

Supporting Information © Wiley-VCH 2013

69451 Weinheim, Germany

Modifying Alkylzinc Reactivity with 2,2'-Dipyridylamide: Activation of *t*Bu–Zn Bonds for *para*-Alkylation of Benzophenone**

David R. Armstrong, Jennifer A. Garden, Alan R. Kennedy, Robert E. Mulvey,* and Stuart D. Robertson

anie_201302426_sm_miscellaneous_information.pdf

Table of Contents

Additional Crystal Information
Crystallographic Structure of [{(dpa)Zn(tBu)} ₂], 2
Crystallographic Structure of [{K(THF) ₆ } ⁺ {Zn(tBu) ₂ (dpa)Zn(tBu) ₂ } ⁻], 5 4
Experimental5
Synthesis of Crystalline Materials
Benchmark reactivity studies: nucleophilic addition towards benzophenone8
Method A - Work-Up Procedure
Stoichiometric Reactions
Catalytic Reactions
NMR Spectra11
DOSY and Variable Temperature NMR Spectroscopic Analysis of 2
DFT Calculations21
[{(dpa)Zn(tBu)}2]21
$[(TMEDA)_2Na_2(\mu-dpa)_2Zn(tBu)_2]22$
Dpa Principal Bond Lengths (Å)22
Dpa Principal Bond Angles (°)23
Dpa Principle Bond Indices23
Dpa Charges24
Dpa Principal Bond Lengths (Å) and Angles (°)24
Dpa Principal Bond Indices25
Dpa Charges25
Anion of 4 : $[Zn(tBu)_2(dpa)Zn(tBu)_2]$ 26
Principal Bond Lengths (Å)26
Principal Bond Angles (°)26
Principal Bond Indices27
Charges27
Discussion of Dpa Bond Lengths and Angles
References

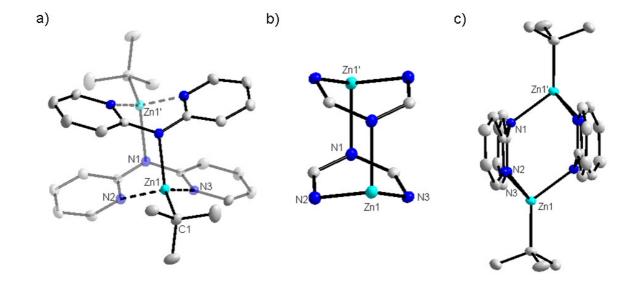
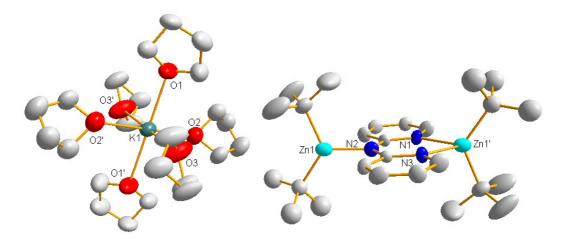

Table of Figures

Figure S1 Molecular structure of heteroleptic 24
Figure S2 Anion of solvent separated ion pair structure of 54
Figure S3 ¹ H NMR Spectrum of [{(dpa)Zn(tBu)} ₂] (2)11
Figure S4 ¹³ C NMR Spectrum of [{(dpa)Zn(<i>t</i> Bu)} ₂] (2)11
Figure S5 DOSY NMR Spectrum of [{(dpa)Zn(<i>t</i> Bu)} ₂] (2)12
Figure S6 High concentration ¹ H NMR spectrum of [{(dpa)Zn(<i>t</i> Bu)} ₂] (2)12
Figure S7 Medium concentration ¹ H NMR spectrum of $[{(dpa)Zn(tBu)}_2]$ (2)13
Figure S8 Low concentration ¹ H NMR spectrum of [{(dpa)Zn(<i>t</i> Bu)} ₂] (2)13
Figure S9 Variable concentration ¹ H NMR spectra of [{(dpa)Zn(<i>t</i> Bu)} ₂] (2)14
Figure S10 Variable temperature ¹ H NMR spectra of $[{(dpa)Zn(tBu)}_2]$ (2)14
Figure S11 ¹ H NMR Spectrum of [(TMEDA) ₂ Na ₂ (μ -dpa) ₂ Zn(<i>t</i> Bu) ₂] (3)15
Figure S12 ¹³ C NMR Spectrum of [(TMEDA) ₂ Na ₂ (μ -dpa) ₂ Zn(<i>t</i> Bu) ₂] (3)15
Figure S13 ¹ H NMR Spectrum of $[{Na(THF)_6}^+{Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$ (4)16
Figure S14 ¹³ C NMR Spectrum of $[{Na(THF)_6}^+ {Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$ (4)16
Figure S15 ¹ H NMR Spectrum of $[{K(THF)_6}^+ {Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$ (5)17
Figure S16 ¹³ C NMR Spectrum of $[{K(THF)_6}^+{Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$ (5)17
Figure S17 Crude NMR Spectrum of 4- <i>tert</i> -butylbenzophenone18
Figure S18 Structure and relative energies of model 2 and conformational isomers 22
Figure S19 Graphical representation of the resonance delocalisation of dpa28

Additional Crystal Information

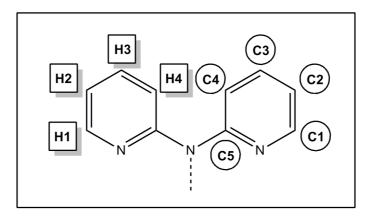
Compound	2	3	4	5
Empirical formula	$C_{28}H_{34}N_6Zn_2$	$C_{40}H_{66}N_{10}Na_2Zn$	$C_{50}H_{92}N_3NaO_6Zn_2$	$C_{50}H_{92}KN_3O_6Zn_2$
M _r (g mol ⁻¹)	585.35	798.38	985.00	1001.11
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	P2 ₁ /c	P2 ₁ /n	P -1	P-1
a/ Å	9.4833(3)	11.5137(3)	10.0075(11)	9.8787(6)
b/ Å	10.4377(4)	21.6403(4)	11.1283(9)	11.2247(7)
c/ Å	14.0888(5)	18.3837(3)	13.3084(15)	13.5206(7)
α (⁰)	90	90	69.353(9)	72.296(5)
β (^o)	105.844(4)	93.636(2)	85.491(9)	83.032(5)
γ (⁰)	90	90	84.723(8)	84.558(5)
V/Å ³	1341.58(8)	4571.26(16)	1379.3(2)	1415.02(14)
Ζ	2	4	1	1
20max	58.0	57.9	58.0	60.4
Measured reflections	7483	23176	16565	15934
Unique reflections	3451	10516	6820	7408
R _{int}	0.0284	0.0243	0.0346	0.0309
Observed rflns $[I > 2\sigma(I)]$	2840	8121	5614	5590
μ (mm⁻¹)	1.816	0.594	0.922	0.965
No. of parameters	166	492	321	359
R [on F, obs rflns only]	0.0413	0.0388	0.0606	0.0642
wR [on F ² , all data]	0.1039	0.0864	0.1679	0.1874
GoF	1.065	1.032	1.057	1.034
Largest diff. peak/hole/e Å ⁻³	1.583/-0.732	0.549/-0.494	0.912/-0.723	0.911/-0.597


