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General Experimental

Materials

Chemicals were from Sigma-Aldrich. Isoquinolines (3) ((S)-2-(1-chloro-4-hydroxyisoguinoline-3-
carboxamido)-3-(1H-indol-3-yl)propanoic acid) and (4) ((R)-2-(1-chloro-4-hydroxyisoquinoline-3-
carboxamido)-3-(1H-indol-3-yl)propanoic acid) were synthesized according to the reported
procedure’. Thiol (2) was synthesized as described?.

Mutagenesis

The M67C NDM-1 variant was generated using the 3836 NDM-1 in the pOPINF plasmid as
described’. The desired point mutation was achieved employing the QuikChange sites directed
mutagenesis kit (Stratagene) using the following primers:

forward — 5'- GGCAGCATACCAGCTATCTGGATTGCCCTGGTTTTGGTGCAG,

reverse — 5'- CTGCACCAAAACCAGGGCAATCCAGATAGCTGGTATGCTGCC.

Optimisation of protein expression system

In order to obtain a high-yield protein expression system to produce the NDM-1 M67C mutant first
the same expression system was applied that we used to produce the wild type NDM-1."" (Namely/In
details: The recombinant NDM-1 were produced in E. coli BL21(DE3) pLysS cells using 2TY media
supplemented with 50 ug/ml ampicillin and 34 pg/ml chloramphenicol. Cells were grown at 37 °C
until the ODgqo reached 0.6 - 0.7. After that the temperature was lowered to 20 °C and the cells were
induced with 0.5 mM IPTG. The cells were further incubated for 20h before harvested). Using the
wild type NDM-1 expression system low expression of the NDM-1 M67C mutant was obtained (< 0.5
mg/L of culture), which was not suitable for us and therefore we decided to optimize the expression
system. During the optimization process the expression level was judged by the SDS page that
contained the lysate of the cells obtained from the lysis with the BugBuster kit.®

To improve the expression level we tried to use different temperatures (37, 28 and 18 °C), various
IPTG levels (0, 0.1, 0.25, 0.5 and 1mM final IPTG) and different incubation times (4 and 20h), but in
all cases low expression levels were obtained. We also tried to use normal BL21(DE3) cells, made the
IPTG induction at higher OD (~ 1.3) or made the expression of the NDM-1 M67C mutant in the
presence of 50 ug/ml ZnSQ,, but the expression level was not significantly improved. Next, we also
tried to use other media such as the Terrific Broth (TB media, using a 0.5 mM IPTG) and the Studier
autoinduction media to improve the expression level. During the expression trials using TB and
autoinduction media we also tried different temperatures (37, 28 and 18 °C). A significantly improved
level of expression was obtained by using the autoinduction media at 18 °C.

Protein production and purification

Recombinant NDM-1 M67C was produced in E. coli BL21 (DE3) pLysS cells using Studier
autoinduction media® supplemented with 50 pg/ml ampicillin and 50 pg/ml chloramphenicol. The
medium was modified by addition of MgSO, and ZnSQ,, to ensure the protein was obtained as di-
Zn(11) complex (the Studier autoinduction media contains various metals salts and using original
recipe different metal-NDM-1 complexes were obtained). Cells were grown at 37 °C for 4 h, then the
temperature was reduced to 18 °C for 20h. Cell were harvested by centrifugation (10 min, 8000 rpm)
and NDM-1 M67C was purified as reported’. FPLC chromatograms and SDS-page gels from the
NDM-1 M67C purification are shown in Fig. S3.
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NDM-1 M67C labelling

NDM-1 M67C was treated with tris-(2-carboxyethyl)phosphine (TCEP, final concentration 2 mM),
then incubated on ice (5 min) and buffered exchanged into phosphate buffer (50 mM, pH 7.0, 200
mM NacCl). A concentrated stock of 100 mM 3-bromo-1,1,1-trifluoroacetone reagent in phosphate
buffer was prepared freshly prior to the reaction. NDM-1 M67C sample (0.15 mM) was treated with
3-bromo-1,1,1-trifluoroacetone (final concentration 2 mM) and incubated for 10 min at room
temperature, prior to buffer exchange into Tris buffer (50 mM, pH 7.5, 200 mM NacCl). Buffer
exchanges were performed using a PD-10 desalting column (GE Healthcare).

Kinetic analyses

Kinetic and inhibition analyses were performed as described'. K,, measurements were performed
using 0.5 nM NDM-1 and 1 nM NDM-1* for meropenem measurements and 0.25 nM NDM-1 and 2
nM NDM-1* for nitrocefin measurements.

