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S1: Media files  

The media files contain two short movies, illustrating the propagation dynamics of a self-

accelerating singular beam and a case of particle manipulation using a beam of this kind.  The 

first movie (Media 1) is an animation of the propagation dynamics of an m=1 Bessel-like 

vortex beam. Although the center is shifting and the main lobe exhibits some intensity 

“rotation” in the azimuthal direction, the size of the ring remains constant as the beam 

propagates. The second movie (Media 2) shows the observed spinning of traped 

microparticles in a transvsere plane by a triply-charged self-acceleating vortex beam 

propagating along a hyperbolic-secant trajectory. Note that the particles would undergo three-

dimensional spiral motion should they have not been pushed against the holding glass. 

(2 media files attached) 

 

 



S2: Detailed theoretical anaylsis of accelerating Bessel-like singular beams  

In the following we describe in detail the analysis leading to the design of accelerating 

singular beams of the higher-order Bessel type with arbitrary trajectories. 

 

Formulation of the problem 

We begin with the Fresnel integral of diffraction that describes the paraxial 

propagation of an optical wave Error! Reference source not found. 
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where the transverse coordinates , , ,x y ξ η  are normalized by an arbitrary length   and the 

propagation distance z  by 2k  (equivalent to the Rayleigh length), while 2 /k π λ=  is the 

wavenumber. The amplitude and phase of the wave at the input plane 0z =   is defined as 

( ) ( ),
0( , ,0) , eiQu u ξ ηξ η ξ η=  (2) 

The main task of the analysis is to determine the phase  ( ),Q ξ η  that is required to produce an 

accelerating vortex beam with a given transverse width and a topological charge .m  As a 

measure of the transverse width of the beam, we use the diameter of the inner low-intensity 

disk which is defined in Fig. S1. 

 

 

 

 

 

 

 

 

 

We now employ ray optics. The equations of the rays follow from the condition of 

first-order stationarity of the function 
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Figure S1: Real part of a vortex Bessel beam with order m = 6. Indicated is the inner low-intensity 
disk which is defined at the radius where the argument of the Bessel function is equal to its order. 



which is the total phase of the wave component contributed to the field point ( ), ,x y z  by the 

input point ( ), ,0ξ η . Setting the first-order partial derivatives of Eq.(3) equal to zero 

( )0P Pξ η= =  we get 
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which are the equations of a ray from the input to the field point. Subsequently, we require 

that, at an arbitrary transverse plane z , the rays emitted at skew angles with respect to the z 

axis from a (yet unknown) locus ( )L z  on the input aperture pass from a circle with center 

( ) ( ) ( )( ), ,z f z g z z=C  and a fixed radius mr . This circle we briefly denote as ( )( ), mz rC . 

The m  subscript indicates a connection of this radius with the order of vorticity. The 

functions ( ) ( ),f z g z  determine the trajectory of the beam with the propagation distance 

acting as a parameter. Using Eqs. (4), our requirement is expressed as 
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where ( ),ϕ ξ η  is the azimuth angle of the point at which the ray from ( ), ,0ξ η  intersects the 

circle ( )( ), mz rC . The reference direction ( )0ϕ =  for measuring the azimuth is arbitrarily 

taken to be the x-axis. At this point we also note that, if any input point ( ), ,0ξ η  of its locus 

( )L z  is mapped to the distance z, then a two-variable function ( ),z ξ η  is obtained. The latter 

is critical to finding ( ),Q ξ η  but is yet unknown. 

 

Determination of the phase Q 

There are two key steps needed to proceed. The first is the requirement that the phase 

( ),Q ξ η  and its first two derivatives are continuous. A necessary requirement is that its mixed 

second-order partial derivatives should be equal, i.e. Q Qξη ηξ= , or using Eqs. (5) 

( ) ( ) ( ) ( )0 0cos sin sin cosr z zr r z zrη η ξ ξξ ξ ϕ ϕ ϕ η η ϕ ϕ ϕ− − − = − − +  (6) 

where the subscripts ,ξ η  imply the partial derivatives of the corresponding functions and 

( ) ( ) ( ) ( ) ( ) ( )0 0, .z f z zf z z g z zg zξ η′ ′= − = −  (7) 

 



Equation (6) is a differential one for the unknown functions ( ),z ξ η  and ( ),ϕ ξ η . We now 

assume that the locus ( )L z  is a circle with center ( ) ( )( ), , 0z zm mξ η  and radius ( )R z , where 

all functions are to be determined explicitly 

( ) ( )( ) ( )( ) ( )2 2 2: m mL z z z R zξ ξ η η− + − =  (8) 

or equivalenty 

( ) ( ) ( ) ( )cos , sinm mz R z z R zξ ξ θ η η θ= + = +  (9) 

where θ  is the azimuth coordinate of the point ( ),ξ η  on the circle ( )L z . By differentiating 

