SUPPLEMENTARY INFORMATION

Preliminary Characterization and In Vivo Studies of Structurally Identical ¹⁸F- and ¹²⁵I-Labeled Benzyloxybenzenes for PET/SPECT Imaging of β -Amyloid Plaques

Yanping Yang¹, Xiaoyang Zhang¹, Mengchao Cui^{1,*}, Jinming Zhang^{2,*}, Zhide Guo³, Yesen Li³, Xianzhong Zhang³, Jiapei Dai⁴ & Boli Liu¹

¹Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China, ²Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, P. R. China, ³Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China, ⁴Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, P. R. China.

Corresponding Author:

*Tel/Fax: +86-10-58808891. E-mail: cmc@bnu.edu.cn (M. Cui)

*Tel/Fax: +86-10-66936108. E-mail: zhangjm301@yahoo.com.cn (J. Zhang)

Table of Contents

1 Chemical Synthesis

2 Supplementary Tables

2.1 Table S1. Crystal data and structure refinements for compound 12a

2.2 Table S2. Purity of key target compounds

2.3 Table S3. Biodistribution of $[^{125}I]$ **7a**, $[^{18}F]$ **7a**, $[^{125}I]$ **12a** and $[^{18}F]$ **12a** in normal ICR mice

2.4 Table S4. Percentages of metabolites after intravenous injection of $[^{125}I]$ 7a and $[^{18}F]$ 7a in to ICR mice

2.5 Table S5. Percentages of metabolites after intravenous injection of $[^{125}I]$ **12a** and $[^{18}F]$ **12a** in to ICR mice

3 Supplementary Figures

- 3.1 Figure S1. Optimized structures of 7a, 12a and X-ray crystal structure of 12a
- **3.2 Figure S2.** Co-injection HPLC profiles of **7a** and [¹²⁵I]**7a**; **7a** and [¹⁸F]**7a**; **12a** and [¹²⁵I]**12a**; **12a** and [¹⁸F]**12a**
- **3.3 Figure S3.** Whole-body dynamic microPET/CT imaging of [¹⁸F]**7a** and [¹⁸F]**12a** in normal ICR mice.
- **3.4 Figure S4.** HPLC profiles for radioactive metabolites of [¹²⁵I]**7a** in ICR mouse organs
- **3.5 Figure S5.** HPLC profiles for radioactive metabolites of $[^{18}F]$ 7a in ICR mouse organs
- **3.6 Figure S6.** HPLC profiles for radioactive metabolites of [¹²⁵I]**12a** in ICR mouse organs
- **3.7 Figure S7.** HPLC profiles for radioactive metabolites of [¹⁸F]**12a** in ICR mouse organs
- 4 NMR and MS Spectra

Chemical Synthesis

1-(Benzyloxy)-4-(2-fluoroethoxy)benzene (5a)

A mixture of 4-(benzyloxy)phenol (2.00 g, 10.0 mmol) and KOH (0.56 g, 10.0 mmol) in dry EtOH (30 mL) was stirred under reflux for 30 min. 1-bromo-2-fluoroethane (1.52 g, 12.0mmol) was then added dropwise, and the mixture was further stirred for 1 h, and evaporated under a vacuum. A white precipitate was formed by adding 50 mL of 1M NaOH, which was then filtered, washed with 50 mL water and recrystallized from methanol to obtain a white solid of **5a** (2.23 g, 90.4%). mp: 69.1-69.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.28 (m, 5H), 6.91 (d, *J* = 9.2 Hz, 2H), 6.86 (d, *J* = 9.3 Hz, 2H), 5.02 (s, 2H), 4.81 – 4.64 (m, 2H), 4.22 – 4.10 (m, 2H); MS (EI): m/z calcd for C₁₅H₁₅FO₂ 246; found 246 M⁺.

2-(4-(Benzyloxy)phenoxy)ethanol (5b)

The procedure described above for the preparation of **5a** was employed to obtain a white solid of **5b** from 4-(benzyloxy)phenol and 2-chloroethanol (2.35 g, 48.1%). mp: 105.8-106.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.30 (m, 5H), 6.91 (d, *J* = 9.1 Hz, 2H), 6.85 (d, *J* = 9.0 Hz, 2H), 5.02 (s, 2H), 4.08 – 3.99 (m, 2H), 3.97 – 3.87 (m, 2H), 1.95 (s, 1H); MS (EI): m/z calcd for C₁₅H₁₆O₃ 244; found 244 M⁺.

