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Supplementary Note 1: AptaCluster Details

The mathematical description below follows the preliminary conference report [1].

Data Representation

Each selection round is represented as an associative array with keys corresponding to the
species in the pool and values representing their respective frequency counts. This operation
scales linearly with N , the number of sequences in the pool. An aptamer s = (si)

n
i=1, with

a randomized region of length n, is formally described by the sequence of nucleotides si
over the alphabet Ω = {A,C,G, T} where the index i corresponds to the i-th position of
the nucleotide sequence. Furthermore, let the set of unique aptamers for pool P be defined

as S = {sj ∈ P ‖ sj 6= sk ∀j, k ∈ [1, . . . , |S|]∧
∑|S|

j=1m(sj) = N}, where m(sj) corresponds

to the frequency of si.

Dimension reduction using Locality Sensitive Hashing

The principle of LSH relies on the fact that closely related, high-dimensional data points
are likely to collapse to the same point after applying a probabilistic dimensionality reduc-
tion and will hence produce identical hash values [2].

AptaCluster capitalizes on this concept by representing each sequence sj ∈ S as an n-
dimensional vector and reducing this vector into d dimensions (d < n). Our approach
therefore produces a set Id of d randomly sampled indices i ∈ [1, . . . , n] and restricts the
number of nucleotides to be used for the hashing procedure to si∈Id for each sequence sj .
This establishes a strong correlation between the sequence similarity of a set of aptamers
and the likelihood of producing the same mapping, where the choice of d guarantees mem-
bers of the same set to differ in at most n − d positions. In other words, our approach
implicitly computes an upper bound to the edit distance.

AptaCluster then proceeds to iteratively refine this upper bound by applying a user de-
fined number of distinct hash functions to the data set. Subsequently, two sequences are
considered dissimilar with high probability if they are assigned to different sets in every
iteration. The upper bound computation is modeled as dklsh(s1, s2), where k refers to the
kth iteration and Lk(s) stands for the value of the kth hash function for sequence s. By
setting d0lsh(s1, s2) = ∞ for all pairs, the value of dlsh is refined through the following
recurrence.

dklsh(s1, s2) =

{
n− d Lk(s1) = Lk(s2)

dk−1lsh (s1, s2) Lk(s1) 6= Lk(s2)
(1)
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Here, only the assignment in the first line needs to be executed. Defining Lk(s) involves
selecting a mapping h from a family of functions F at random

F = {h : Nl → Nd ‖ h(I) = Id} (2)

where I = (1, . . . , n) represents the nucleotide positions of an aptamer of size n, followed
by applying the function

L = {Ωl → Ωd ‖ L(s) = (si) ∀ i ∈ Id} (3)

to each aptamer s. This produces a sub-string ŝ constituting the concatenation of the
nucleotides at the positions defined in Id, which is subsequently used as input to the
traditional hashing procedure. Id = (i0, . . . , id) can be efficiently computed as follows: Let
i0 ∈ [1, n] be a randomly selected index of I and define x ∈ [2, n− 1] as a random number
co-prime to n. Then, the remaining positions can be generated with

ij = (ij−1 + x) mod n, j = 1, . . . , d− 1 (4)

and
Id = (ij)

d−1
j=0 , ij < ij+1 ∀ j (5)

corresponds to the sequence of indices after sorting these in ascending order. Designing Id
using the scheme described above assures each index in I to be selected exactly once and
maximizes the probability that indices are chosen in a non-consecutive manner.

Cluster Extraction

AptaCluster establishes aptamer families in order of the species’ frequency-counts in the
pool, drawing on the assumption that this measure is related to the selective advantage of
an aptamer due to its binding affinity. Until no unassigned aptamers are left, the most fre-
quent sequence s not belonging to any group is designated to be the seed of a new cluster,
which is consequently expanded by computing a k-mer based distance between the seed
and those sequences for which dlsh was finite and for which dkmer is smaller that a user
defined cutoff. In particular,

dkmer(s
x, sy) =

4k∑
i=1

∣∣∣∣ Xi

|sx| − k + 1
− Yi
|sy| − k + 1

∣∣∣∣2 (6)

where Xi and Yi denotes the number of times the i-th k-mer occurs in sequence sx and sy

respectively and |si| corresponds to the length of the aptamer.
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By circumventing the need to compute distances between species not related according
to LSH, our method performs these steps in O(N ∗ m ∗ k) time, where m denotes the
maximum number of seed sequences in a hash bucket which is bounded by the size of the
largest bucket generated during LSH.