 Table 1 Crystallographic data and refinement details for compounds 2-5.

Crystallographic Structure of [{(dpa)Zn(tBu)}₂], 2

Figure S1 a) Molecular structure of heteroleptic **2** with thermal ellipsoids at 50% probability level and hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Zn1-N1, 2.116(2); Zn1-N2, 2.079(2); Zn1-N3, 2.070(2); Zn1-C1, 2.005(3); C1-Zn1-N1, 126.47(10); C1-Zn1-N2, 122.61(10); C1-Zn1-N3, 123.80(10); N1-Zn1-N2, 94.13(8); N1-Zn1-N3, 93.25(8); N2-Zn1-N3, 85.99(8); b) fragment of **2** highlighting the "hourglass" shaped (NCNCNZn)₂ core; c) side-on view of **2**.

Crystallographic Structure of [{K(THF)₆}⁺{Zn(tBu)₂(dpa)Zn(tBu)₂}⁻], 5


Figure S2 Cation and anion of solvent separated ion pair structure of **5** with thermal ellipsoids at 50% probability level and hydrogen atoms and disorder components omitted for clarity.

Experimental

All reactions were performed under a protective argon atmosphere using standard Schlenk techniques. Hexane, toluene and THF were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use. BuNa,^[1] KCH₂SiMe₃,^[2] tBu₂Zn^[3] and [(TMEDA)Na(TMP)(tBu)Zn(tBu)], **1**^[3] were prepared according to literature methods. NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer, operating at 400.03 MHz for ¹H and 100.59 MHz for ¹³C, or a Bruker DPX 500 MHz spectrometer, operating at 500.13 MHz for ¹H and 125.76 MHz for ¹³C. Dipyridylamine and benzophenone were purchased from Sigma-Aldrich and were used as received.

Synthesis of Crystalline Materials

Synthesis of [{(dpa)Zn(*t*Bu)}₂], **2**: $M_r = 585.35$ g. Dpa(H) (0.34 g, 2 mmol) was dissolved in a mixed hexane (10 mL)/toluene (20 mL) solvent system. This colourless solution was added to a solution of freshly prepared *t*Bu₂Zn (0.36 g, 2 mmol) in hexane (10mL). The resultant pale yellow solution deposited a crop of colourless crystals after 18 h [yield 0.41 g; based upon the dpa(H) stoichiometry, 70%]. ¹H NMR (400.03 MHz, C₆D₆, 300K): δ = 7.77 and 7.72 (br. s, 2H, H1-dpa), 7.00 and 6.89 (br. s, 2H, H3-dpa), 6.72 (br. s., 4H, H4-dpa), 6.25 and 5.99 (br. s, 8H, H2-dpa), 1.80 and 1.23 ppm, (br. s, 9H, *t*Bu). ¹³C NMR (100.59 MHz, C₆D₆, 300K): δ = 163.1 (C5-dpa), 146.6 and 145.5 (C1-dpa), 139.3 (C3-dpa), 137.6 and 122.6 (C4-dpa), 113.9 (C2-dpa), 111.3 (C3-dpa), 35.4 and 33.6 ppm (*t*Bu).

Synthesis of $[(TMEDA)_2Na_2(\mu-dpa)_2Zn(tBu)_2]$, **3**: M_r = 798.38 g. TMP(H) (0.34 mL, 2 mmol) was transferred via syringe to a suspension of freshly prepared BuNa (0.16 g, 2 mmol) in hexane (10 mL). The colourless suspension was allowed to stir for 1 hour at ambient temperature. A solution of tBu_2Zn (0.36 g, 2 mmol) in hexane (10 mL) was added to the suspension via cannula, followed by 0.30 mL of TMEDA. Gentle heating produced a pale yellow solution, to which dpa(H) (0.34 g, 2 mmol) was added. This immediately produced a vivid orange solution. The reaction mixture was transferred to the refrigerator (4^oC) where a crop of orange crystals [yield 0.56 g; based upon the dpa(H) stoichiometry, 70%] were deposited after 18 h.

¹H NMR (500.13 MHz, C₆D₆, 300K): δ = 8.09 (br. s, 4H, H1-dpa), 7.10 (br. t, 4H, *J*=7.2 Hz, H3-dpa), 6.96 (br. d, *J*=10.5 Hz, 4H, H4-dpa), 6.30 (br. t, 4H, *J*=5.7 Hz, H2-dpa), 1.74 (s, 24H, CH₃-TMEDA) 1.69 (s, 8H, CH₂-TMEDA), 1.57 ppm (br. s, 18H, *t*Bu). ¹³C NMR (125.76 MHz, C₆D₆, 300K): δ = 165.1 (C5-dpa), 148.9 (C3-dpa), 137.2 (C4-dpa), 113.5 (C1-dpa), 111.2 (C2-dpa), 56.9 (CH₂-TMEDA), 45.5 (CH₃-TMEDA), 35.8 (*t*Bu), 20.7 ppm (quat. *t*Bu).

Synthesis of $[{Na(THF)_6}^{+}{Zn(tBu)_2(dpa)Zn(tBu)_2}^{-}]$, **4**: $M_r = 985.00$ g. A solution of tBu_2Zn (0.36 g, 2 mmol) in hexane (10 mL) was added to a suspension of freshly prepared BuNa (0.16 g, 2 mmol) in hexane (10 mL) via cannula. Dpa(H) (0.34 g, 2 mmol) was added to the resultant solution, producing an orange suspension that was allowed to stir for 20 minutes at ambient temperature. Upon addition of toluene (5 mL) and THF (1.5 mL) an orange solution was produced. Approximately half of the solvent was removed in vacuo and the solution was transferred to the refrigerator

(4^{\circ}C). A crop of orange crystals (yield, 0.37 g; 19% out of a maximum of 50% based upon the *t*Bu₂Zn stoichiometry) was deposited after 18 h. Labile THF is lost from the crystalline solid upon isolation, which is reflected in low integration values in NMR spectroscopic analyses.