4-(2-Fluoroethoxy)phenol (6a)

To a solution of **5a** (2.08 g, 8.44 mmol) in anhydrous MeOH (10 mL) was added 10% Pd/C (89.4 mg, 0.84 mmol). The mixture was stirred for 4 h at 50 °C under 1 atm of hydrogen atmosphere. The catalyst was filtered while hot and washed with MeOH, and the filtrate was concentrated under reduced pressure to give a white solid of **6a** (1.32 g, 57.4%). mp: 95.7-96.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.83 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 9.0 Hz,

2H), 4.80 - 4.64 (m, 2H), 4.42 (s, 1H), 4.23 - 4.09 (m, 2H); MS (EI): m/z calcd for C₈H₉FO₂ 156; found 156 M⁺.

4-(2-Hydroxyethoxy)phenol (6b)

The procedure described above for the preparation of **6a** was employed to obtain a white solid of **6b** from **5b** (1.35 g, 100%). mp: 92.1-92.8 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.86 (s, 1H), 6.74 (d, J = 8.6 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 4.78 (t, J = 5.2 Hz, 1H), 3.90 – 3.80 (m, 2H), 3.70 – 3.61 (m, 2H); MS (EI): m/z calcd for C₈H₁₀O₃ 154; found 154 M⁺.

1-(2-Fluoroethoxy)-4-((4-iodobenzyl)oxy)benzene (7a)

To a solution of **6a** (468.5 mg, 3.0 mmol) and 1-(bromomethyl)-4-iodobenzene (890.8 mg, 3.0 mmol) in anhydrous DMF (5 mL), K₂CO₃ was added (414.6 mg, 3.0 mmol). The resulting mixture was stirred at 90 °C for 30 min. After cooling to room temperature, a white precipitate was formed by adding 50 mL of water, which was then filtered, washed with 50 mL of water and recrystallized from methanol to obtain a white solid of **7a** (986.8 mg, 88.4%). mp: 108.3-108.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 6.90 – 6.84 (m, 4H), 4.96 (s, 2H), 4.79 – 4.65 (m, 2H), 4.21 – 4.11 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.11 (C_q), 152.93 (C_q), 137.62 (2 × CH), 136.94 (C_q), 129.24 (2 × CH), 115.89 (2 × CH), 115.79 (2 × CH), 93.35 (C_q), 82.01 (d, *J* = 170.6 Hz, CH₂), 69.96 (CH₂), 67.87 (d, *J* = 20.5 Hz, CH₂); HRMS (EI): m/z calcd for C₁₅H₁₄FIO₂ 372.0023; found 372.0029 M⁺.

2-(4-((4-Iodobenzyl)oxy)phenoxy)ethanol (7b)

The procedure described above for the preparation of **7a** was employed to obtain a white solid of **7b** from **6b** and 1-(bromomethyl)-4-iodobenzene (1.38 g, 72.9%). mp: 129.3-129.9

°C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.89 – 6.83 (m, 4H), 4.96 (s, 2H), 4.06 – 4.00 (m, 2H), 3.96 – 3.91 (m, 2H); MS (EI): m/z calcd for C₁₅H₁₅IO₃ 370; found 370 M⁺.

1-Bromo-4-((4-(2-fluoroethoxy)phenoxy)methyl)benzene (7c)

The procedure described above for the preparation of **7a** was employed to obtain a white solid of **7c** from **6a** and 1-bromo-4-(bromomethyl)benzene (1.55 g, 95.2%). mp: 115.6-116.4 $^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.90 – 6.84 (m, 4H), 4.97 (s, 2H), 4.80 – 4.65 (m, 2H), 4.21 – 4.11 (m, 2H); MS (EI): m/z calcd for C₁₅H₁₄BrFO₂ 324; found 324 M⁺.

