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Estimating “Smoothed” Derivatives of the Free En-

ergy
To demonstrate the existence of kinks in ∆G(N ; d) more clearly,
we plot smoothed derivatives of ∆G(N ; d) in Figure 2b of the main
text. Directly computing derivatives of ∆G(N) using finite differ-
ence, for example, using ∂∆G/∂N = ∆G(N + 1) − ∆G(N),
results in noisy estimates due to the numerical error in ∆G(N) (Fig-
ure S1). To minimize such effects, we first smooth ∆G(N) using a
rectangular window function, such that

∆Gsmoothed(N) =
1

∆N

N+∆N/2−1∑
N−∆N/2

∆G(N) [S1]

is the smoothed free energy. Smoothed derivatives are then estimated
from finite differences of such smoothed free energies,

∂∆G

∂N
(N) ≈ [∆Gsmoothed(N + 1)−∆Gsmoothed(N)] . [S2]

Derivatives of both the unsmoothed and the smoothed (using a width
of ∆N = 10) free energies for select values of d are compared in
Figure S1.

An analogous smoothing of the first derivative was also per-
formed in order to obtain the second derivative of the free energy,
which in turn enables us to robustly estimate Nkink as the location
of the minimum in ∂2β∆G/∂N2. The error in Nkink was estimated
using block averaging; the trajectories were divided into five blocks
of 1 ns each, and Nkink was obtained for each of the five blocks. As
an example, the second derivatives for five such blocks are shown in

Figure S2 for d = 14
◦
A .

Obtaining Instantaneous Interfaces that Envelop

Dewetted Regions
Here, we closely follow and build upon the approach for estimating
instantaneous interfaces, originally developed by Willard and Chan-
dler [1]. In addition to considering the coarse-grained water density,
we also include a coarse-grained density arising from the plate atoms
into an overall, normalized coarse-grained density at (x, y, z) as fol-
lows:

ρ̃total(x, y, z; R) =
ρ̃water(x, y, z; R)

ρbulk
water

+
ρ̃plate(x, y, z; R)

ρmax
plate

. [S3]

Here, R represents the positions of all the heavy atoms in the system
in a given configuration, the coarse-grained water density is normal-
ized by the corresponding bulk density, and the coarse-grained plate
density by the maximum coarse-grained plate density that occurs at
the center of the plate. Defined this way, ρ̃total is approximately
equal to unity everywhere in the liquid state and near unity at the cen-
ter of the plates and in the interfacial region. Configurations contain-
ing dewetted regions (cavities) will have significantly smaller values

of ρ̃total that approach zero in the vicinity of the cavity. Therefore,
the ρ̃total = 0.5 iso-density surface serves as a convenient definition
of the instantaneous interface, allowing us to readily visualize the po-
sition, size, and shape of the cavity; we use the Marching Cube algo-
rithm [2] to identify the instantaneous interface. The coarse-grained
density fields of the individual species are estimated using

ρ̃α(x, y, z; R) =

Nα∑
i=1

φ(xi − x)φ(yi − y)φ(zi − z), [S4]

where α represents either the water oxygen atoms or the plate atoms,
Nα is the number of atoms of type α, and (xi, yi, zi) correspond to
the coordinates of atom i.

For each configuration obtained from our simulations, we set up
a three-dimensional grid to compute the coarse-grained density field
with 0.1 nm spacing in each dimension. The coarse-graining func-
tion φ(x) is chosen to be a Gaussian with a width of 0.24 nm, which
was truncated at 0.7 nm, shifted down to make it continuous, and nor-
malized. The particular characteristics of the instantaneous interfaces
thus computed, as well as those of the dewetted regions, such as their
exact shapes and volumes, will depend on the choices made in Equa-
tions S3 and S4, as well as the parameters chosen. A discussion of
how these choices affect the instantaneous interface calculation and
which choices are judicious is beyond the scope of this work, and
will be the subject of a separate publication. However, it is important
to note that the qualitative insights that we obtain in this work are not
sensitive to the particular choices that we make here.

