,000 would result in several tissue-specific or highly 

expressed genes to be labeled as “HIDATA” without an actual FPKM value being reported. 

Then, we applied quartile normalization to FPKMs, which is described in 

http://cufflinks.cbcb.umd.edu/manual.html#library_norm_meth. Specifically, we scaled the 75% 

quartile FPKM of every sample to be the mean 75% quartile FPKM of all samples (i.e., all 36 

tissue samples from this study, IMR90, H1, and placenta samples). 

RNA-seq Differential Expression Analysis 

In order to obtain genes that are differentially expressed across any of the samples in this study, 

we used htseq-count to map reads to GENCODE features and generate read counts 

(http://www-huber.embl.de/users/anders/HTSeq) using default parameters except “-s reverse”. 

These read counts were tested for differential expression using the quasi-likelihood F-test 

(glmQLFTest)16 implemented in edgeR17. In contrast to pairwise comparisons (like case vs 

control or wild-type vs treatment) this test does not require specifying which groups would be 

different. The set of genes enriched or depleted in one group compared to an average of all 

other tissues was obtained. An FDR cut-off of 0.05 was used to identify differentially expressed 

genes.  

CG DMR Dendrogram 



To create the dendrogram shown in Fig. 1c, we first used the cmdscale command from R to 

perform multidimensional scaling and compute the first 15 principal components of the CG DMR 

methylation level matrix. The percent variance explained from this multidimensional scaling is 

presented in Extended Data Fig. 1c. Next, we used the heatmap.2 function in the R package 

gplots18 with the default distance metric, and the Ward hierarchical clustering method on these 

principal components to generate the dendrogram.  

Differentially Expressed Genes Dendrogram 

To create the dendrogram shown in Fig. 1d, we first used the cmdscale command from R to 

perform multidimensional scaling and compute the first 15 principal components of the RPKM 

values, which were first normalized by the maximum expression value observed at each locus, 

from all differentially expressed genes. The percent variance explained from this 

multidimensional scaling is presented in Extended Data Fig. 1d. Next, we used the heatmap.2 

function in the R package gplots18 with the default distance metric, and the Ward hierarchical 

clustering method on these principal components to generate the dendrogram. 

Genomic Feature Definitions 

Promoters were defined as -1000bp to +300bp region of the transcription start sites of 

transcripts defined in GENCODE version 1414. Exons and introns were also defined using the 

GENCODE reference. Putative enhancers were obtained from Leung, Rajagopal, and Jung et 

al.19 which were predicted using histone mark profiles. CG islands (CGIs) were downloaded 

from UCSC genome browser20. CGI shores were defined as the 2kb regions extending in both 

directions from CGIs21,22.  

DMR Tissue Specificity Determination 

To find CG DMRs that are strongly and specifically hypomethylated or hypermethylated in a 

particular tissue, we ranked tissues by the methylation level of a CG DMR (from lowest to 

highest). Then, starting from the tissue with the lowest methylation level, we computed the 

difference in methylation level between adjacent tissues. Next, we identified the largest 



difference, and if it was greater than or equal to 0.1, we divided the tissues into two groups (i.e., 

hypomethylated tissues and hypermethylated tissues). If the hypomethylated group contained 

ten or fewer tissues, the DMR was classified as a tissue-specific, hypomethylated CG DMR in 

those tissues. If the hypermethylated group had ten or fewer tissues, the CG DMR was 

classified as a tissue-specific, hypermethylated CG DMR in those tissues. We ignored other CG 

DMRs (including CG DMRs with difference less than 0.1 between adjacent ranked tissues) were 

because their tissue specificity was too obscure. 