2-(4-((4-Iodobenzyl)oxy)phenoxy)ethyl 4-methylbenzenesulfonate (8a)

A mixture of **7b** (740.4 mg, 2.0 mmol) and Et₃N (10 mL) was stirred in anhydrous CH₂Cl₂ (10 mL) in an ice bath, and tosyl chloride (571.9 mg, 3.0 mmol) was slowly added. The reaction mixture was stirred for 4 h at room temperature, and the solvent was evaporated under reduced pressure. Water was added (50 mL), and the mixture was extracted by CH₂Cl₂ (3 × 10 mL). Combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under a vacuum. The crude mixture was purified by silica gel chromatography (petroleum ether/AcOEt = 4/1, v/v) to obtain a white solid of **7a** (425.7 mg, 40.6%). mp: 120.8-121.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.83 (d, *J* = 9.1 Hz, 2H), 6.72 (d, *J* = 9.1 Hz, 2H), 4.94 (s, 2H), 4.36 – 4.31 (m, 2H), 4.12 – 4.07 (m, 2H), 2.44 (s, 3H); MS (EI): m/z calcd for C₂₂H₂₁IO₅S 524; found 524 M⁺.

Tributyl(4-((4-(2-fluoroethoxy)phenoxy)methyl)phenyl)stannane (8b)

A mixture of **7c** (650.3 mg, 2.0 mmol), (Bu₃Sn)₂ (2.32 g, 4.0 mmol), (Ph₃P)₄Pd (231.7 mg, 0.2 mmol) and Et₃N (1 mL) in toluene (10 mL) was stirred under reflux overnight. The mixture was concentrated under reduced pressure and purified by silica gel chromatography (petroleum ether/AcOEt = 15/1, v/v) to give a colorless oil of **8b** (325.6 mg, 30.4%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.41 (m, 2H), 7.37 (d, *J* = 7.8 Hz, 2H), 6.92 (d, *J* = 9.3 Hz, 2H), 6.87 (d, *J* = 9.3 Hz, 2H), 4.99 (s, 2H), 4.80 – 4.65 (m, 2H), 4.22 – 4.11 (m, 2H), 1.58 – 1.50 (m, 6H), 1.39 – 1.27 (m, 6H), 1.14 – 0.96 (m, 6H), 0.88 (t, *J* = 7.3 Hz, 9H); MS (EI): m/z calcd for C₂₇H₄₁FO₂Sn 536; found 536 M⁺.

4-(2-Fluoroethoxy)benzaldehyde (9a)

To a solution of 4-hydroxybenzaldehyde (2.44 g, 20 mmol) and 1-bromo-2-fluoroethane (2.54 g, 20 mmol) in anhydrous DMF (5 mL), K₂CO₃ (5.53 g, 40 mmol) was added. The resulting mixture was stirred at 90 °C for 2h, and the solvent was evaporated under reduced pressure. 50 mL of water was added, and the mixture was extracted by CH₂Cl₂ (3 × 10 mL). Combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under a vacuum. The crude mixture was purified by silica gel chromatography (petroleum ether/AcOEt = 4/1, v/v) to give a white solid of **9a** (2.95 g, 87.8%). mp: 53.3-54.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.86 (d, *J* = 8.7 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 4.88 – 4.71 (m, 2H), 4.37 – 4.24 (m, 2H); MS (EI): m/z calcd for C₉H₉FO₂ 168; found 168 M⁺.

4-(2-Bromoethoxy)benzaldehyde (9b)

The procedure described above for the preparation of **9a** was employed to obtain a white solid of **9b** from 4-hydroxybenzaldehyde and 1,2-dibromoethane (1.32 g, 28.9%). mp:

51.2-51.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 7.85 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.7 Hz, 2H), 4.38 (t, *J* = 6.2 Hz, 2H), 3.67 (t, *J* = 6.2 Hz, 2H).

(4-(2-Fluoroethoxy)phenyl)methanol (10a)

To a stirring mixture of **9a** (2.95 g, 17.6 mmol) in anhydrous MeOH (10 mL) in ice bath, NaBH₄ (1.33 g, 35.2 mmol) was slowly added. The reaction mixture was stirred for 30 min at 0 °C and 10 mL of water was added to quench the reaction. MeOH was evaporated under reduced pressure and the mixture was neutralized with 1 M HCl and then extracted by CH₂Cl₂ (3 × 10 mL). Combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to give a yellow oil of **6a** (2.73 g, 91.1%). mp: 50.6-51.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 4.84 – 4.68 (m, 2H), 4.63 (s, 2H), 4.27 – 4.17 (m, 2H); MS (EI): m/z calcd for C₉H₁₁FO₂ 170; found 170 M⁺.