Movies
The dynamical nature of the vapor tubes described in the main text
can be observed in the movie shown in Movies S1 and S2. There,
we show a top (Movie S1) and a side (Movie S2) view of a plate-
spanning vapor tube from a simulation with a biasing potential,
κ(Ñ − Ñ∗)2/2; κ = 0.12 kJ/mol and Ñ∗ = 650. The average

value of Ñ in the presence of the biasing potential was
〈
Ñ
〉

= 653.
The plate atoms are shown as cyan spheres, water molecules are not
shown for clarity, and the purple mesh corresponds to the instanta-
neous interface enveloping the vapor region. In essence, the purple
mesh defines regions devoid of water molecules, such that the space
outside the mesh is high in water density.
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We show similar movies for an isolated cavity at the surface(s) of
the hydrophobic plate(s) in Movies S3 and S4. The coloring scheme
is the same as in Movies S1 and S2, and the configurations are taken
from a biased simulation with Ñ∗ = 660 and κ = 0.12 kJ/mol; the
corresponding

〈
Ñ
〉

= 668. There, an isolated cavity can be ob-
served fluctuating in shape and size, and even moving from one plate
to the other. The mechanism for bubble migration from one plate
to another is an open question relevant to dewetting transitions and
deserves further investigation.

Definition of the Tube and Cavity Indicator Functions
The tube indicator function htube is determined by examining the
coarse-grained density field, ρ̃total, between the two plates. We de-
fine the x-coordinate to be perpendicular to the plates, such that the
two plates are located at x1 and x2, respectively, with x1 < x2. We
additionally define a buffer region b = 0.4 nm from the center of
each plate to avoid the region where the coarse-grained density orig-
inating from the plate atoms is larger than or close to 0.5. If at some
location, (y∗, z∗), the total coarse-grained density is below 0.5 at all
x-values between x1 + b and x2 − b, we assign htube = 1, i.e.

htube = 1 if ∃ (y∗, z∗)

: {ρ̃total(x, y
∗, z∗) < 0.5} ∀ x ∈ (x1 + b, x2 − b)

= 0 otherwise. [S5]

The cavity indicator function hcav is similarly determined from
ρ̃total. However, hcav is equal to unity if the coarse-grained density
is less than a half at some location between the plates, but not for all
x-values between the plates. In other words,

hcav = 1 if ∃ (x∗, y∗, z∗)

: {ρ̃total(x
∗, y∗, z∗) < 0.5} , htube = 0

= 0 otherwise. [S6]

Procedure for Calculating Unbiased Ensemble Aver-

ages
All umbrella sampling simulations performed in this work employ
a biasing potential. Therefore, when performing ensemble averages
of any observable, care must be exercised in accounting for the bias
introduced by the potential. This is done using the WHAM/MBAR
formalism [3, 4, 5], such that the unbiased ensemble average of any
observable, A(R), which can be expressed as a function of the con-
figuration vector, R, is given by

〈
A(R)

〉
= C−1

K∑
j=1

Nj∑
n=1

A(Rj,n)∑K
k=1 Nke

βFk−βVk(Rj,n)
, [S7]

where

C =

K∑
j=1

Nj∑
n=1

1∑K
k=1 Nke

βFk−βVk(Rj,n)
. [S8]

Here, Fk is the free energy of the kth biased ensemble, K is the
number of biasing potentials or windows used, Nk is the number of
samples in window k, Vk is the biasing potential for window k, and
Rj,n refers to configuration n in window j.

Equation S7 is used here to calculate the ensemble average of
htube, conditioned on the number of waters in confinement being N ,
according to

〈
htube(R)

〉
N

=

〈
htube(R)δN,N(R)

〉
〈
δN,N(R)

〉 [S9]

where δN,N(Rj,n) is the Kronecker delta function. The ensemble av-
erage of hcav as a function ofN is calculated in an analogous manner
by replacing htube(R) with hcav(R) in Equation S9.