DMR GO Enrichment 

We used GREAT23 with default parameters to find functional terms of genes near CG DMRs as 

these terms indicate the potential regulatory functions of these CG DMRs. Since too many 

DMRs can saturate the Hypergeometric Test it uses, we considered at most the top 5,000 

DMRs sample-specific DMRs ranked (largest to smallest) by the difference (which has to be 

greater or equal to 0.1) in methylation level between the hypermethylated and hypomethylated 

groups as input. Furthermore, we require each of these DMRs to have at least 4 DMSs. We 

focused on the GO Biological Process and Mouse Phenotype categories and representative 

results from this analysis are shown in Extended Data Fig 1e and f. The complete results are in 

Supplementary Tables 2 and 3.  

Correlating Methylation States of DMRs with Gene Expression 

To compute the correlations shown in Fig 2a, we used the nearest gene model to predict the 

target gene of every DMR (i.e., the gene with the closest transcription start site was predicted as 

the target gene of a DMR). Then, we computed the Spearman correlation coefficient between 

the methylation level of that DMR and the expression level of its target gene. Only intergenic 

hypomethylated DMRs with differentially expressed protein-coding genes as a target were 

included in this analysis.  

To understand the role of these DMRs and their association with expression, we grouped them 

into different categories according the genomic elements they did or did not overlap. Genebody 



DMRs were defined as those that overlapped gene bodies. Enhancer DMRs were defined as 

those that overlapped enhancers. Promoter, CGI and CGI shore DMRs were defined as those 

that overlapped promoters, CGIs, or CGI shores. DMRs not in these categories and lying 

outside any gene body labeled as intergenic. Finally, undefined intragenic DMRs were those 

that didn’t overlap any of these categories. As a control we shuffled the sample labels of the 

methylation levels and computed the Spearman correlation coefficients as above, which labeled 

as shuffled.  

Annotating undefined intragenic DMRs and promoter DMRs 

We used K-means clustering to cluster the histone modification profiles of undefined intragenic 

DMRs (uiDMRs). We assigned the strand of target gene to each uiDMR to ensure that the TSSs 

of target genes were always upstream of uiDMRs and eliminate the possibility that 

strandedness would affect the clustering. Next, we divided each uiDMR into 10 equally sized 

bins and we divided the 5kb region on either side of each uiDMR into 100bp bins. We split 

DMRs into equally sized bins for several reasons. Firstly, DMRs varied in length, and we 

needed a way of comparing the locations of motifs in different DMRs. Secondly, to estimate and 

show the location preference of motifs, DMRs needed to be binned in order to get an 

appreciable number of motif instances falling to fall in each position across a DMR. Finally, we 

wanted to avoid splitting DMRs into bins with different sizes to keep the analysis unbiased as 

we did not want to introduce confounding factors like differing bin sizes in a single DMR. 

We then created a vector of input-normalized ChIP-seq RPKMs of the six histone marks for 

each bin. The uiDMRs were then clustered into five groups using these vectors. We labeled 

these groups as weak enhancer (strong H3K4me1, depleted H3K4me3 and strong H3K27ac), 

promoter-proximal (near region with strong H3K4me3 and strong H3K27ac and depleted in 

H3K4me1), transcribed (strong H3K36me3), poised enhancer (strong H3K4me1 and weak 

H3K27ac) and unmarked (no noticeable active histone marks).  



We performed a similar analysis for DMRs that overlapped promoters (i.e., the same fixed 

window definition previously mentioned). Not all of these regions were active (i.e., marked by 

H3K4me3 and H3K27ac), so to identify active and inactive promoters we applied K-means 

clustering to the histone modification profile of promoter DMRs into two categories: strong 

promoters and unmarked promoters. DMRs in strong promoters showed an H3K4me3 and 

H3K27ac signal; whereas, DMRs in unmarked promoters displayed at most a very weak 

H3K27ac and H3K4me3 signal. 

Sequence motifs enriched in tissue-specific uiDMRs and tissue-specific enhancers were 

identified using Homer24. 