(4-(2-Bromoethoxy)phenyl)methanol (10b)

The procedure described above for the preparation of **10a** was employed to obtain a white solid of **10b** from **9b** (1.14 g, 95.8%). mp: 88.7-89.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 4.63 (s, 2H), 4.30 (t, *J* = 6.3 Hz, 2H), 3.64 (t, *J* = 6.3 Hz, 2H); MS (EI): m/z calcd for C₉H₁₁BrO₂ 230; found 230 M⁺.

1-(Bromomethyl)-4-(2-fluoroethoxy)benzene (11a)

To a stirring solution of **10a** (2.73 g, 16.0 mmol) in anhydrous CH_2Cl_2 (25 mL) at 0 °C, phosphorus tribromide (4.33 g, 16.0 mmol) was added dropwise. The resulting mixture was stirred at room temperature for 30 min and the reaction was quenched by addition of 20 mL of water. The mixture was neutralized with NaHCO₃ and then extracted by CH_2Cl_2 (3 × 10 mL). Combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to give a colorless oil of **11a** (3.54 g, 95.0%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 4.84 – 4.68 (m, 2H), 4.50 (s, 2H), 4.27 – 4.16 (m, 2H); MS (EI): m/z calcd for C₉H₁₁BrFO 232; found 232 M⁺.

1-(2-Bromoethoxy)-4-(bromomethyl)benzene (11b)

The procedure described above for the preparation of **11a** was employed to obtain a white solid of **11b** from **10b** (1.29 g, 99.0%). mp: 53.9-54.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 4.49 (s, 2H), 4.29 (t, *J* = 6.3 Hz, 2H), 3.63 (t, *J* = 6.3 Hz, 2H); MS (EI): m/z calcd for C₉H₁₀Br₂O 292; found 292 M⁺.

1-(2-Fluoroethoxy)-4-((4-iodophenoxy)methyl)benzene (12a)

The procedure described above for the preparation of **7a** was employed to obtain a white solid of **12a** from 4-iodophenol and **11a** (623.4 mg, 94.1%). mp: 127.6-128.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.9 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.74 (d, *J* = 8.9 Hz, 2H), 4.95 (s, 2H), 4.83 – 4.68 (m, 2H), 4.27 – 4.16 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.65 (C_q), 158.39 (C_q), 138.23 (2 × CH), 129.24 (C_q), 129.21 (2 × CH), 117.34 (2 × CH), 114.81 (2 × CH), 83.00 (C_q), 81.87 (d, *J* = 170.8 Hz, CH₂), 69.80 (CH₂), 67.20 (d, *J* = 20.6 Hz, CH₂); HRMS (EI): m/z calcd for C₁₅H₁₄FIO₂ 372.0023; found 372.0028 M⁺.

1-(2-Bromoethoxy)-4-((4-iodophenoxy)methyl)benzene (12b)

The procedure described above for the preparation of **7a** was employed to obtain a white solid of **12b** from 4-iodophenol and **11b** (493.7 mg, 92.7%). mp: 118.6-119.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.9 Hz, 2H), 7.34 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz,

2H), 6.74 (d, *J* = 8.9 Hz, 2H), 4.96 (s, 2H), 4.30 (t, *J* = 6.3 Hz, 2H), 3.64 (t, *J* = 6.3 Hz, 2H); MS (EI): m/z calcd for C₁₅H₁₄BrIO₂432; found 432 M⁺.

1-Bromo-4-((4-(2-fluoroethoxy)benzyl)oxy)benzene (12c)

The procedure described above for the preparation of **7a** was employed to obtain a white solid of **12c** from 4-bromophenol and **11a** (1.03 g, 76.1%). mp: 116.7-117.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 4H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.84 (d, *J* = 8.2 Hz, 2H), 4.96 (s, 2H), 4.84 – 4.68 (m, 2H), 4.28 – 4.17 (m, 2H); MS (EI): m/z calcd for C₁₅H₁₄BrFO₂ 324; found 324 M⁺.