Rational synthesis of $[{Na(THF)_6}^+{Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$. Dpa(H) (0.34 g, 2 mmol) was added to a freshly prepared suspension of BuNa (0.16 g, 2 mmol) in hexane and the reaction mixture was allowed to stir for 1 hour. A hexane solution of tBu_2Zn (0.72 g, 4 mmol) was injected, followed by toluene (5 mL) and THF (1.5 mL), producing an orange solid (yield, 0.41 g; 42% out of a maximum of 100% based on the tBu_2Zn stoichiomtery).

¹H NMR (500.13 MHz, C₆D₆, 300K): δ = 7.92 (br. s., 2H, H1-dpa), 7.05 (br. s., 2H, H3-dpa), 6.92 (br. s., 2H, H4-dpa), 6.25 (br. s., 2H, H2-dpa), 3.51 (m, 16H, α -THF), 1.39 (m, 16H, β -THF), 1.25 ppm (br. s., 36H, *t*Bu).¹³C NMR (125.76 MHz, C₆D₆, 300K): δ = 148.3 (C1-dpa), 137.7 (C3-dpa), 113.3 (C4-dpa), 111.7 (C2-dpa), 67.8 (α -THF), 32.8 (*t*Bu), 25.7 (β -THF), 24.8 ppm (*t*Bu quaternary).

Synthesis of $[{K(THF)_6}^+{Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$, **5**: M_r = 1001.11 g. Dpa(H) (0.34 g, 2 mmol) was added to a freshly prepared suspension of K(CH₂SiMe₃) (0.25 g, 2 mmol) in hexane (10 mL). TMEDA (0.60 mL, 4 mmol) was added to this beige suspension. Approximately half of the solvent was removed in vacuo and THF (10 mL) was added to produce a yellow-orange solution. tBu_2Zn (0.36 g, 2mmol) in hexane (10 mL) was introduced and the resultant orange solution was transferred to the freezer, where a crop of orange crystals (yield 0.27 g; 14% out of a maximum of 50% based upon the tBu_2Zn stoichiometry) was deposited after 72 h. Labile THF is lost from the crystalline solid upon isolation, which is reflected in low integration values in NMR spectroscopic analyses.

¹H NMR (400.03 MHz, C₆D₆, 300K): δ = 8.04 (br. s., 2H, H1-dpa), 7.05 (br. t., 2H, H3-dpa), 6.76 (br. d., 2H, H4-dpa), 6.27 (br. t., 2H, H2-dpa), 3.45 (br. s, 15H, α-THF), 1.39 (m, 15H, β-THF), 1.36 (br. s, 36H, *t*Bu). ¹³C NMR (100.59 MHz, C₆D₆, 300K): δ = 148.1 (C1-dpa), 137.6 (C3-dpa), 115.1 (C4-dpa), 111.7 (C2-dpa), 67.8 (α-THF), 34.2 (*t*Bu), 25.7 (β-THF) and 23.0 ppm (quat. *t*Bu).

S7

Benchmark reactivity studies: nucleophilic addition towards benzophenone

Method A - Work-Up Procedure

To the reaction mixture, deionised water (10 mL), 2 M HCl (20 mL) and diethyl ether (20 mL) were added. The organic layer was separated from the aqueous layer and the aqueous layer was washed with diethyl ether/hexane (3 x 20 mL). Magnesium sulfate was used to dry the combined organic layers. Solvent was removed in vacuo and the crude residue was spiked with 10 mol % hexamethylbenzene [0.0162 g, 0.1 mmol for 1 mmol scale (stoichiometric) reactions; 0.081 g, 0.5 mmol for 5 mmol scale (catalytic) reactions]. ¹H NMR spectroscopic analysis was performed and the relative yields of 2- and 4-*tert*-butylbenzophenone, benzhydrol and diphenyl-*tert*-butylmethanol were determined by relative integration. Spectroscopic data show resonances that are in good agreement with the reference standard of a commercially available sample of 4-*tert*-butylbenzophenone.

Stoichiometric Reactions

Control Reaction

A standard solution of tBu_2Zn (2 mL of a 0.5 M solution in hexane, 1 mmol) was transferred to a Schlenk flask under argon atmosphere. A further 6 mL of hexane was added, followed by benzophenone (0.18 g, 1 mmol). The reaction mixture was allowed to stir at ambient temperature for 18 h prior to work-up as per Method A.

Donor Amines

A standard solution of tBu_2Zn (2 mL of a 0.5 M solution in hexane, 1 mmol) was transferred to a Schlenk flask under argon atmosphere, followed by 6 mL of hexane. Subsequently, a donor amine (either pyridine, 0.16 mL, 2 mmol or TMEDA, 0.15 mL, 1 mmol) was added. Upon addition of pyridine an orange solution was immediately produced. Benzophenone (0.18 g, 1 mmol) was then added and the reaction mixture was allowed to stir for 18 h at ambient temperature prior to work-up as per Method A.

[(TMEDA)Na(TMP)(tBu)Zn(tBu)], 1

Crystalline sodium zincate **1** (0.46 g, 1 mmol) was dissolved in hexane (8 mL) to produce a primrose solution. Benzophenone (0.18 g, 1 mmol) was added, producing a vivid colour change to emerald green. The reaction mixture was stirred at ambient temperature for 18 h, prior to work up as per Method A.

$[(TMEDA)_2Na_2(\mu-dpa)_2Zn(tBu)_2], 3$

BuNa (0.16 g, 2 mmol) was suspended in hexane (6 mL) and dpa(H) (0.34g, 2 mmol) was added. The resultant beige suspension was allowed to stir for 45 minutes at ambient temperature. To this, TMEDA was injected (0.30 mL, 2 mmol), followed by a hexane solution of tBu_2Zn (2 mL of a 0.5 M solution, 1mmol). Benzophenone (0.18 g, 1 mmol) was subsequently added and the reaction was stirred at ambient temperature for 18 h, over which time a colour change from orange to green was observed. The reaction was worked up according to Method A.