Parameters used in this study

For the experiments described in this paper, we performed a total of r = 15 iterations of
LSH while sampling 60% of the randomized region (i.e. n = 24). The parameter dcutoff = 5
is set in terms of the maximal number of point mutations any pair of sequences should
have and is converted into the k-mer distance dkmer cutoff by sampling a user defined
number of aptamers from the pool (10000 by default), artificially mutating that sequence
up to dcutoff times, and averaging over all dkmer between these mutants and the wild-type.
Using the estimator we derived in Supplementary Note 2, the value of dcutoff corresponds
to an initial sequence similarity of K = 87.5%, and thus to a probability of encountering
sequences with at least the specified similarity of 1.3861∗10−16 (see Supplementary Figure
2). Furthermore we set k = 3 for the computation of dkmer which has shown to give
reasonable results for aptamer-sized sequences.

4



Supplementary Note 2: Derivation and Convergence Analysis

The diversity of an initial pool in a SELEX experiment is a function of the sequence length.
Here, we provide a mathematical estimation of the expected number of aptamers of size n
with at least K % similarity.

Problem Statement

Let 1
k , k ∈ N be the threshold for the sequence dissimilarity according to the edit distance.

Furthermore, we define n as the length of the aptamer and assume n
k ∈ N. The expected

fraction F (n, k) of aptamers with at most k% dissimilarity can then be calculated the
sum over all possible sequences with i variable nucleotides divided by the number of all
permutations of sequences of size n:

F (n, k) =

n
k∑

i=1

f(i, n) (7)

where f(i, n) =

(
n
i

)
3i

4n
(8)

Approximation

For i ≤ n
2 we have

f(i, n) > 3 ∗ f(i− 1, n) (9)

Proof:

f(i, n) =

(
n
i

)
3i

4n
=

(
n

i−1
)
3i−1 ∗ 3

4n
∗ n− i+ 1

i
(10)

= f(i− 1, n) ∗
(
n+ 1

i
− 1

)
∗ 3︸ ︷︷ ︸

≥1 for i≤ 1
2
n

≥ 3 ∗ f(i− 1, n) (11)

Thus, we can approximate an upper bound to (7) using the last term of the expansion:

F (n, k) ≈ f(i,
n

k
) =

(
n
n
k

)
3

n
k

4n
=

(
3

1
k

4

)n

∗ n!
n
k !(n− n

k )!
(12)

Substituting x! with the Stirling approximation x! ≈
√

2πx ∗ x
e
x we get

F (n, k) ≈

(
3

1
k

4

)n

∗
√

2πn ∗
(
n
e

)n√
2π n

k ∗
( n

k
e

)n
k ∗
√

2π
(
n− n

k

)
∗
(
n−n

k
e

)n−n
k

(13)
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=

(
3

1
k

4

)n

∗
√

2πn ∗
(
n
e

)n
√

2π n
k ∗
(
n
ke

)n 1
k ∗
√

2πn
(
1− 1

k

)
∗
(
n∗(1− 1

k
)

e

)n∗(1− 1
k
)

(14)

=

(
3

1
k

4

)n

︸ ︷︷ ︸
(A)

∗
√

2πn√
2πn 1

k ∗
√

2πn
(
1− 1

k

)︸ ︷︷ ︸
(B)

∗
(
n
e

)n
(
n
ke

)n 1
k ∗
(
n(1− 1

k
)

e

)n(1− 1
k
)

︸ ︷︷ ︸
(C)

(15)

We can rewrite (C) as follows:(
n
e

)n
(
n
ke

)n 1
k ∗
(
n(1− 1

k
)

e

)n(1− 1
k
)

=

(
n
e

)n(
n
e ∗

1
k

)n 1
k ∗
(
n
e ∗ (1− 1

k )
)n(1− 1

k
)

(16)

=

(
n
e

)n(
n
e

)n 1
k ∗
(
1
k

)n 1
k ∗
(
n
e

)n(1− 1
k
) ∗
(
1− 1

k

)n(1− 1
k
)

(17)

=

(
n
e

)n(
n
e

)n 1
k
+n(1− 1

k
) ∗
(
1
k

)n 1
k ∗
(
1− 1

k

)n(1− 1
k
)

(18)

=

(
n
e

)n(
n
e

)n( 1
k
+1− 1

k
) ∗
(
1
k

)n 1
k ∗
(
1− 1

k

)n(1− 1
k
)

(19)

=
1(

1
k

)n 1
k ∗
(
1− 1

k

)n(1− 1
k
)

(20)

=

 1(
1
k

) 1
k ∗
(
1− 1

k

)(1− 1
k
)

n

(21)

=

 1(
1
k

) 1
k ∗
(
k−1
k

)(1− 1
k
)

n

(22)