NMR experiments

NMR measurements were conducted using a Bruker AVII 500 spectrometer equipped with a 5mm z-
gradient triple resonance inverse *H/**F(*3C) TXI probe operating at 298K using 5 mm diameter NMR
tubes (Norell). **F{*H} decoupled spectra were recorded using inverse-gated Waltz-16 *H decoupling
with rf field of 3.125 kHz. *°F 90° pulse lengths were 11 ps and spectra were typically obtained using
768 scans and a recovery delay of 1s. Data were processed with 3 Hz Lorentzian line broadening
using TopSpin 3.1 software (Bruker) and were referenced to the internal TFA standard (-75.45 ppm).
Samples contained the NDM-1*-2Zn(1l) complex (80 UM, unless otherwise stated) in Tris buffer (50
mM, pH 7.5) supplemented with 200 mM NaCl and 10% D,O. Trifluoroacetic acid (TFA, 50 uM)
was used as an internal standard. All inhibitor incubations were compared to appropriate NDM-1*
samples containing same amount of DMSO, but no inhibitor, to ensure change of chemical shift was
not the sole effect of increasing DMSO concentration. A DMSO titration curve was used for reference
(Fig. S11).

Metal binding experiments

Apo NDM-1* was obtained by incubation of the NDM-1*-2Zn(1l) complex with 10 mM EDTA in
Tris buffer (50 mM pH 7.5) supplemented with 200 mM NaCl (12 h, 4°C). The solution was then
buffer exchanged into fresh Tris buffer (50 mM pH 7.5) supplemented with 200 mM NaCl to remove
excess EDTA. Samples for metal titrations were containing 70 uM NDM-1* and 50 uM TFA as an
internal standard.
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Figure S1. Overall fold of NDM-1-2Zn(I1) complex. Note the L1 loop, which was labelled in our
studies, flanks the NDM-1 active site. The figure was generated using a di-Zn(I1)-NDM-1 complex
crystal structure (PDB id: 3SPU)*.
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Figure S2. Overlay of views derived from NDM-1 crystal structures. The L1 loop (circled) can
adopt different conformations dependent on the metallation state or the ligands bound. A —
Comparison of views from two different apo NDM-1 structures 3RKK?® (green) and 3SBL°® (magenta)
implies conformational flexibility of the L1 loop in the apo-protein. B — Comparison of apo NDM-1
(3SBL, magenta), mono-Zn(ll) NDM-1 complex (3SFP°, yellow) and di-Zn(ll) NDM-1 complex
(3SPU, wheat) views indicates that the L1 loop can adopt different conformations reflecting different
metallation states. C — Comparison of structures for the NDM-1-2Zn(l1) complex (3SPU*, wheat), the
NDM-1-2Zn(lIl) in complex with hydrolysed ampicillin (3Q6X°, blue), and the NDM-1-2Zn(ll) in
complex with L-captopril (4EXS’, red) implies the L1 loop can adopt different conformation
depending on the ligand bound. The close-ups show the different positions of the chain Met67 side on
the L1 loop. The labelled loop (L1) has average B-factor ~59 A? versus the ~28 A? for the whole
enzyme that supports the conformational flexibility of the loop (based on the crystal structure of
NDM-1 with PBD code: 3SPU).
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Figure S3. Purification of NDM-1 M67C. FPLC traces of NDM-1 M67C purification by: A —
HisTrap HP column (Ni-NTA resin) and B — gel filtration column (Superdex S200). C — SDS-PAGE
gel of NDM-1 M67C after His-tag cleavage (lane 2 and 3). Lane 1- molecular weight markers
(PageRuler Prestained Protein Ladder 10-170 kDa, Thermo Scientific).
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Figure S4. MS spectra of NDM-1 M67C (top) and NDM-1 M67C labelled with BFA (3-bromo-
1,1,1-trifluoro acetone) (bottom). The observed mass difference (+129) corresponds to attachment
of a single BFA label per a NDM-1 M67C molecule. Spectra were acquired using a Waters LCT
Premier instrument fitted with TOF analyser. The electrospray ionisation mode was used.
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Tryptic digest and MS/MS analysis
In-Solution Digestion

All reagents were prepared in 100 mM Tris buffer, pH 7.8. Samples (<500 pg) were dried in a
Vacufuge® vacuum concentrator (Eppendorf) connected to an external diaphragm pump and then
resuspended in 100 pl of 6 M urea. Disulfides were reduced at room temperature (30 min) by addition
of 5 ul of 200 mM dithiothreitol (DTT), and subsequently alkylated at room temperature (30 min)
with 30 ul of 200 mM iodoacetamide. Unreacted alkylating reagent was consumed by addition of
30 pul DTT solution (30 min). The sample was then diluted with 775 pl Tris buffer, mixed with
Sequencing Grade Modified Porcine Trypsin (Promega) at trypsin:protein sample ratio of ca. 1:50,
and digested at 37°C for 12h. Digestion was stopped by adjusting the sample to pH 3-4 by addition of
concentrated acetic acid. Digested samples were subsequently purified and desalted by solid-phase
extraction using Sep-Pak Cyg Plus Light Cartridges (Waters, 130 mg sorbent per cartridge, 55-105 uM
particle size) following the manufacturer’s protocol. The samples were then dried using a Vacufuge®
and subsequently re-dissolved in typically 15-30 pl of 50% CH;CN/0.1% CF;COOH for analysis by
MALDI-ToF-MS.