[{Na(THF)₆}⁺{Zn(tBu)₂(dpa)Zn(tBu)₂}⁻], 4

Crystalline sodium zinczincate **4** (0.99 g, 1 mmol) was suspended in hexane (8 mL). To this, benzophenone (0.18g, 1 mmol) was added and the reaction mixture was stirred for 18 h at ambient temperature prior to work-up following the procedure outlined in Method A.

Catalytic Reactions

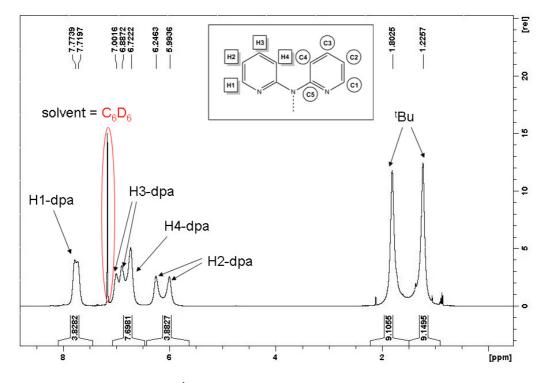
Control Reaction

For control purposes, a standard solution of tBu_2Zn (10 mL of a 0.5 M solution in hexane, 5 mmol) was transferred to a Schlenk flask under argon atmosphere. A

further 30 mL of hexane was added, followed by benzophenone (0.90 g, 5 mmol). The reaction mixture was allowed to stir for 18 h under reflux conditions prior to work-up as per Method A.

10 mol % [(TMEDA)Na(TMP)]

BuNa (0.04g, 0.5 mmol) was suspended in hexane (30 mL). TMPH (0.09 mL, 0.5 mmol) was added and the reaction mixture was allowed to stir for 45 minutes. Subsequently, tBu_2Zn (10 mL of a 0.5 M solution of tBu_2Zn in hexane, 5 mmol), TMEDA (0.08 mL, 0.5 mmol), and benzophenone (0.90 g, 5 mmol) were added. The reaction mixture was stirred under reflux conditions for 18h, prior to work-up according to Method A.


10 mol % [(TMEDA)Na(dpa)]₂

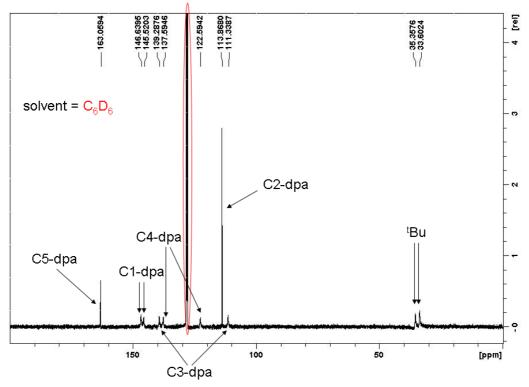
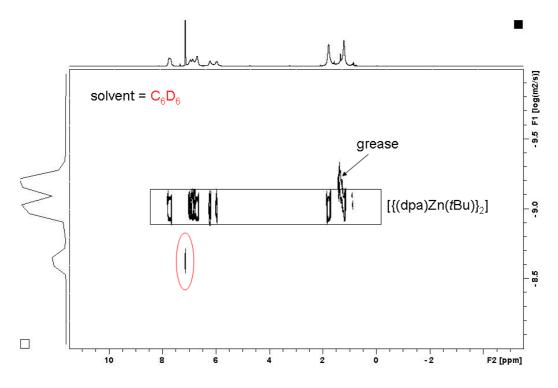
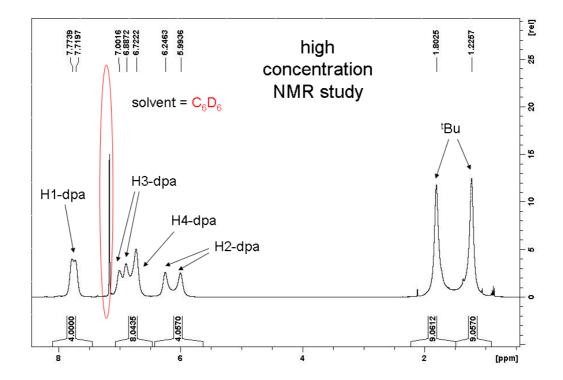
BuNa (0.08 g, 1 mmol) was suspended in hexane (30 mL) and dpa(H) (0.17g, 1 mmol) was added. The resultant beige suspension was allowed to stir for 45 minutes at ambient temperature. To this, TMEDA was injected (0.15 mL, 1 mmol), followed by a hexane solution of tBu_2Zn (10 mL of a 0.5 M solution, 5mmol). Benzophenone (0.90 g, 5 mmol) was added and the reaction mixture was allowed to stir for 18 h under reflux conditions, prior to work-up as per Method A.

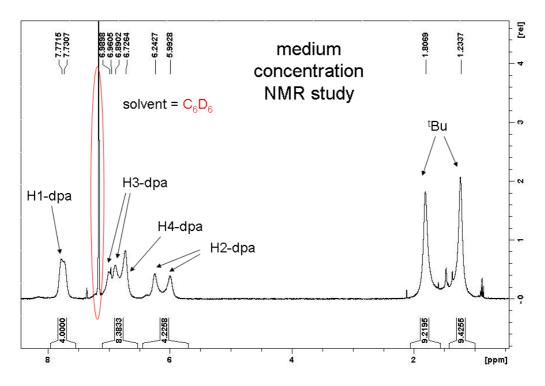
10 mol % [{Na(THF)₆⁺{Zn(*t*Bu)₂(dpa)Zn(*t*Bu)₂}⁻]

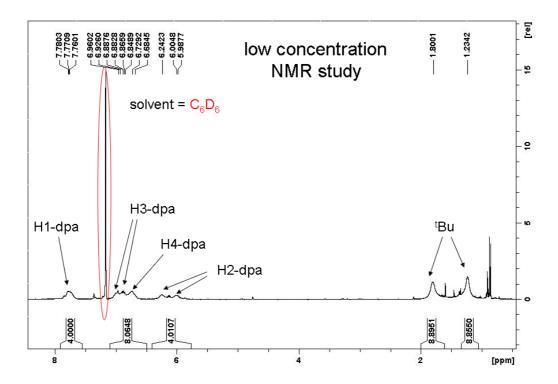
Sodium zinczincate **4** (0.49g, 0.5 mmol) was suspended in hexane (30 mL) and a hexane solution of tBu_2Zn was injected (10 mL of a 0.5 M solution of tBu_2Zn in hexane, 5 mmol). Following the addition of benzophenone (0.90 g, 5 mmol), the reaction was stirred for 18 h under reflux conditions, prior to work-up following Method A.