DNase I sensitivity analysis 

To plot DNase I sensitivity data of fetal tissues in Extended Data Fig. 5, we downloaded DNase 

I data from GEO (GSE18927 and Supplementary Table 6). To profile the DNase I sensitivity of 

unmarked uiDMRs, we divided each unmarked uiDMR into 10 equally sized bins and the 2.5kb 

region on either side of each uiDMR into 50bp bins. The DNase I sensitivity RPKMs were 

calculated for each bin for each unmarked uiDMR, and the values were aggregated to generate 

the average profile. The same approach was applied to generate the average profiles of DMRs 

overlapping intragenic enhancers and unmarked uiDMRs with shuffled locations. Only DMRs 

greater than 200bp in length (i.e., each bin is greater than 50bp) are included in this analysis. 

Measuring the genetic origins of DNA methylation  

If DNA sequence is involved in regulating DNA methylation we should observed an enrichment 

of sequence variants where there is epigenomic variation. To rank DMRs by epigenomic 

variation, we created a tissue-specific methylation outlier score (MOS). The MOS takes 

advantage of some tissues methylomes being sequences in triplicate and identifies DMRs 

where one individual’s methylation state is divergent from the other two. MOS is calculated as, 

MOS!!|
∆!" + ∆!"

2
| − |∆!"| 



, where i, j and k represent the three individuals and ∆!" represents the difference in methylation 

state scores between individuals j and k. MOSi represents the degree to which individual i is an 

outlier at a particular DMR. We subtract |∆!"| to account for background level of DNA 

methylation variability at the DMR. A separate MOS is calculated for each individual at each 

DMR. Each DMR is assigned its single greatest MOS score and the corresponding individual is 

considered the outlier. 

We hypothesized that MOS performs better than standard deviation as it considers the level of 

similarity between the two concordant replicates. Thus, DMRs where variation might be 

increased by measurement error are less highly ranked as some measurement errors may be 

consistent across the samples, and therefore, would increase the variation between the 

concordant replicates. The motif associated SNPs (maSNP) occurrence in the top 2,500 DMRs 

ranked by standard deviation was: FT = 1.51; GA = 1.45; PO = 1.61; SB = 1.61; SX = 1.46. 

These numbers result in an average maSNP occurrence of 1.528. When MOS is used to rank 

the DMRS the enrichment scores are: FT = 1.58; GA = 1.65; PO = 1.65; SB = 1.60; SX = 1.63. 

The MOS ranked DMRs result in an average maSNP occurrence of 1.622. Thus, MOS does a 

better job or ranking DMRs by their enrichment with maSNPs. 

Further, to determine that maSNP enrichment of DMRs when ranked by MOS was statistically 

significant we used a Chi-squared test to compare the association between the number of 

maSNPs and non-maSNPs in a DMR and its SD or MOS rank. To do this, the maSNP and non-

maSNP counts were compared between the top MOS ranked 2500 DMRs and the DMRs 

ranked between 497500 and 500000 (i.e., we constructed a 2x2 table where rows indicated 

whether or not the DMR was in the top 2500 DMRs and columns indicated whether or not that 

DMR contained an maSNP). The P-values for maSNP enrichment in the top 2,500 MOS ranked 

DMRs were: FT = 0.0006811861; GA = 2.443996e-16; PO = 4.2191e-16; SB = 0.00202069 and 

SX = 6.313224e-08. Thus, demonstrating the significance of the maSNP enrichment in the MOS 



ranked DMRs. The Chi-squared test of significance was repeated using DMRs ranked by strand 

deviation: FT = 0.01908347; GA = 0.09873; PO = 6.997994e-07; SB = 0.0003348352 and SX = 

0.002674707. In all cases, the P-value was more significant for the MOS ranked DMRs. 

To evaluate the level of sequence variation at cis-regulatory elements we created sets of DNA 

motifs that are putatively involved in the tissue-specific regulation of DNA methylation levels at 

the DMRs. For each tissue we created two de novo motif sets: (i) hypo and (ii) hyper. The 

tissue-specific de novo motif sets were created using the Epigram pipeline25 to identify a set of 

motifs that are discriminative of tissue-specific hypo and hypermethylated regions. Briefly, the 

Epigram pipeline works as the following: (i) the two sets of sequences (tissue-specific hypo and 

hypermethylated regions) are balanced so that they have the same distribution of lengths and 