Average Shape of the Vapor Tube
The average shape of a vapor tube is identified by first tak-
ing the average of the coarse grained density, ρ̃tot(x, y, z) ≡〈
ρ̃total(x, y, z; R)

〉
, over 5000 frames. Figure S3 displays the av-

eraged density of the d = 20
◦
A system, with an average of 569

waters (top) and 474 waters (bottom) between the plates, obtained
from biased simulations with Ñ∗ = 570 and κ = 0.03 kJ/mol and
Ñ∗ = 480 and κ = 0.03 kJ/mol, respectively. From left to right
in each row presents a front view, side view, and three-dimensional
view of the averaged shape of the vapor tube. The three-dimensional
rendering of the vapor tube is obtained as the iso-density surface
ρ̃tot = 0.5, and this surface provides an accurate description of the
average shape of the vapor tube. Additionally, the radii obtained di-
rectly from these isodensity surfaces, 1.03 nm and 1.30 nm, respec-
tively for the top and bottom panels of Figure S3, are in reasonably
good agreement with those obtained from the simple relation between
r and N used in the main text (Equation S12), 1.22 nm and 1.45 nm,
respectively. Note that the vapor tubes are cylindrical to a good ap-
proximation, in accord with macroscopic theory. However, further
corrections to such theories could be obtained by taking into account
finer details of the “hour-glass” shape of the vapor tubes. Because
the precise shape of the vapor tubes depends on the details of the in-
stantaneous interface calculation and the parameters employed, we
do not attempt such corrections here.

Contact Angle Determination
The contact angle of the surface was determined by performing a 2 ns
simulation of a cylindrical droplet containing 4142 water molecules.
This cylindrical droplet was divided into five slabs, each 1 nm in
width, and the density as a function of the radius y and the height z
of each slab was computed. The droplet profile is then defined as the
point where the density of the droplet is equal to half that of the bulk
density.

The contact angle was then determined by fitting this droplet pro-
file to a circle for z > 0.7 nm, as shown in Figure S4, where the fit
function is given by

y =

√
b2 − (z − a)2. [S10]

Using this functional form, the contact angle, θ, can be obtained from

dy

dz

∣∣∣∣∣
z=0.7 nm

= − (z − a)

[b2 − (z − a)2]1/2
=

1

tan(π − θ) . [S11]

The contact angle was determined independently for each of the five
slabs and averaged to yield a contact angle of θ = 120.2◦ ± 0.5◦, or
cos θ = −0.503± 0.008.

Details of Vapor Basin Fits
Fitting used in the main text. In order to fit the simulated free
energies to macroscopic theory, we consider the formation of a vapor
tube of radius r, which depends on the number of waters,N , between
the hydrophobic plates as

r ≈

√(
Nliq −N
Nliq

)
L2

π
. [S12]

2 www.pnas.org — — Footline Author



Note that Equation S12 is an approximate expression; however, this
simple approximation captures the salient features of vapor tube for-
mation, as detailed below and in the main text. The free energy as a
function of r as predicted by macroscopic theory is

β∆G(r) = 2πβγ

[
r2 cos θ + r

(
deff +

2λ

γ

)]
− 2 ln(1− 2r

L
),

[S13]
where γ is the liquid-vapor surface tension, θ is the contact angle (de-
termined as described above), and λ is the line tension. The first term
in Equation S13 is the free energy of vapor tube formation, ∆Gth,
described in the main text, and the last term accounts for the transla-
tional entropy of the vapor tube. The effective distance between the
plates, deff , is obtained by subtracting a constant offset, ξ, from d,
that is deff = d − ξ. The x-intercept of a linear fit of the simulated
d-dependence of Nliq is equal to ξ, as shown in Figure S5, so that a
plot of Nliq vs deff passes through the origin. Here we find a value
of the offset to be ξ = 0.4964 nm. The fits shown in Figure 4a of
the main text were obtained by fitting the simulated free energies for
N < Nkink and r < L/2 to the parameters, βγ and λ/γ, using
Equation S13; the fit parameters obtained are listed in Table 1.