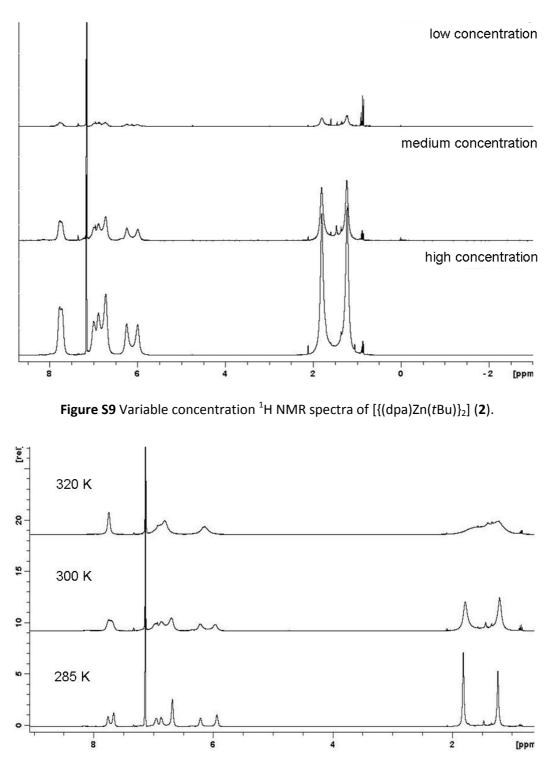
NMR Spectra

Figure S3 ¹H NMR Spectrum of $[{(dpa)Zn(tBu)}_2]$ (2).


Figure S4 ¹³C NMR Spectrum of [{(dpa)Zn(tBu)}₂] (2).


Figure S5 DOSY NMR Spectrum of [{(dpa)Zn(*t*Bu)}₂] (2).


Figure S6 High concentration ¹H NMR spectrum of $[{(dpa)Zn(tBu)}_2]$ (2).

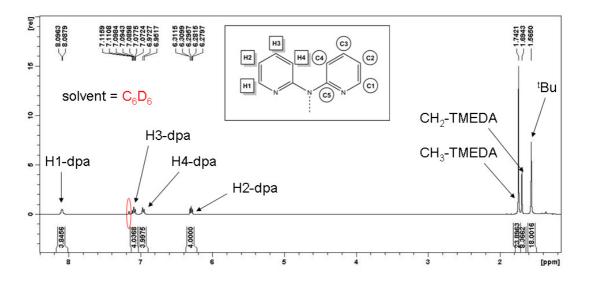
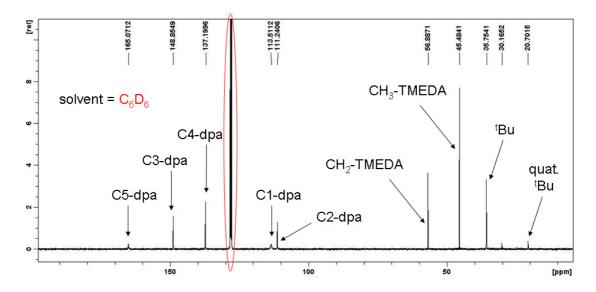
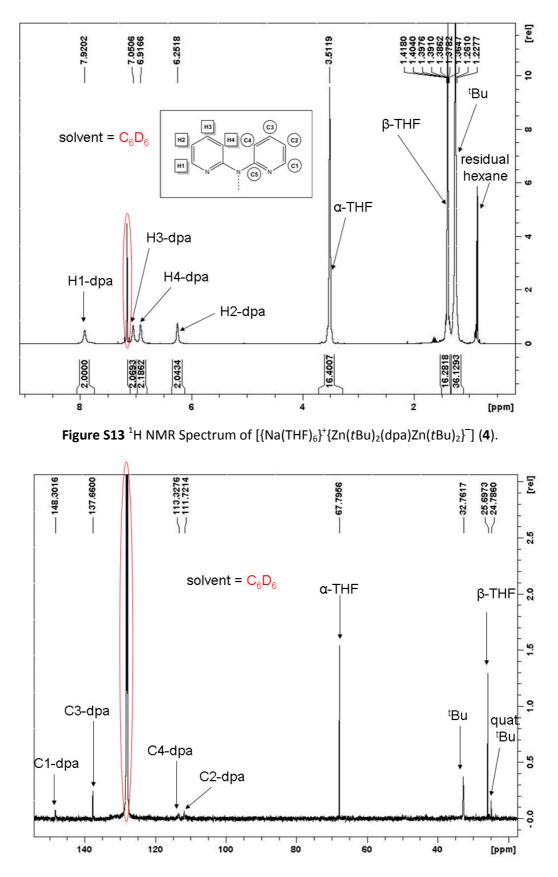
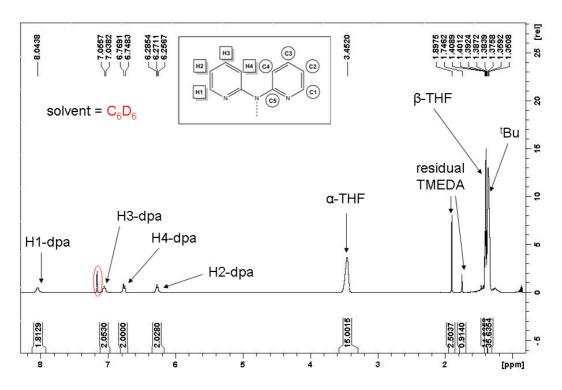

Figure S7 Medium concentration ¹H NMR spectrum of $[{(dpa)Zn(tBu)}_2]$ (2).

Figure S8 Low concentration ¹H NMR spectrum of $[{(dpa)Zn(tBu)}_2]$ (2).

Figure S10 Variable temperature ¹H NMR spectra of $[{(dpa)Zn(tBu)}_2]$ (2) in C₆D₆ solvent.

Figure S11 ¹H NMR Spectrum of $[(TMEDA)_2Na_2(\mu-dpa)_2Zn(tBu)_2]$ (3).