GC-content; (ii) two de novo motif finding methods, HOMER24 and its own, are used to identify 

motifs that are enriched in either set; (iii) a LASSO logistic regression26 is used to select the 

motifs that are most discriminative of the two regions; (iv) a Random Forest classifier and 5-fold 

cross-validation are used to assess the collective ability of the motifs to classify the sequences 

into hypo or hypermethylated; (v) a second round of feature selection is performed to 

heuristically select a subset of 20 motifs that has the greatest discrimination power. Thus, the 

Epigram pipeline identities motifs that are predictive of tissue-specific hypo- and 

hypermethylation and measures their ability to distinguish the two sets. 

During the creation of both the de novo and known motif sets it is necessary to have sets of 

tissue-specific hypo and hypermethylated regions. The tissue-specific hypomethylated regions 

were taken from the DMR GREAT analysis as previously defined. The set of hypo- and hyper-

methylated sequence sets were then balanced so that they were equal in size and had the 

same distribution of GC-content and region lengths25. The number of hypomethylated DMRs for 

each tissue after sampling ranged from 278 to 15,732 with a mean of 7,307 while the hyper sets 

ranged from 745 to 12,190 with a mean of 6,028. 



To create known set of known motifs five motif databases were combined: (i) Transfac27, (ii) 

Jaspar28, (iii) Uniprobe29, (iv) hPDI30 and (v) Taipale31. We removed known if their name was not 

listed in GENCODE or they were not annotated with the gene ontology term ‘sequence-specific 

DNA binding’ or ‘DNA binding’. To make the final set of motifs non-redundant, if there was more 

than one motif for the same gene, then only the motif with the greatest information content was 

retained. To calculate motif-breaking cut-offs for the known motifs we created background 

distribution and took a cut-off that corresponds to a 0.05 P-value. Taking the DMR DNA 

sequences and shuffling them so that order of nucleotides was randomized created the 

background distribution sequences. A motif specific background distribution was created by 

recording the best score of S (see above) in each of the shuffled sequence. 

PMD Identification 

To identify PMDs, we created a random forest classifier. Random forests are an ensemble 

machine learning technique (described in detail here (Breiman, L. Random Forests. Machine 

Learning. 2001)) used for classification. We first visually classified regions on chromosome 22 

that we felt were strong candidates as PMDs or non-PMDs (Supplementary Table 7). These 

regions were then used to train a random forest, which was implemented in the python function 

RandomForestClassifier from the module sklearn.ensemble32. Specifically, we then divided 

these regions into 10kb nonoverlapping bins and computed the percentiles of the methylation 

levels at the CG sites within each bin. We divided genome into 10kb non-overlapping bins 

mainly to reduce the effect of smaller DNA methylation variation. PMDs were first discovered by 

Lister et al. as large (mean length = 153kb, PMID: 19829295) regions with intermediate 

methylation level (< 70%, PMID: 19829295). Consequently, we chose a large bin size (10 kb) to 

reduce the effect of methylation variations in smaller scale (such as DMRs). Furthermore, the 

features (methylation level distribution of CG sites) used in classifier required enough CG sites 

inside each bin to accurately estimate this distribution, which necessitated a relatively large bin.  



We excluded 10kb bins with fewer than 10 CG sites because of the same reason mention 

above: accurately estimating the methylation level distribution of CG sites inside bin required 

enough number of sites. Therefore, for bins with very few CG sites (< 10 here), we were unable 

to classify them (into “PMD” or “non-PMD”). 

These percentiles were used as features for the random forest. The following arguments were 

supplied to the Python function: 

n_estimators = 10000, max_features=None, oob_score=True, compute_importances=True 

In this procedure, out-of-bag error estimation is used to assess the performance of the classifier. 