Curvature Corrections. We also explored a number of other pos-
sible fits, the first of which includes curvature corrections to the sur-
face tension using the Tolman length, δ, such that the curvature cor-
rected surface tension is γ(r) = γ(1 − δ/r). The fit equation then
becomes

β∆G(r) = 2πβγ

[
r2 cos θ + r

(
deff +

2λ

γ
− δ cos θ

)
− δdeff

]
− 2 ln

(
1− 2r

L

)
. [S14]

However, by referencing the simulated free energies for a given d-
value to the free energy in the liquid basin, that is ∆G(Nliq) = 0,
we force ∆G(r) to be 0 at r = 0. To be consistent with this conven-
tion, we neglect the constant term, 2πγδdeff in Equation S14, and
instead fit to

β∆G(r) = 2πβγ

[
r2 cos θ + r

(
deff +

2λ

γ
− δ cos θ

)]
− 2 ln

(
1− 2r

L

)
. [S15]

From Equation S15, we see that the curvature correction δ acts in
a manner analogous to the line tension λ, i.e. both are coefficients in
the term linear in r. Therefore, we can simply relate the fit parameters
in Equation S15 to those in Equation S13, according to

λ

γ
=
λ′

γ′
+
δ

2
cos θ, [S16]

where the primed quantities indicate those obtained from Equa-
tion S13. The value of λ/γ obtained from Equation S15 can then
be readily predicted with knowledge of the Tolman length. Re-
cent estimates of this length for SPC/E water at 300 K yield δ ≈
−0.1 nm [6, 7]. Therefore, the value of λ/γ changes by ten to six-
teen percent through the inclusion of the Tolman length in our fitting
procedure.

Omission of Line Tension. To ascertain the importance of line
tension, we attempt to fit the simulated free energies without includ-
ing the term containing λ in our expression for the macroscopic the-
ory, and instead using δ as a fit parameter according to

β∆G(r) = 2πβγ
[
r2 cos θ + r (deff − δ cos θ)

]
− 2 ln

(
1− 2r

L

)
. [S17]

As one may anticipate from the above discussion, the data is fit
equally well by Equation S17. However, this procedure yields un-
physical estimates of the Tolman length, with δ ∼ −1 nm. There-
fore, we can conclude that line tension is necessary to provide a phys-
ically accurate description of the vapor tube formation and growth
that facilitates capillary evaporation between nanoscopic hydropho-
bic plates.

Liquid Basin Fits
In order to characterize the free energetics of isolated cavities, we
fit the simulated free energies in the range, Nkink + 20 < N <

Nliq−50, to straight lines. We first fit the d = 25
◦
A free energy, and

use the corresponding slope for all d-values. Intercepts are then ob-

tained by fitting the data for each d-value separately. For d ≤ 16
◦
A ,

data in the Nkink + 20 < N < Nliq − 50-range are insufficient to
be fit reliably, so the fitting was not performed. The regions fit for
each d-value are shown in Figure S6. In order to estimate errors, we
divided the data into five blocks of equal length, and fit each block
separately (similar block averaging analysis was performed for all
quantities). Therefore, for each d, we show five data sets and five fits,
although they are nearly indistinguishable.

From these fits, we can examine the behavior of Nliq(d) −
Nint(d), where Nint(d) is the x-intercept of the linear fit to the fat

tails (for d > 16
◦
A ). Both Nliq(d) and Nint(d) are roughly linear

in d, see Figures S5 and S6, respectively. However, as shown in Fig-
ure S7, the quantity Nliq −Nint, which represents the distance in N
from the liquid basin one must move to observe non-Gaussian tails
in ∆G(N ; d), or equivalently, to form isolated cavities, is largely
insensitive to d.