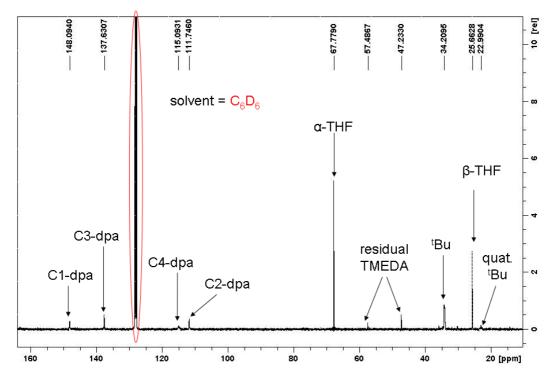

Figure S12 13 C NMR Spectrum of [(TMEDA)₂Na₂(μ -dpa)₂Zn(*t*Bu)₂] (3).

Figure S14 ¹³C NMR Spectrum of $[{Na(THF)_6}^+{Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$ (4).

Figure S15 ¹H NMR Spectrum of $[{K(THF)_6}^{+}{Zn(tBu)_2(dpa)Zn(tBu)_2}^{-}]$ (5).

Figure S16 ¹³C NMR Spectrum of $[{K(THF)_6}^+ {Zn(tBu)_2(dpa)Zn(tBu)_2}^-]$ (5).

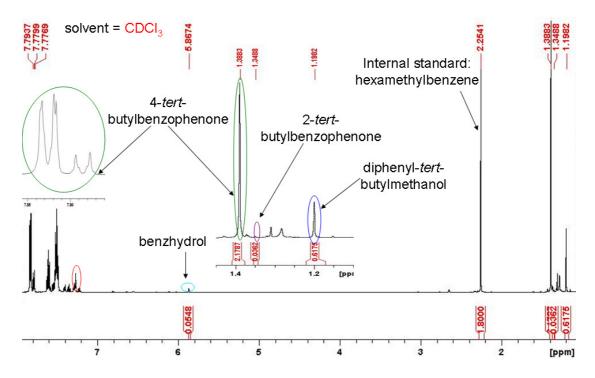


Figure S17 Crude NMR Spectrum of 4-tert-butylbenzophenone and additional by-products.

DOSY and Variable Temperature NMR Spectroscopic Analysis of 2

The Diffusion-Ordered Spectroscopy (DOSY) NMR experiments were performed on a Bruker AVANCE 400 NMR spectrometer operating at 400.13 MHz for proton resonance under TopSpin (version 2.0, Bruker Biospin, Karlsruhe) and equipped with a BBFO-z-atm probe with actively shielded z-gradient coil capable of delivering a maximum gradient strength of 54 G/cm. Diffusion ordered NMR data was acquired using the Bruker pulse program dstegp3s employing a double stimulated echo with three spoiling gradients. Sine-shaped gradient pulses were used with a duration of 3 ms together with a diffusion period of 100 ms. Gradient recovery delays of 200 µs followed the application of each gradient pulse. Data was accumulated by linearly varying the diffusion encoding gradients over a range from 2% to 95% of maximum for 64 gradient increment values. DOSY plot was generated by use of the DOSY processing module of TopSpin. Parameters were optimized empirically to find the best quality of data for presentation purposes.

At ambient temperature, ¹H and ¹³C NMR spectra of **2** in C_6D_6 solution display two sets of pyridyl resonances and two *t*Bu resonances (Figure S3 and Figure S4), where one set may be expected due to the centre of symmetry of **1** in the solid state. Variable temperature ¹H NMR analysis revealed that these resonances coalesce at 320K, whilst cooling to subambient temperature enhances their separation. A variable concentration study (Figure S6 – S9), alongside a DOSY NMR spectrum (Figure S5), suggest the two sets of resonances belong to the same species, hence this effect is likely to be a result of conformational isomerism as opposed to any dimer/monomer equilibrium (refer to DFT calculations for further information).

Chemical Shift (ppm)	Peak Assignment	Diffusion Co-efficient D $(10^{-10}) \text{ m}^2 \text{ s}^{-1}$
7.73	H1-dpa	0.545
6.86	H3-dpa	1.007
6.70	H4-dpa	0.782
6.22	H2-dpa	0.657
1.79	<i>t</i> Bu	0.782
1.21	<i>t</i> Bu	0.840

 Table S2 Diffusion coefficients obtained from ¹H DOSY NMR experiment.

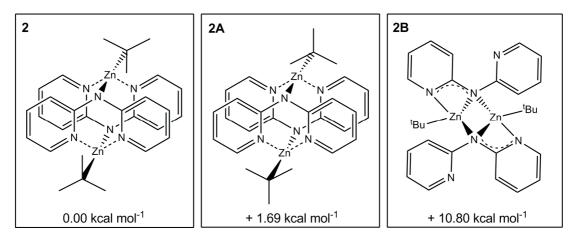
DFT Calculations

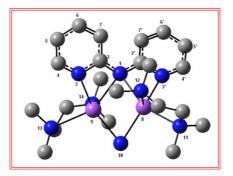
DFT calculations were performed using the Gaussian computational package G03.^[4] In this series of calculations the B3LYP^[5] density functionals and the 6-311G(d,p)^[6] basis set were used. After each geometry optimisation, a frequency analysis was performed and the energy values quoted include the zero point energy contribution.

[{(dpa)Zn(*t*Bu)}₂]

DFT calculations reveal that there is a low energy conformational isomer of **2**, **2A**, arising from rotation of both *t*Bu groups about 180°, which is less stable than model **2** by only 1.69 kcal mol⁻¹. These conformational isomers could be responsible for the two sets of distinct ¹H NMR resonances observed at low temperatures.

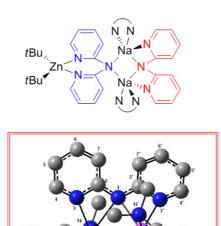
The formation of another conformational isomer (Figure S18) **2B**, a dimer having a 4membered (Zn-N)₂ ring supplemented by dative Zn-N bonding was also investigated theoretically. This alternative structure bears a strong resemblance to that of the reported compound [Zn(dpa*)(Et)]₂ (Fig S18, RHS).^[7] DFT calculations revealed this structure to be 10.80 kcal mol⁻¹ less stable than **2**. That **2B** is responsible for the second set of resonances observed in the ¹H NMR spectrum cannot be unequivocally ruled out. At first glance the pyridine rings of **2B** appear to be non-equivalent. However, in the related complex [Zn(dpa*)(Et)]₂ (Figure S18), only one set of pyridyl NMR resonances are observed, suggesting that the pyridyl rings interconvert too rapidly to observe two sets of resonances on the NMR timescale.