=

 1

1
1
k ∗(k−1)1−

1
k

k
1
k ∗k1−

1
k


n

(23)

=

 1

1
1
k ∗(k−1)1−

1
k

k
1
k
=1− 1

k


n

(24)

=

(
k

(k − 1)1−
1
k

)n

(25)
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=

(
k(k − 1)

1
k

k − 1

)n

:= (D) (26)

Combining (A) and (D) yields:(
3

1
k

4

)n

∗

(
k(k − 1)

1
k

k − 1

)n

=

(
(3(k − 1))

1
k ∗ k

4k − 4

)n

︸ ︷︷ ︸
(E)

(27)

Hence, an estimator for F (n, k) can be written in the form of (A) * (E):

F (n, k) =

√
2πn√

2πn 1
k ∗
√

2πn
(
1− 1

k

) ∗
(

(3(k − 1))
1
k ∗ k

4(k − 1)

)n

(28)

Note, that for k ≥ 2 it follows that (E) decreases with k and (E) < 1. Hence F (n, k)
decreases at least exponentially with n where the base of the exponent decreases with k.
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Supplementary Note 3: AptaSim Details

AptaSim is a program, aimed at realistically recreating the selection process during SELEX
using error-prone PCR. For our simulation, we represent a pool as a set of sequences in
which each sequence is attributed with a count, representing its frequency, and a value
between 0 and 100 simulating the binding affinity to a putative target. Given an initial pool,
we then perform a user-defined number of iterations comprising of target affine selection
followed by error prone amplification. The remaining sequences after the selection stage
represent the sequenced portion of HT-SELEX and are stored for further analysis.

Initial Pool Generation

To allow for the inclusion of existing biases such as the base composition and nucleotide
dependencies of a pool originating from an in-vitro SELEX experiment, the input set of
sequences for the simulation is generated based on a first order Markov Chain that captures
the conditional probabilities of randomly selecting one nucleotide given the choice of the
previous. Each sequence is then assembled by randomly selecting the first nucleotide
with respect to the base composition of the training data and iteratively sampling the
remaining nucleotides according to the conditional distributions of the model. In addition,
each sequence is assigned a random initial count (≤ 5) as well as a binding affinity (≤ 25).
Finally, we simulate strong binders by choosing 100 arbitrary sequences for which the
binding affinity is uniformly sampled between 80 and 100.

Target Affine Sampling

The sampling step simulates incubation, binding, partitioning, and washing of a selection
cycle during a SELEX experiment. Assuming enriched and target affine species to have
a higher probability of selection, we sample, without replacement, 20% of the current
pool according to the distribution of the sequence counts and accept a sequence with the
probability corresponding to its binding affinity. Hence, the probability of selecting a
sequence from the pool is proportional to its frequency and affinity.

Amplification

In order to restore the pool to its original size, we simulate a number of PCR cycles in
which the amplification efficiency e ∈ [0, 1] as well as the mutation probability p ∈ [0, 1]
can be specified. The number of required PCR cycles c is computed as follows:

c =

⌈
log
(
i
x

)
log(1 + e)

⌉
where i and x correspond to the sizes of the initial and current pool respectively. In each
PCR cycle, every aptamer is then subject to amplification as many times as its current
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count and in dependency of the specified probability of amplification e. If accepted, and
based on the mutation probability p, the sequence is either duplicated or a mutant, differing
by one base from the original at a random position, is introduced into the pool.

Default Parameters

We trained our Markov Model with all sequences from selection round 2 of our IL10 ex-
periment. An initial pool of 100 million unique sequences of size 40nt was then generated
containing approximately 100 high affinity binders. We then performed a total of 10 cy-
cles. During each sampling step, 20% of the pool was retained whereas for amplification,
we found a mutation probability of p = 0.05 and an amplification efficiency of e = 0.95
as suitable parameters for realistically recreating the pool characteristics of our in-vitro
experiment.
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Supplementary Note 4: AptaMut Details

AptaMut aims at extracting favorable mutants by recognizing that at each cycle, the
sequenced aptamers represent a fraction of the true pool size (Figure 1b in paper). This
is achieved by first identifying potentially favorable mutants in each cluster (sequence
extraction) and consequently scoring each mutant, in which the likelihood of observing a
divergent enrichment compared to the clusters’ seed sequence is computed. A log-score
near zero indicates a neutral mutant while significantly positive (respectively negative)
log scores indicate a possibility of beneficial (respectively detrimental) mutants. In the
following, we describe the details of each of these steps.