2-(4-((4-Iodophenoxy)methyl)phenoxy)ethyl 4-methylbenzenesulfonate (13a)

A mixture of **12b** (402.5 mg, 0.93 mmol) and silver *p*-toluenesulfonate (519.1 mg, 1.86 mmol) in acetonitrile (20 mL) was stirred for 12 h at 90 °C. The mixture was concentrated under reduced pressure and purified by silica gel chromatography (petroleum ether/AcOEt = 4/1) to give a white solid of **13a** (277.6 mg, 57.0%). m.p. 141.7-142.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.9 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 6.79 (d, *J* = 8.6 Hz, 2H), 6.73 (d, *J* = 8.9 Hz, 2H), 4.94 (s, 2H), 4.39 – 4.35 (m, 2H), 4.17 – 4.14 (m, 2H), 2.45 (s, 3H); MS (EI): m/z calcd for C₂₂H₂₁IO₅S 524; found 524 M⁺.

Tributyl(4-((4-(2-fluoroethoxy)benzyl)oxy)phenyl)stannane (13b)

The procedure described above for the preparation of **8b** was used to obtain a colorless oil of **13b** from **12c** (134.6 mg, 25.1%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.7 Hz, 2H), 7.32 – 7.26 (m, 2H), 6.99 – 6.93 (m, 4H), 5.00 (s, 2H), 4.83 – 4.68 (m, 2H), 4.28 – 4.17 (m,

2H), 1.58 - 1.50 (m, 6H), 1.39 - 1.27 (m, 6H), 1.14 - 0.96 (m, 6H), 0.88 (t, J = 7.3 Hz, 9H); MS (EI): m/z calcd for C₂₇H₄₁FO₂Sn 536; found 536 M⁺.

Supplementary Tables

	12a
Data collection	
Formula sum	$C_{15}H_{14}FIO_2$
Formula weight (g/mol)	372.16
Crystal system	monoclinic
Space group	P2(1)/c
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	17.65, 10.49, 7.66
α, β, γ (°)	90, 96.4, 90
Cell volume (Å ³)	1408.94
Z	4
F(000)	728
Crystal size (mm)	0.27×0.20×0.11
Calc. density (g/cm ³)	1.754
Completeness (%)	99.9
Refinement	
$\mathbf{R}[\mathbf{F}^2 > 2\sigma(\mathbf{F}^2)]$	0.0180
$wR(F^2)$	0.0409
GoF	1.036
Reflections	2550
Parameters	172
Restraints	0

 Table S1 | Crystal data and structure refinements for compound 12a (CCDC 1063679)

Table S2 | Purity of key target compounds

Compounda	Flow rate	Mobile phase	Column	Retention time	D
Compounds	(mL/min)	(CH ₃ CN %)	(Venusil MP C18)	(RT, min)	Purity (%)
7a	1	80	$4.6 \times 250 \text{ mm}$	8.81	99.4
[¹²⁵ I] 7a	1	80	$4.6 \times 250 \text{ mm}$	9.28	99.2
7a	1	80	$4.6 \times 250 \text{ mm}$	8.12	99.2
[¹⁸ F] 7a	1	80	$4.6 \times 250 \text{ mm}$	8.53	99.7
12a	1	80	$4.6 \times 250 \text{ mm}$	8.21	99.7
[¹²⁵ I] 12a	1	80	$4.6 \times 250 \text{ mm}$	8.63	99.0
12a	1	80	$4.6 \times 250 \text{ mm}$	8.96	99.2
[¹⁸ F] 12a	1	80	$4.6 \times 250 \text{ mm}$	9.61	99.9