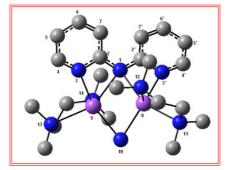

Figure S18 Structure and relative energies of model 2 and conformational isomers 2A and 2B.

 $[(TMEDA)_2Na_2(\mu-dpa)_2Zn(tBu)_2]$

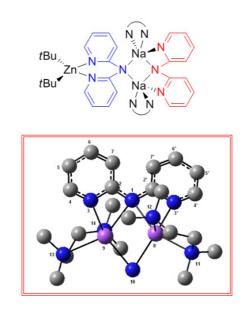
Dpa Principal Bond Lengths (Å)


N ₁ -C ₂	1.366	1.362
$C_2 - N_3$	1.363	1.365
N ₃ -C ₄	1.338	1.338
C4-C5	1.387	1.387
C5-C6	1.400	1.400
C ₆ -C ₇	1.381	1.380
C ₇ -C ₂	1.422	1.425
Na ₈ -N ₁	2.582	
Na _s -N _{3′}	2.481	
Na ₈ -N ₁₀	2.577	
Na ₈ -N ₁₁	2.624	
Na ₈ -N ₁₂	2.563	
Na ₉ -N ₁	2.521	
Na ₉ -N ₃	2.466	
Na ₉ -N ₁₀	2.550	
Na ₈ -N ₁₃	2.549	
Na ₈ -N ₁₄	2.582	

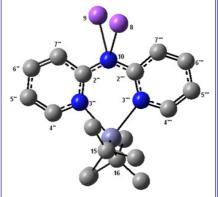
Dpa Principal Bond Angles (°)


C ₂ -N ₁ -C _{2'}	122.9
N ₁ -Na ₈ -N _{3'}	53.9
N ₁ -Na ₉ -N ₃	54.9
N ₁ -Na ₈ -N ₁₀	96.9
N ₁ -Na ₉ -N ₁₀	94.7
Na ₈ -N ₁₀ -Na ₉	83.7
Na ₈ -N ₁ -Na ₉	84.2
N ₁₀ -Na ₈ -N ₁₁	73.5
N ₁₃ -Na ₉ -N ₁₄	73.4
C ₂ '-N ₁ -C ₂ -C ₇	-26.0

Dpa Principle Bond Indices


	4.95	4 3 3
$N_1 - C_2$	1.25	1.22
C ₂ -N ₃	1.28	1.29
N ₃ -C ₄	1.40	1.40
C ₄ -C ₅	1.45	1.45
C ₅ -C ₆	1.36	1.37
C ₆ -C ₇	1.51	1.51
C ₇ -C ₂	1.26	1.27
Na ₈ -N ₁	0.02	
Na ₈ -N _{3′}	0.03	
Na ₈ -N ₁₀	0.02	
Na ₈ -N ₁₁	0.02	
Na ₈ -N ₁₂	0.02	
Na ₉ -N ₁	0.02	
Na ₉ -N ₃	0.02	
Na ₉ -N ₁₀	0.02	
Na ₈ -N ₁₃	0.02	
Na ₈ -N ₁₄	0.02	

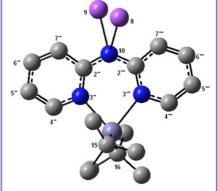

Dpa Charges


N ₁	-0.77	
C ₂	+0.41	+0.41
Ν ₃	-0.60	-0.60
C ₄	+0.08	+0.08
C ₅	-0.30	-0.30
C ₆	-0.15	-0.15
C ₇	-0.31	-0.30
Na ₈		+0.88
N ₁₀	-0.79	
N ₁₀ N ₁₁	-0.79 -0.56	
N ₁₁	-0.56	+0.89
N ₁₁ N ₁₂	-0.56	+0.89
N ₁₁ N ₁₂ Na ₉	-0.56 -0.55	+0.89 -0.56

Dpa Principal Bond Lengths (Å) and Angles (°)

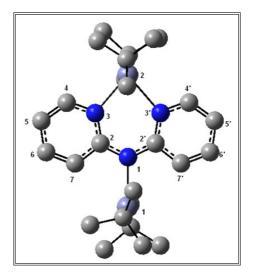

N ₁₀ -C ₂	1.371	1.369
$C_2 - N_3$	1.359	1.360
N ₃ -C ₄	1.346	1.345
C ₄ -C ₅	1.382	1.382
C5-C6	1.401	1.400
C ₆ -C ₇	1.377	1.377
C ₇ -C ₂	1.428	1.429
Zn-N ₃	2.248	2.252
Zn-C ₁₅	2.046	
Zn-C ₁₆	2.045	
C ₁₅ -C _{Me}	1.533, 1	.537, 1.536
C ₁₆ -C _{Me}	1.533, 1	.538, 1.538
C2" -N10-C2"	126.7	
N _{3"} –Zn-N _{3"'}	80.1	
C ₁₅ -Zn-C ₁₆	134.5	
C ₂ '-N ₁ -C ₂ -C ₇	-4.2	

Dpa Principal Bond Indices


N ₁₀ -C ₂	1.23	1.23
C ₂ -N ₃	1.28	1.27
N ₃ -C ₄	1.37	1.36
C ₄ -C ₅	1.47	1.47
C5-C6	1.35	1.35
C ₆ -C ₇	1.52	1.52
C ₇ -C ₂	1.27	1.28
Zn-N ₃	0.06	0.06
Zn-C ₁₅	0.31	
Zn-C ₁₆	0.32	
C ₁₅ -C _{Me}	1.03 1.0	02 1.02
C ₁₆ -C _{Me}	1.03 1.0	02 1.02

Dpa Charges

N ₁₀	-0.79	
C ₂	+0.42	+0.42
N ₃	-0.63	-0.63
C ₄	+0.08	+0.08
C ₅	-0.29	-0.29
C ₆	-0.16	-0.16
C ₇	-0.29	-0.28
Zn	+1.55	
C ₁₅	-0.59	
C ₁₆	-0.58	
C _{Me}		all -0.59