Barrier Location and Height: Simulations vs Macro-

scopic Theory
In this section, we focus on the location as well as the height of the
barrier, as predicted by macroscopic theory, and compare them with
the corresponding simulated values. Macroscopic theory predicts a
linear dependence of the location of the barrier, r∗, on d,

r∗(d) = − deff

2 cos θ
− λ

γ cos θ
, [S18]

where we have neglected the logarithmic term in Equation S13. This
behavior is captured by the data shown in Figure S8, where the r∗-
values are obtained from the fits of the vapor tube free energetics
to macroscopic theory. The slope of the fitted line corresponds to
cos θ = −0.547, which is slightly larger in magnitude than that ob-
tained from direct simulations. The ratio λ/γ = −0.16 nm obtained
from the y-intercept of the linear fit lies in the same range as those
predicted from fitting the free energies to Equation S13. Macroscopic
theory also predicts ∆G(r∗; d) to be quadratic in d; this behavior is
similarly captured as illustrated by fitting the data to a parabola (solid
line).

In addition to the position and height of the maximum of the fits,
we also include the position and the height of the free energy bar-
rier obtained from the simulated free energy profiles, rmax(d) and
∆G(rmax; d), respectively. For large d-values, we expect rmax ≈
r∗, however, this is not true at smaller plate separations because the
critical vapor tube is in the metastable branch of the vapor tube free
energy; for these d-values, the barrier corresponds to the kink in the
free energy. Indeed, r∗ 6= rmax at these separations, and the de-
pendence of rmax on d can not be described by a straight line over
the entire range of d. Similar behavior is observed in ∆G(rmax; d),
albeit to a lesser extent.
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Data for All Systems Studied
For completeness, we include the free energies, their derivatives,
〈htube〉N , and 〈hcav〉N , as well as fits to the vapor and liquid basins,
for all d-values studied in Figures S9, S10, S11, S12, and S13 respec-

tively. Additionally, we include the vapor basin fits and linear regions
(where applicable) for all d-values in Figure S14.

Table 1: Parameters obtained from fitting the vapor tube portion of
the free energy to Equation S13

d (
◦
A ) βγ (nm−2) λ/γ (nm)

11 15.1 -0.150

12 15.4 -0.167

13 15.4 -0.177

14 15.4 -0.180

15 15.7 -0.180

16 15.0 -0.207

17 15.1 -0.208

18 14.6 -0.223

19 14.2 -0.230

20 13.7 -0.230

21 13.1 -0.243

22 13.3 -0.240

23 12.9 -0.234

24 12.5 -0.221

25 11.9 -0.216
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Figure S1: Derivatives of the unsmoothed (points) and smoothed (lines) free energies for d = 14
◦
A (blue) and d = 23

◦
A (red).
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Figure S2: Second derivative of the free energy for d = 14
◦
A . Block averaging was used to obtain Nkink and its associated error bars; the

derivatives of each of the five blocks are shown here. Nkink is the location of the minimum in ∂2β∆G/∂N2.
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Movie S1: Movie illustrating a plate-spanning vapor tube in a biased simulation with Ñ∗ = 650 and κ = 0.12 kJ/mol, with
〈
Ñ
〉

= 653. Plate
atoms are shown as spheres, while the purple mesh corresponds to the instantaneous interface enveloping the vapor region (water molecules
have been omitted for clarity). The movie is shown from the direction perpendicular to the plane of the plates. The duration of the movie
corresponds to 250 ps of simulation time.

Movie S2: Movie illustrating a plate-spanning vapor tube in a biased simulation with Ñ∗ = 650 and κ = 0.12 kJ/mol, with
〈
Ñ
〉

= 653. Plate
atoms are shown as spheres, while the purple mesh corresponds to the instantaneous interface enveloping the vapor region (water molecules
have been omitted for clarity). The movie is shown from the direction parallel to the plane of the plates. The duration of the movie corresponds
to 250 ps of simulation time.
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Movie S3: Movie illustrating vapor bubbles formed at the surface of a hydrophobic plate in a biased simulation with Ñ∗ = 660 and κ =

0.12 kJ/mol, with
〈
Ñ
〉

= 668. Plate atoms are shown as spheres, while the purple mesh corresponds to the instantaneous interface enveloping
the vapor region (water molecules have been omitted for clarity).The movie is shown from the direction perpendicular to the plane of the plates.
The duration of the movie corresponds to 250 ps of simulation time.