Eq. (8) with respect to ξ  and η  we obtain the gradient , zξ η∇  as 
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where the prime denotes the derivative / .d dz From the obvious relation 
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 we also obtain the gradient ,ξ ηθ∇  as 
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The gradient ,ξ ηϕ∇  can also be obtained if we require that angles θ  and ϕ  satisfy 

( )w zϕ θ= +  (12) 

where ( )w z  is another function that is unknown for the moment. From the above equation we 

have 

( ), , ,w z zξ η ξ η ξ ηϕ θ ′∇ = ∇ + ∇ . (13) 

 

Subsequently, we substitute Eqs. (9) into Eq. (6) and use Eqs. (10) to obtain: 
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where 
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Now notice that Eq. (14) is a trigonometric series for θ  which holds for all [ )0,2θ π∈  if and 

only if all coefficients are zero. Hence 
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Equation (16) is easily integrated to find 
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z

w z
R z

β=  (17) 

where 0β >  is a real integration constant. By solving Eqs. (16) for mξ′  and mη′  we obtain the 

first-order ODE system: 
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Alternatively, using Eqs. (15) and (17), the system becomes 
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To solve this system, the radius ( )R z  is required. This is found from the field profile in the 

neighbourhood of the center ( )zC . Within ray optics, the field profile can be determined 

approximately by assuming that each ray emitted from the circle ( )L z  contributes a plane 



wave du  in that region. Under the paraxial approximation and neglecting the variations of 

their amplitude, these elementary plane waves can be expressed as 
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where ( ) ( ) ( ), ,0 , , , ,x y x y z f g zδ δ = −  is the transverse displacement of the point of 

observation ( ), ,x y z  from ( )zC . 

Also, ( ),P ξ η  is the value of the total phase from the point ( ),ξ η  on the circle ( )L z  

to the corresponding field point ( ),mr ϕ  on the circle ( )( ), mz rC . To find ( ),P ξ η , we 

differentiate Eq. 
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 (3) with respect to ξ  and 

η  and use the system (18) to find after some long algebraic calculations 
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Now by inserting Eq. (9), (12) and (21) into Eq. (20) we obtain 
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where cosxδ ρ μ= , sinyδ ρ μ=  and ( ) sin
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which reveals that the beam behaves locally around ( )zC  like a Bessel vortex of order mrβ , 

should we set 

mr mβ =  (25) 

Notice that, in order to have vortex beam that resists diffraction, the factor multiplying the 

polar radius ρ  in the argument of the Bessel function should be independent of z , namely 

( )mu J M ρ∝ , or 

2 2 2 cosm mr R Rr w Mz+ − =  (26) 

 

where the real constant 0M >  represents the (normalized) transverse wave number of the 

Bessel-like beam. Combining the above with Eq. (17), we finally obtain the radius 

 

( ) 2 2 2 2 22m mR z M z r r z M β= + + −  (27) 

 

(Note that there is also a second solution ( )R z− , which is however rejected because it is not 

monotonic with z − the circles must be expanding). 

At this point it would be interesting to comment that the result of Eq. (24) justifies our 

assumption of Eq. (8), namely, the rays are emitted from circles on the input plane. This is a 

general property of Bessel-type paraxial waves: such waves result from conical superpositions 

of rays emitted from circles on the input apertures. 



Now that the radius ( )R z  is known, functions ( )w z , ( ),P ξ η , ( )W z  are readily 

determined from Eqs. (17), (21) and (22). The remaining functions ( ) ( ),m mz zξ η or 

alternatively ( ) ( ),m mu z v z  are determined by solving the system of Eq. (19). But before 

doing that, we need to relate the constants M and β . To this end, we note that the rays 

emitted from a circle ( )L z  create an oblique conical-like surface with a nonzero minimum 

waist (see Fig. S2). The minimum waist must be equal to 2 mr . To see this more clearly, we 

express parametrically a ray starting from some point on the circle ( )L z  with azimuth θ  
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where τ  is a dimensionless parameter, with ( )0r  being the starting point and ( )1r  the point 

on the circle ( )( ), mz rC  from which the ray passes, according to Eq. (5). It is easy to see from 