More specifically, when building the classifier, the training data can be bootstrap sampled, which 

leaves a portion of the data out of the classifier’s construction and can later be used to assess 

the rate at which the classifier is correctly predicting known labels. To assess the performance 

of our models, we calculated one minus the out-of-bag error rate reported by 

RandomForestClassifier, which yielded a correct prediction rate of at least 90% (PA-2 - 90.23%, 

PA-3 - 92.37%, IMR90 - 97.65%, PLA - 92.33%). 

 

Comparing PMDs Called in IMR90, PA-2, PA-3 and Placenta 

We used GAT to estimate the significance of the overlap between PMDs in different samples 

shown in Extended Data Fig. 6c. The workspace we used was the human reference genome 

(hg19) excluding ENCODE blacklisted regions. The options provided to GAT were: “--ignore-

segment-tracks --num-samples=1000 --bucket-size=10000”. 

Histone Modification Profiles Across PMDs 

To profile the histone marks in PMDs and the surrounding regions shown in Fig. 2e, f, we 

divided the 300kb upstream and downstream of each PMD into 10kb bins. The body of PMD 

was divided evenly into 10 bins. Next, we averaged the input normalized ChIP-seq RPKM for 

each bin. As a control we shuffled the PMDs and performed the same computation.  

Testing Histone Modification Enrichment and Depletion Inside and Outside of PMDs 



For each histone mark and separately for each sample (PA-2 and IMR90), we grouped the 

signal medians displayed in Fig. 2e, f by whether they were inside or outside of the PMD. Next, 

we performed a Mann-Whitney test on these groups to estimate the significance of the 

difference in signal medians inside and outside of PMDs.  

mCH Motif Calling 

To find the predominant nucleotide context of mCH in each sample, we took the top 800,000 

methylated, mCH sites (the least number of sites in the three samples displayed in Fig. 3b-d) 

that did not overlap with a heterozygous SNP and input the surrounding (+/- 5bp) nucleotides 

from the SNP-corrected reference genomes to the seqLogo package in Bioconductor. 

Distribution of Expression Across mCH Quantiles 

To examine the correlation between expression and mCH, we binned the expression levels 

genes into quantiles based on the mCH levels in the tissue where expression was measured. 

For example, the boxplot in Extended Data Fig. 8b labeled “85” contains expression levels from 

all the genes that were between the 85th and 90th quantile of mCH level. It is important to note 

that the absolute methylation level for the 85th and 90th quantile will vary from tissue to tissue. 

We took this approach to account for the differences in cellular heterogeneity between these 

tissues. 

mCH Pattern Clustering 

To identify sets of genes that share similar DNA methylation patterns in an unbiased fashion, we 

applied a procedure that combines dimensional reduction using principal component analysis, 

followed by clustering (Lister et al., 2013). We profiled the methylation level (mCAC/CAC and 

mCAG/CAG) in gene bodies (TSS-TES) and 5’ promoter regions (1 kb upstream of the TSS) 

within each of 25 samples included in this analysis (collapsed tissue replicates, NRN, GLA, H1 

and its derivatives). The methylation level in each sample for each gene was normalized by the 

average over the gene’s distal flanking region (50-100 kb upstream of TSS or downstream of 

TES). Normalized mC/C values were then log-transformed. These data were combined into a 



matrix of 104 features for each of 17,138 autosomal genes. Any bins with missing data due to 

insufficient coverage in one of the samples (0.22% of the total) were replaced with the median 

value of the entire data set. We performed singular value decomposition on this data matrix to 

identify the linear combinations of methylation features that account for the largest fraction of 

the total data variance. We retained the top 7 PCs as a low-dimensional representation of 

robust genomic methylation features, accounting for 70.3% of the total data variance. Next, we 

used k-means clustering to estimate gene sets with highly similar withinset methylation patterns. 

We chose to extract k=20 clusters to capture a diverse range of methylation features, while still 

allowing visualization and statistical enrichment analysis of functional association for each gene 

set. We repeated the clustering procedure 5 times using random initialization of the cluster 

centers, choosing as the final estimate the run with the smallest within-cluster sum of distances 

from each point to the cluster centroid.  