MALDI-ToF-MS and MS/MS studies

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-ToF-MS) and
MS/MS analyses were performed using a Bruker Daltonics Ultraflex™ MALDI-ToF/ToF machine,
using flexControl™ 3.0 software. Spectra were recorded in the positive ion reflectron mode, typically
with 32-38% laser energy. Calibration was performed on each day prior to the measurements using
Peptide Calibration Standard Il (Bruker Daltonics). Data were processed using Bruker Daltonics
flexAnalysis™ 3.0 software and assigned manually. For MALDI measurements, 1 pl of the sample
was  mixed with 4pul of  25-dihydroxybenzoic acid (DHB, 20mg/ml in
50% CHsCN/0.1% CF;COOH) matrix and 2 ul of this sample-matrix mixture spotted onto a
24 x 16 MTP AnchorChip™ 384 T F MALDI target and allowed to air-dry before analysis.
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Figure S5a. MALDI-ToF MS spectra of labelled and unlabelled M67C NDM-1 digested with
trypsin. Cysteine residues were reduced (DTT) and S-carbamidomethylated (Cys“*") prior to
digestion. a) Complete 'spectrum’ of the digested sample. b) Close-up view of the assigned modified
peptide (labelled: m/z = 3223.3, S-carbamidomethylated: m/z 3170.4).
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Figure S7. Dose-response curves for the inhibition of NDM-1 and NDM-1* by L- and D-
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Figure S8. Solvent exposure analyses using **F NMR.
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Monitoring the change in *°F chemical shift as a function of D,O content. A — Change in chemical
shift for CF;COOH (TFA) (m) and di-Zn(ll)-NDM-1* (o), fitted with linear functions giving (m)
y=0.00124x-0.01, R?>>0.99 and (o) y=0.00106x-0.01, R*>0.98. B — Change in chemical shift for TFA
(w) and the di-Zn(Il)-NDM-1*-D-captopril complex (o), fitted with linear functions giving (m)
y=0.00124x-0.01, R?>0.99 and (o) y=0.00090x-0.01, R*>0.98. C — Change in chemical shift for TFA
(w) and the di-Zn(I1)-NDM-1*-L-captopril complex (o), fitted with linear functions giving (m)
y=0.00125x-0.01, R*>0.99 and (o) y=0.00106x-0.01, R*>0.99. The percentage solvent exposures of
NDM-1* label were calculated as a ratio of the slope obtained for the NDM-1* complex relative to
the analogous slope for TFA in the sample (set to 100% as a fully exposed small molecule signal).
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Sequestering metal from the NDM-1*-2Zn(1l) complex by 10 mM EDTA is rapid. B — Treatment of
the NDM-1*-2Zn(ll)-D-captopril complex with 10 mM EDTA leads to a decrease in the signal
corresponding to the initial complex and the appearance of the peaks characteristic of apo protein.
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Figure S10. Binding of D- (A) and L-captopril (B) to NDM-1* as followed by *F NMR.
Conditions were as described in the Experimental Section.
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Molar fraction of protein-ligand complex (L- captopril (A) and D -captopril (B)) as a function of free
ligand concentration. Data were fitted with equation (1).
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Figure S12. Titration of di-Zn(11)-NDM-1* (70 uM) with isoquinoline (4). Significant signal
broadening and appearance of a second peak is observed at higher concentrations of isoquinoline (4).
The change into a °F chemical shift of the original di-Zn(I11)-NDM-1* peak is attributed to increasing
DMSO concentration in the sample, as determined by titration with DMSO (Figure S13). Note the
binding mode of isoquinoline inhibitor of MBLs is unknown.
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Figure S13. DMSO induced chemical shift experiments. Increasing the concentration

of DMSO

induces a change in chemical shift of the *°F signal. When the change in the **F CF,-COOH signal
shift is subtracted from the corresponding change in the NDM-1* chemical shift, a DMSO induced

change in signal shift is apparent. The dependence of signal shift on DMSO content can be
a linear function as follows: y=0.01421x, R*>0.99 (OriginPro 8.5.1).
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Figure S14 "*F NMR spectra of NDM-1* treated with isoquinoline (4) then p-captopril
9F signal recovers after addition of D-captopril.

fitted with

. Note the
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Figure S15. Formation of the di-Zn(I1)-NDM-1* complex with (3) as observed by **F NMR.

A — F NMR spectra of titration of (3) into a di-Zn(11)-NDM-1* solution. B — K fitting for binding
of (3) to di-Zn(11)-NDM-1* gives a value 131+24 uM. Data were fitted with equation (1) (see main
text, OriginPro 8.5.1) defining the dependent variable as Agps/Amax , Where Agps = 8o - Sobss Amax = 0o -
Omax and O, Oops, Omax are chemical shifts of the initial protein peak, observed peak and peak with
maximal shift corresponding to saturated protein-ligand complex, respectively.
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