Sequence Extraction

We define a mutant as a sequence present in a particular cycle X and the next cycle
X + 1, but that has never been encountered in the earliest sequenced pool. Consequently,
a potentially favorable mutant is expected to have higher enrichment as compared to its
parent sequence. Here, enrichment refers to the ratio between the mutant’s frequency in
cycles X+1 and X normalized by their respective pool sizes. We used the clustering results
of the four largest aptamer families of selection cycle 5 and extracted potential favorable
mutants. These mutants are subsequently scores as described below.

Scoring

In order to compute a score for each mutant reflecting the significance of the fold-change
in enrichment between cycles X and X+1, we developed a generative model mirroring the
experimental design of the HT-SELEX protocol. The model is based on the notion that
the sequenced aptamers at each cycle only represent a fraction of the true pool size and
that the process of selecting these sequences from the pool can be described in terms of
a Bernoulli experiment. In addition we assume that the enrichment and the amplification
processes are subject to noise modeled by a normal distribution. The model is parametrized
by the expected sequence enrichment so that different sequence enrichments correspond to
different models. Given the model built using the enrichment equal to the enrichment of
the seed, we compute the probability that the mutant’s counts in X and X + 1 could have
been generated by this model. This probability is then normalized by the probability of
the optimal counts, as described below.

We divide each selection round into three distinct sets denoted as pool, representing the
remaining sequences after selection and amplification, sample, describing the established,
sequenced portion of this pool, and experiment, standing for the unknown species form-
ing the input for the next cycle (see Fig. 1b in paper). Furthermore, let mx

s , mx
e , and

mx
p = mx

s + mx
e , be the frequency of a sequence in the sets sample, experiment, and pool

respectively. We define the enrichment of a sequence between selection cycles X and X+1
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as fx→x+1
s for the sample sets, and as fx→x+1

e for the experiment sets. Similarly, we define
the enrichment of the parent of the sequence between selection cycles as f̂x→x+1

s for the
sample sets and as f̂x→x+1

e for the experiment sets. Finally, for a mutant that is neutral
w.r.t. its parent sequence, its expected frequency in the pool X + 1 can be described as

mx+1
p ≈ c ∗ f̂x→x+1

s ∗
(
mx

p −mx
s

)︸ ︷︷ ︸
=mx

e

(29)

for any unknown count mx
p in pool X. Here, we use the constant c to model both, the

amplification stage (PCR) after each selection round and for normalization purposes.
Our model then aims at comparing the probability of observing frequencies mx

s , mx+1
s

in sample sets X, X + 1 of a mutant with the probability of observing the expected
frequencies mx

s , mx
s*f̂x→x+1

s . Let P (mx
s ,m

x+1
s , f̂x→x+1

s ) refer to the probability of si-
multaneously observing mx

s in sample set X and mx+1
s in sample set X + 1 by chance

given the expected abundance of the mutant in the experiment sets can be described as
a function of the enrichment of the parent sequence between the sample sets. Similarly,
P (mx

s , f̂
x→x+1
s ∗mx

s , f̂
x→x+1
s ) refers to the probability of the mutant being neutral, i.e. ob-

serving mx
s and f̂x→x+1

s ∗mx
s in the sample sets of X and X+ 1 respectively and under the

assumption that their actual enrichment is identical to the seed’s f̂x→x+1
s . Then, we aim

to compare P (mx
s ,m

x+1
s , f̂x→x+1

s ) and P (mx
s , f̂

x→x+1
s ∗mx

s , f̂
x→x+1
s ). We therefore define

a significance score S(mx
s ,m

x+1
s , f̂x→x+1

s ) for a mutant as the probability of the mutant’s
observed enrichment being higher than its parent, normalized by the probability of the
mutant being neutral i.e. exhibiting an enrichment rate equal to its parent sequence:

S(mx
s ,m

x+1
s , f̂x→x+1

s ) =
P
(
mx

s ,m
x+1
s , f̂x→x+1

s

)
P
(
mx

s , f̂
x→x+1
s ∗mx

s , f̂
x→x+1
s

) (30)

In what follows, we show how to compute P (mx
s ,m

x+1
s , f̂x→x+1

s ) and P (mx
s , f̂

x→x+1
s ∗

mx
s , f̂

x→x+1
s ). The observations mx

s and mx+1
s in the sample sets can be interpreted as

the result of partitioning pools X and X + 1 into sample and experiment sets and hence
as random variables following binomial distributions, in which mx

s and mx+1
s correspond

to a known number of successes out of mx
p and mx+1

p unknown trails respectively. For any
frequency of a mutant mp in each pool, the probability of observing exactly ms mutants
in the sample set is then given by the probability mass function (pmf )

fB(ms,mp, p) = Pr(X = ms) =

(
mp

ms

)
pms(1− p)mp−ms (31)

of the Binomial distribution B(mp, p) and the probability of simultaneously observing both
frequencies in the sampled pools corresponds to the product of their respective pmfs. Since
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the original number of mutants in pool X is an unknown quantity, we have to consider all
possible pool sizes in order to estimate P (mx

s ,m
x+1
s , f̂x→x+1

s ):