Movie S4: Movie illustrating vapor bubbles formed at the surface of a hydrophobic plate in a biased simulation with Ñ∗ = 660 and κ =

0.12 kJ/mol, with
〈
Ñ
〉

= 668. Plate atoms are shown as spheres, while the purple mesh corresponds to the instantaneous interface enveloping
the vapor region (water molecules have been omitted for clarity).The movie is shown from the direction parallel to the plane of the plates. The
duration of the movie corresponds to 250 ps of simulation time.
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0! 1!

FRONT SIDE 

Figure S3: The average coarse-grained density, ρ̃tot(x, y, z), for d = 20
◦
A , with an average of 569 waters (top) and 474 waters (bottom)

between the plates. The top panel was obtained from a biased simulation with Ñ∗ = 570 and κ = 0.03 kJ/mol, and the bottom panel was
obtained from a biased simulation with Ñ∗ = 480 and κ = 0.03 kJ/mol The rightmost panels depict three-dimensional renderings of the
vapor tube shape at the iso-density surface ρ̃tot = 0.5
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Figure S4: (top) Snapshot of the cylindrical droplet used to calculate the contact angle. (bottom) Fit of the average droplet profile (points) to
Equation S10 (line).
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Figure S5: The number of water molecules between the plates in the liquid basin, Nliq, varies linearly with the distance between the plates, d,
as measured between the centers of the atoms of the two plates. The effective distance between the plates, deff , is obtained subtracting from d
the x-intercept, ξ, of a linear fit of Nliq(d); thus, deff = d− ξ.
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Figure S6: (top) Portions of the free energies that were linearly fit for d > 16
◦
A . Simulation data, split into five blocks for error estimation,

is shown as colored data points. Linear fits are shown as black dashed lines. (bottom) The x-intercept, Nint, obtained from the linear fits, is
plotted as a function of d.
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Figure S7: The number of waters needed to be removed from the liquid basin to encroach on the region of the fat tail, as measured by

Nliq −Nint for d > 16
◦
A . Error bars correspond to one standard deviation.
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Figure S8: (top) Barrier position r∗ and (bottom) barrier height β∆G(r∗) of the fitted vapor tube free energies, are well-fit by linear and
parabolic functions of the inter-plate separation, d, respectively, in agreement with macroscopic theory. In contrast, the simulated barrier
position rmax and barrier height β∆G(rmax) deviate from those functional forms.
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Figure S9: The dependence of (top) the free energies and (bottom) their smoothed derivatives on N for all d-values studied. Arrows point in

the direction of increasing d, from d = 11
◦
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Figure S10: 〈htube〉N for all d-values studied. Arrows point in the direction of increasing d, from d = 11
◦
A to d = 25
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A in increments of
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Figure S11: 〈hcav〉N for all d-values studied. Arrows point in the direction of increasing d, from d = 11
◦
A to d = 25

◦
A in increments of

1
◦
A .
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Figure S12: Free energies in the vapor basin (N < Nkink) and the corresponding fits to Equation S13. Simulation data is shown as points and

the fits are shown as solid lines. The arrow indicates the direction of increasing d, from d = 11
◦
A to d = 25

◦
A in increments of 1

◦
A .
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Figure S13: Free energies in the liquid basin (N > Nkink) and the corresponding parabolic (solid) and linear (dashed) fits to the right side of
the minimum and to the fat tail regions, respectively.
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Figure S14: Vapor basin fits to Equation S13 (dot-dashed) and liquid basin linear fits (dashed) near Nkink for all d-values studied.
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