To display the methylation patterns within these gene clusters in Fig. 3f, we profiled the 

methylation level (mCAS/CAS) in bins of size 1 kb starting 100 kb upstream of the TSS and 

ending 100 kb downstream of the transcription end site (TES). To compare genes with different 

lengths, we divided each gene body into 10 non-overlapping bins of equal size extending from 

the TSS to the TES. Methylation levels were normalized by the flanking region as described 

above. We then linearly interpolated the gene-body mCAS/CAS data at 100 evenly spaced bins 

within the gene body in order to give roughly equal weight to the gene-body and flanking 

methylation data. To visualize the heatmaps of mCAS/CAS patterns for each of 17,138 genes, 

we smoothed and downsampled the genes 40-fold to allow representation of genome-scale 

features. 

CAC and CAG Correlation Analysis 

In Extended Data Figure 8c, d we examined the relationship between mCAC and mCAG in the 

following way. The total methylation level (mCAC/CAC or mCAG/CAG) was calculated within all 

autosomal gene bodies (from TSS to TES).  We excluded genes shorter than 2kb.  We 



computed the Spearman (rank) correlation coefficient between these two methylation levels 

across all genes.  These correlations may be diminished by noise due to sampling a finite set of 

reads for each gene. To determine the magnitude of this effect, we simulated MethylC-Seq 

basecalls under the assumption of a perfect rank correlation of the true methylation levels. The 

rank correlation of the simulated reads provides an upper bound on the level of correlation that 

could have been observed. 

 

Read Position Methylation Level Biases 

It has previously been noted that sequencing biases may erroneously be interpreted as mCH9,33. 

To test for this possibility, we constructed m-bias plots as described here9 and found a very 

slight bias in the methylation level at the beginning of our reads (Extended Data Figure 8f-h).  

Consequently, we trimmed the first 10 bases of reads in a sample with (PO-2) and without (EG-

2) mCH to see if this bias affected our identification of the CAC mCH motif. This analysis 

revealed that the original and bias-free motifs are highly concordant with the mCH motif 

becoming slightly stronger in the bias-free sample (Extended Data Figure 8i-l). Given that this 

gain was so slight, we did not feel it justified discarding roughly 10% of our data, so we 

proceeded with the untrimmed results. 

X Chromosome Inactivation 

Gender-specific methylation patterns were examined in 9 pairs of tissue samples from adult 

male (STL003) and female (STL002), as well as paired neuronal (NeuN+) and glial (NeuN–) 

samples from adult male (55yo) and female (53yo)34. For each of the genes assayed here35, we 

examined the total mCG/CG within the promoter region, defined to be a 1 kb region ending at 

the TSS, and the total mCG/CG or mCH/CH within the gene body (TSS to TES). For this 

analysis, we included 612 X-linked genes that were >1 kb in length and met a coverage criterion 

(>4000 basecalls at CG and CH positions within the gene body in all 22 samples examined). 

The heatmap in Fig. 4b shows the ratio of gene body mCH/CH in female vs. male, without any 



correction for the non-conversion rate. The black outline in Fig. 4b indicates genes that were 

found to be significantly hyper-mCH in female (likelihood ratio test, Yekutieli-Benjamini FDR ≤ 

0.15), with at least 1.2-fold greater mCH/CH in female vs. male, and with mCH/CH>0 in the 

female sample (Fisher exact test, p<0.01). The likelihood ratio test takes into account the 

sample-specific bisulfite non-conversion rate for mCH sites, as calibrated using sequencing of 

unmethylated lambda phage DNA.  

 To assess the relationship between female-specific mCH/CH and escape from X-

chromosome inactivation (XCI), we relied on a published survey of expression on the inactive 

human X-chromosome35. That study used rodent/human somatic cell hybrids to assign a XCI 

score to each gene; 0 corresponds to inactivated genes, 9 to escapees, and intermediate values 

show varying levels of expression from the inactivated X-chromosome. We used liftOver to 

match 405 of the surveyed genes to our pool of 612 X-linked genes; this set included 34 

escapee genes (XCI=9). The box plot (Fig. 4b) shows the difference between female and male 

methylation level for genes ranked according to the X-inactivation status index35. For each box, 

the central black line is the median and the box edges are the 25th and 75th percentiles.  