Eq. (28) that for any τ (hence at any propagation distance) the rays pass from a circle with 

center 

( ) ( ) ( ) ( )1 , ,0 , ,m m f g zτ τ ξ η τ= − +C  (29) 

and radius 
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Using Eqs. (17) and (26) we easily get from the above that min /mr r Mβ= , which implies that 

we must have 

M β=  (31) 

We now proceed to solve the system (19),  which, due to Eq. (31), simplifies to 
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However, the initial condition that is required to solve this system cannot be determined from 

Eq. (15) by simply letting ( ) ( )0 0 0m mξ η= = , because we also have ( ) ( )0 00 0 0ξ η= = , thus 

getting an indefinite ratio 0/0. For this reason we think as follows: the circles ( )L z  must be 

expanding and never intersecting. This means that the denominator ( ),D z θ  in Eq. (10) must 

be nonnegative for all θ which happens if and only if 
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for all z , where we have used Eq. (18) to replace the functions ,m mξ η  by ,m mu v . Setting in 

the above 0z =  and since ( )0 0R′ = , ( )0 mR r=  from Eq. (27) and (31), we get 

( ) ( )2 20 0 0m mu v+ ≤  namely ( ) ( )0 0 0m mu v= = . Now the functions ,m mu v  can be 

completely determined from the system (32) once the trajectory functions ,f g  are given. 

Subsequently, the functions ,m mξ η  are obtained from Eqs. (15). 

 

 

 

 

Figure S2: Schematic of the principle. Rays emitted from expanding circles on the input plane and 
at skew angles with respect to the z axis interfere to create an oblique cone-like surface with a 

minimum waist diameter equal to 2 mr  (green circle). The field around the minimum waist is 

proportional to a vortex Bessel wavefunction of order m. 
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Algorithm for computing the phase Q 

In the following, we outline the main procedure for computing the phase function 

( ),Q ξ η . Given are the order m  of the singular beam, its minimum radius mr  (or 

alternatively its transverse wavenumber / mm rβ = ) and the trajectory functions ( ) ( ),f z g z . 

There are four steps: 

1) For any point ( ), ,0ξ η  on the input plane, solve Eq. (8) for z  to find the unique circle 

( )L z  passing from this point. 

2) Compute ( )W z  from Eq. (22), which now simplifies to 
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where functions ( ) ( ),m mu z v z  have been determined from solving the system of Eq. (32).  

3) Compute ( ),P ξ η  from Eq. (21), where the phase ϕ  is computed from Eq. (12) and ( )w z  

from Eq. (17), with 
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4) Finally, obtain ( ),Q ξ η  from Eq. 
( ) ( ) ( ) ( )2 2

, ,
2

x y
P Q

z

ξ η
ξ η ξ η

− + −
= +

 (3) as 

( ) ( ) ( ) ( )2 2
cos sin

, ,
2

m mf r g r
Q P

z

ϕ ξ ϕ η
ξ η ξ η

+ − + + −
= −  (35) 

 

Example: A vortex beam with constant acceleration 

As an example, let us consider the case of a singular beam with the 2D (lying on the xz 

plane) parabolic trajectory: ( ) 2,f z zγ= ( ) 0.g z = The system (32) is exactly solvable and the 

solution reads in terms of the center coordinates ,m mξ η  as 

 

( ) ( )2 2 2
sin , 1 cosm m

m m
m m

r z r z
z z z z z

r r

γ β γ βξ γ η
β β

    
= − + = −    

    
 (36) 

 

 



 

 

Inserting the above into Eq. (34), we also find exactly 
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Following the algorithm described in the previous paragraph and using the last two equations, 

we are able to compute the input phase, noting that the only numerical part of the procedure is 

the solution of Eq. (8) for z through the Newton-Raphson method. An example is shown in 

Fig. S3 in terms of the input phase and intensity snapshots of the beam. The ray structure for 

this example is shown in Fig. S2. 

 

A final note 

The condition Eq. (33) is a prerequisite for computing the phase through the presented 

method, ensuring that the circles of Eq. (8) are expanding but never intersecting each other. 

However, for trajectories whose acceleration does not approach to zero as z → ∞ , this 

condition is satisfied only for distances below a certain bound, or maxz z≤ . Beyond this 

distance, a new trajectory must be defined in order to satisfy the condition, as for example a 

straight line. The procedure is then similar to that of the zero-order Bessel beams discussed 

previously in Ref 2. 

 

Figure S3: (a) Input phase, (b) beam profile at 10z =  and (c) intensity cut on 0y =  for the vortex 

beam with order 4m = , diameter 2 4mr =  and parabolic trajectory 2 / 40x z=  (dotted curve). 
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