P
(
mx

s ,m
x+1
s , f̂x→x+1

s

)
=

∞∑
mx

p=mx
s

fB
(
mx

p ,m
x
s , p
)
∗ fB

(
mx+1

p ,mx+1
s , p

)
(32)

So far, our model is only concerned with possible variations in the number of mutant
sequences in the pool and does not take into account any biases that might affect the
enrichment value of the seed sequence. These noises, such as artifacts during PCR and
sequencing errors, might lead to an overestimation or underestimation of the true enrich-
ment value. We therefore extend our approach with a continuous random variable f to
model the observed seed enrichment f̂x→x+1

s in the sequenced portion of the pool. More
specifically, we assume that f follows a normal distribution N (f̂x→x+1

s , f̂x→x+1
s /3) with

mean f̂x→x+1
s and standard deviation f̂x→x+1

s /3. We then express the probability of ob-
serving frequencies of a mutant in sample sets X, X + 1 and the probability of observing
its expected frequencies as functions of f . It follows that the new significance score of a
mutant, denoted as Ŝ, corresponds to ratio of the expected values of these functions:

Ŝ(mx
s ,m

x+1
s , f̂x→x+1

s ) =

∫∞
0 P

(
mx

s ,m
x+1
s , f

)
p(f)df∫∞

0 P
(
mx

s , f̂
x→x+1
s ∗mx

s , f
)
p(f)df

(33)

Here, p(f) is the probability density function of the normal distributionN (f̂x→x+1
s ), f̂x→x+1

s /3).
Finally, we approximate each integral within three standard deviations from the mean by
discretizing p(f) into equidistant intervals of length d denoted as k = b2f̂x→x+1

s /dc-1. Be-
low, we show how to approximate the integral on the example of the numerator and note
that the denominator is approximated in a similar manner.∫ ∞

0
P
(
mx

s ,m
x+1
s , f

)
p(f)df ≈

∫ 2f̂x→x+1
s

0
P
(
mx

s ,m
x+1
s , f

)
p(f)df

≈
k∑

i=1

P
(
mx

s ,m
x+1
s , f

)
∗ P (i ∗ d ≤ f < (i+ 1) ∗ d)

(34)

Setting p = 0.5, therefore assuming that each mutant has equal chance of being selected
for sequencing, allows for the computation of the significance score Ŝ for all favorable
mutants identified during the sequence extraction step. Analogous to p, we set c = 2,
hence assuming that after selection, each pool is amplified back to its original size. For
the discretization step, we found that a value of d = 0.5 as the width of intervals yielded
the desired accuracy for our purposes. The main text we show log(Ŝ) values of the so
computed scores.
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Supplementary Figure 1: False Negative Rates

The false negative rates for the 20 largest clusters for different numbers of locality sensitive
hashing iterations in selection cycle 5. The graph shows that LSH is stable for even a small
number of iterations.
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Supplementary Figure 2: Initial Pool Composition

Comparison of the predicted pool fraction of sequences with an expected sequence similarity
K between our estimator (dashed lines) and the exact formula (continuous lines). Our
estimator provides a reasonable upper bound for the expected fraction of sequences in an
initial pool with at most K% sequence similarity.
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Supplementary Figure 3: Phylogenetic Tree of Cluster ID 2

Phylogenetic tree of the mutants from cluster ID 2. Leafs labeled with p (green) correspond
to the set of beneficial mutants in the order as depicted in Supplementary Table 3, where
leafs starting with n (blue) stand for the degenerative species. The tree was constructed
with PAUP* version 4.0 beta using the heuristic search option (1 Mio iterations) and an
initial tree construction by adding species in the order of increasing log-score.
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Supplementary Table 1: Sequences Introduced due to Muta-
genesis

Number of species with counts 1 to 5 present in the top 20 clusters of selection round 5
compared to the frequency of their occurrence in selection round 2. The overwhelming
majority of the sequences are not present in the latter.

Nr. of aptamers with frequency
1 2 3 4 5

Top 20, cycle 5 8529 2202 1074 614 465
Found in cycle 2 61 36 27 18 16
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Supplementary Table 2: Cluster ID 1 - Selected Aptamers for
Structural Analysis
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Supplementary Table 3: Cluster ID 2 - Selected Aptamers for
Structural Analysis
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