We used receiver operating characteristic (ROC) analysis to assess how well female-specific 

mCH hypermethylation allows discrimination of X-escapee genes (Extended Data Fig. 9b). The 

area under the ROC curve (AUC) is a statistical measure of discriminability, which ranges from 

0.5 when little or no discrimination information is present to 1 for perfect discriminability. A 

similar analysis was done to assess how informative female-specific promoter CG 

hypomethylation, female-specific promoter mCH hypermethylation and female-specific gene 

body mCG, respectively, is for predicting X-escapee genes. Results are shown in Extended 

Data Fig. c-e. 

 

Haplotype Reconstruction using HaploSeq  



First, genotypes for all donors were obtained as above. Next, Hi-C reads and paired-end 

genome sequencing reads were mapped independently using Novoalign 

(http://www.novocraft.com) to the donor variant-masked hg19 genome as described above. We 

mapped the Hi-C reads as single ends and paired them later using in-house scripts. We then 

performed GATK walkers such as Indel realignment and base recalibration to obtain high quality 

mapping. Finally, we combined our high-quality genome sequencing and Hi-C reads and 

performed HaploSeq36 to obtain higher resolution haplotypes than using Hi-C data alone. We 

then improved the resolution of our seed haplotype generated by HapCUT37 using local 

conditional phasing. Briefly, local conditional phasing is performed by Beagle (v4.0)38 using all 

known variants in the population (1000 Genomes dataset, phase1 v3). Using the seed 

haplotypes generated by HapCUT, Beagle infers the haplotype of unphased gap variants using 

a Hidden Markov Model. In order for a variant to be conditionally phased, we required a 100% 

match between the phase status present in the seed haplotype and the phase status predicted 

by Beagle.   

Allele-specific Mapping of methylome data 

We first generated modified references for each sample (STL001, STL002, STL003, and 

STL011) to avoid biasing mapping towards reads containing the hg19 reference variant. To this 

end, we used the SNP calls described above and identified high quality SNPs by recalibrating 

variants using the default parameters of variant recalibration (GATK) (2) and only genotypes of 

highest quality (100% confidence calls by GATK) were used for downstream analyses. We 

masked any heterozygous SNP with a PASS by replacing them with an “N” and replaced any 

homozygous SNP with the appropriate variant. Using these references, we remapped our 

methylome data with Bowtie21 as this aligner allows for alignment to sequences containing Ns 

using the default settings with the following modifications: "-k 2","--np 0". 

Assigning methylome reads to alleles 



Mapped methylome reads were assigned to alleles based on base calls on reads that 

overlapped phased heterozygous SNPs. For reads overlapping multiple phased heterozygous 

SNPs, they were assigned to allele with support from majority of phased heterozygous SNPs 

and reads were discarded if two alleles were with equal support. To assign reads to a particular 

allele, we used the scripts assign_read_to_allele_WGBS_se.pl found in the “assign_reads” 

folder (additional files). 

 

Allele-specific methylation analysis 

Methylome reads assigned to each allele, were then processed in the same way as that we 

used for whole sample, which is described above. Then, by comparing methylomes of two 

alleles, DMRs (i.e. allele-specific methylation (ASM) events) were called using the same 

approach as described above. We also separated ASM events that were caused by changing 

one of the alleles cytosine context (i.e., it occurred in one of the two bases following the 

methylated cytosines) and those that did not. Furthermore, we required that each allele was 

covered by at least 10 reads. The sequence context of ASM may differ in two alleles and only 

ASM events that contain CG site(s) in at least one allele were included in following analysis. 