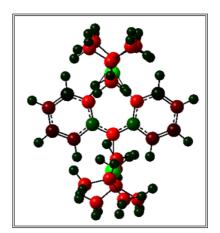


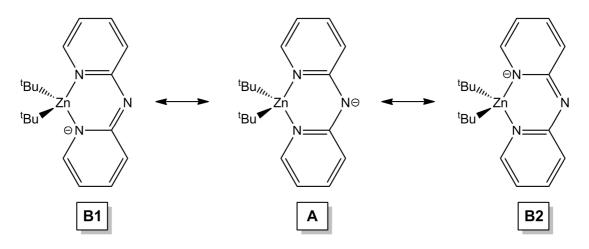
Anion of 4: [Zn(tBu)₂(dpa)Zn(tBu)₂]

-		
N1-C2	1.363	1.363
C2-N3	1.360	1.359
N3-C4	1.345	1.345
C4-C5	1.380	1.380
C5-C6	1.401	1.401
C6-C7	1.374	1.374
C7-C2	1.429	1.428
Zn1-N1	2.206	
Zn2-N3	2.218	2.216
Zn1-C	2.032	2.026
Zn2-C	2.054	2.050

Principal Bond Lengths (Å)

Principal Bond Angles (°)


C ₂ -N ₁ -C ₂ '	127.7
Zn ₁ -N ₁ -C ₂	116.2 and 115.9
N ₃ -Zn ₂ -N ₃	81.5
C ₂ '-N ₁ -C ₂ -C ₃	1.8


Principal Bond Indices

N1-C2	1.24	1.23
C2-N3	1.27	1.28
N3-C4	1.36	1.36
C4-C5	1.47	1.47
C5-C6	1.34	1.34
C6-C7	1.53	1.53
C7-C2	1.26	1.26
Zn1-N1	0.09	
Zn2-N3	0.06	0.06
Zn1-C	0.34	0.35
Zn2-C	0.30	0.30
C(<i>t</i> Bu)-C(Me)	All twelve	e are 1.03

Charges

N1	-0.76		
C2	+1.44	+1.44	
N3	-0.64	-0.63	
C4	+0.08	+0.08	
C5	-0.30	-0.30	
C6	-0.16	-0.16	
C7	-0.26	-0.26	
Zn1	+1.47		
Zn2	+1.56		
C(<i>t</i> Bu)(Zn1)	-0.57	-0.57	
C(<i>t</i> Bu)(Zn2)	-0.58	-0.58	
C(Me)	All twelve are -0.59		

Discussion of Dpa Bond Lengths and Angles

Figure S19 Graphical representation of the resonance delocalisation of dpa.

Through resonance delocalisation, the anionic charge may be focused at the (amido)-N or the (pyridyl)-N (Figure S19). If the anion predominantly lies on the (pyridyl)-N (Figure S19B), this results in a shortened (amido)N-C bond, and elongated (pyridyl)N-C bonds due to the loss of aromaticity. Within Cotton's cobalt complex $[Co(dpa)_2]$,^[8] the anionic charge is thought to lie primarily on the (pyridyl)-N, as indicated by the shortened C-(amido)N bond lengths [1.346(4) and 1.344(4) Å] and elongated C-(pyridyl)N bonds [1.367(4) and 1.371(4) Å] (Table S3), in comparison to those of the related compound $[Co{dpa(H)}Cl_2]$, with C-(amino)N bond lengths of [1.373(4) and 1.382(4) Å and C-(pyridyl)N bonds of 1.351(4) and 1.348(4) Å].

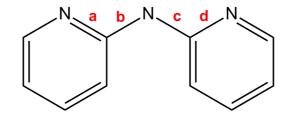


Table S3 Key bond lengths for a range of neutral and anionic dpa complexes.

Compound		Bond Length (Å)			
		а	b	С	d
dpa(H) monoclinic	z z z	1.343(2)	1.388(2)	1.391(2)	1.335(2)
dpa(H) orthorhombic ^[9]		1.332(4)	1.379(4)	1.380(4)	1.338(4)
dpa(H) triclinic ^[10]		1.337(2)	1.380(3)	1.376(3)	1.334(3)
[Co{dpa(H)}Cl ₂] ^[8]		1.351(4)	1.373(4)	1.382(4)	1.348(4)
[Co(dpa) ₂] ^[8]		1.367(4)	1.346(4)	1.344(4)	1.371(4)
3	tBu tBu tBu tBu tBu	1.347(2)	1.371(2)	1.373(2)	1.346(2)
4 ^a	$\begin{bmatrix} tBu \\ Zn \\ H \\ N \\ N \\ TBu \\ TBu \\ TBu \end{bmatrix}^{-}$	1.360	1.363	1.363	1.359

[a] values taken from DFT calculations.

References

- [1] C. Schade, W. Bauer, P. v. R. Schleyer, *J. Organomet. Chem.* **1985**, *295*, C25-C28.
- [2] B. Conway, D. V. Graham, E. Hevia, A. R. Kennedy, J. Klett, *Chem. Commun.* **2008**, 2638-2640.
- [3] P. C. Andrikopoulos, D. R. Armstrong, H. R. L. Barley, W. Clegg, S. H. Dale, E. Hevia, G. W. Honeyman, A. R. Kennedy, R. E. Mulvey, J. Am. Chem. Soc 2005, 127, 6184-6185.
- [4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. B. Cui, A.G., S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN03 (Revision C.02), Gaussian, Inc.: Wallingford, CT, 2004.
- [5] a) W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem. 1996, 100, 12974-12980, b)
 A. D. Becke, Phys Rev A 1988, 38, 3098-3100.
- [6] a) A. D. Mclean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639-5648, b) R.
 Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650-654.
- [7] Z. Zheng, M. K. Elmkaddem, C. Fischmeister, T. Roisnel, C. M. Thomas, J.-F. Carpentier, J.-L. Renaud, *New J. Chem.* **2008**, *21*, 2150-2158.
- [8] F. A. Cotton, L. M. Daniels, G. T. Jordan IV, C. A. Murillo, *Polyhedron* 1998, 17, 589-597.
- [9] R. A. Jacobsen, J. E. Johnson, *Acta Crystallogr.* **1973**, *B29*, 1669-1674.
- [10] G. J. Pyrka, A. A. Pinkerton, *Acta Crystallogr.* **1990**, *C48*, 91-94.