 

Aligning RNA-seq reads to alleles 

List of genes showing allele-specific expression in each tissue sample was obtained from 

Leung, Rajagopal, and Jung et al.19 Specifically, For RNA-seq data of all tissue samples, the 

paired-end reads were mapped using Novoalign to a variant masked transcriptome genome, 

which was constructed using Useq software based on Gencode annotation (hg18). The mapped 

reads were assigned alleles according to the sequence match in each variant between two 

alleles. Then, for each allele, duplicate reads were considered as PCR duplicates and removed 

with Picard. To determine whether removing duplicate reads in RNA-seq datasets is appropriate 



during downstream analysis, we investigate the distribution of duplicate reads in terms of gene 

expression levels. If the duplicate reads are biased to the highly expressed genes the duplicate 

reads reflect gene expression levels. If not, the duplicate reads can be considered as PCR 

duplicate reads. We observed that the samples containing high duplicate reads showed 

uniformly distributed duplicate reads regardless of gene expression levels (data not shown), 

indicating that the duplicate reads contain a lot of PCR duplicate reads. To avoid any statistical 

bias during downstream analysis we decided to remove duplicate reads across whole samples. 

Although reads were aligned to variant-masked genome, there are still others biases favoring 

either of alleles. First, to reduce the effect of the mappability bias, we aligned simulated reads 

spanning surrounding variants location and then checked if one allele was favored than the 

other. If more than 5% reads were mapped to one allele than the other, those variant loci were 

removed as they are likely to subject inherent mapping bias. Second, to reduce the effect of 

copy number variation and allelically biased copy number variable regions on allelic analysis, 

we compared the coverage between two alleles based on WGS data. Any variant that had more 

than three standard deviations above the mean coverage of each haplotype was excluded. Any 

variant showing biased WGS coverage between two alleles was also excluded (binomial test p-

value less than 0.05 after Benjamini correction). Lastly, we remove heterozygous variants that 

were erroneously called during genotyping. The probability of each called heterozygous variant 

that was actually homozygous was calculated from the likelihood of observing the coverage on 

each allele from whole genome sequencing. Only heterozygous SNPs that had a FDR of less 

than 0.5% were included in downstream analysis.  

To identify allelically expressed genes, we performed binomial test (with probability 50% as null 

hypothesis) on the numbers of aligned reads of two alleles. Only reads spanning exonic regions 

were counted and only genes containing at least 10 aligned reads were tested. Allelically 

expressed genes were defined based on 5% FDR cutoff.  



Tissue and Individual Variability of Allele-specific Methylation and Expression  

We defined an ASM (and ASE) event as individual variable if there was any disagreement 

across the tissues from a single individual (e.g., FT-1 had an ASM event and SX-1 did not). 

Similarly, we called a site tissue variable if there was any disagreement across a single tissue 

from the three individuals (e.g., SB-2 had an ASM event and SB-3 did not).  

Association between Allele-specific Methylation and Expression 

If there is a strong association between between allele-specific methylation (ASM) and allele-

specific expression (ASE) events, we should expect more allelic expressed genes rather than 

bi-allelic expressed genes are proximal to ASM events. To test this, we calculated the fraction of 

ASE genes and bi-allelically expressed genes that have at least one ASM event within a certain 

distance. Bi-allelically expressed genes were defined as genes that were covered by at least 10 

reads and whose p-values given by binomial test for allelic expression were greater than 0.2. 

Then, since the distance between genuine ASM and ASE events was unknown, we varied the 

distance cutoff from 10kb to 100kb. The computation was done for all samples from triplicate 

tissues and the aggregated the results are shown in Extended Data Fig. 10b.  

Similarly, if ASE is associated with ASM, we should expect more allelic expressed genes can be 

linked to matched ASM event(s) than matched ASM event(s) with their locations shuffled. 

Therefore, we computed the fraction of ASE genes that were linked to matched ASM event(s) 

and matched ASM events but with their locations shuffled. Similar to analysis above, distance 

cutoff was varied from 10kb to 100kb. The aggregated the results of samples from triplicate 

tissues are shown in Extended Data Fig. 10c. 
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