Organ	2 min	10 min	30 min	60 min
	[¹²⁵ I] 7a (log	$g D = 3.96 \pm 0.22$, SA \approx	≈ 81 GBq/ μ mol)	
blood	5.03 ± 0.20	3.03 ± 0.48	2.17 ± 0.31	1.96 ± 0.31
brain	7.04 ± 0.89	2.73 ± 0.25	1.05 ± 0.22	$0.55\ \pm 0.11$
heart	9.70 ± 2.25	$2.01\ \pm 0.14$	1.65 ± 0.43	$1.00\ \pm 0.18$
liver	22.45 ± 3.88	14.43 ± 2.37	12.35 ± 2.83	$5.15\ \pm 1.09$
spleen	3.86 ± 0.21	1.32 ± 0.13	$1.26\ \pm 0.20$	$1.14\ \pm 0.56$
lung	10.78 ± 2.33	7.44 ± 1.59	4.25 ± 0.41	4.04 ± 1.63
kidney	12.03 ± 1.20	9.53 ± 1.58	6.71 ± 0.78	6.56 ± 1.10
pancreas	8.15 ± 1.09	2.07 ± 0.30	2.61 ± 0.59	1.97 ± 0.48
muscle	3.72 ± 0.51	1.28 ± 0.11	1.29 ± 0.31	1.36 ± 0.25
thyroid ^b	0.12 ± 0.02	0.09 ± 0.02	0.12 ± 0.01	0.16 ± 0.03
stomach ^b	1.32 ± 0.21	1.08 ± 0.24	4.38 ± 1.00	2.44 ± 0.97
intestine ^b	6.46 ± 0.79	17.21 ± 2.33	19.88 ± 4.22	20.21 ± 7.78
	[¹²⁵ I] 7a (log	$g D = 3.96 \pm 0.22$, SA	≈ 60 GBq/ μ mol)	
blood	3.30 ± 0.43	2.31 ± 0.22	1.39 ± 0.15	0.83 ± 0.06
brain	5.39 ± 0.36	3.51 ± 0.36	0.97 ± 0.11	0.37 ± 0.05
heart	7.34 ± 0.69	2.32 ± 0.15	0.96 ± 0.13	0.55 ± 0.10
liver	12.12 ± 2.01	11.30 ± 0.58	6.29 ± 0.22	3.31 ± 0.37
spleen	3.63 ± 0.83	1.53 ± 0.23	0.62 ± 0.03	0.36 ± 0.03
lung	7.77 ± 0.18	6.50 ± 0.69	4.30 ± 0.58	1.91 ± 0.29
kidney	9.80 ± 1.05	10.01 ± 1.43	6.25 ± 1.23	3.40 ± 0.48
pancreas	6.79 ±1.53	2.79 ± 0.35	1.06 ± 0.16	0.57 ± 0.05
muscle	3.37 ± 0.50	1.42 ± 0.20	$0.95\ \pm 0.08$	0.72 ± 0.20
thyroid ^b	0.12 ± 0.03	0.11 ± 0.01	0.12 ± 0.04	0.22 ± 0.05
stomach ^b	1.15 ± 0.21	0.74 ± 0.09	1.67 ± 0.33	1.04 ± 0.30
intestine ^b	4.57 ± 0.96	8.51 ± 0.48	18.87 ± 2.27	25.30 ± 3.94
	[¹⁸ F] 7a (log	$g D = 3.88 \pm 0.17$, SA \approx	≈ 60 GBq/µmol)	
blood	5.99 ±0.16	4.29 ±0.14	4.36 ± 0.20	4.97 ± 0.12
brain	6.14 ± 0.52	4.78 ± 0.11	3.85 ± 0.24	3.48 ± 0.12
heart	9.32 ± 0.27	4.03 ± 0.34	4.20 ± 0.52	4.26 ± 0.13
liver	17.83 ± 1.41	6.07 ± 0.27	4.31 ± 0.32	3.84 ± 0.21
spleen	5.92 ± 1.30	3.33 ± 0.20	3.38 ± 0.23	3.28 ± 0.29
lung	9.34 ± 0.45	4.63 ± 0.35	4.21 ± 0.18	4.32 ± 0.17
kidney	12.70 ± 0.69	7.69 ± 1.15	6.12 ± 0.79	4.77 ± 0.52
pancreas	8.18 ± 0.79	3.96 ± 0.15	3.62 ± 0.30	2.89 ± 0.37
muscle	5.03 ± 0.63	3.46 ± 0.19	3.82 ± 0.40	4.31 ± 0.38
bone	2.53 ± 0.43	1.55 ± 0.50	2.70 ± 0.48	4.16 ±0.59
stomach ^b	1.55 ± 0.11	1.24 ± 0.13	1.82 ± 0.48	1.58 ± 0.18
intestine ^b	6.38 ±1.04	5.38 ± 0.33	5.95 ± 0.89	8.13 ±1.01
-		$g D = 3.62 \pm 0.15$, SA		
blood	4.96 ± 0.35	3.88 ±0.79	3.89 ± 0.53	3.01 ± 1.07 1

Table S3 | Biodistribution of radioactivity after intravenous injection of $[^{125}I]$ **7a**, $[^{18}F]$ **7a**, $[^{125}I]$ **12a** and $[^{18}F]$ **12a** in normal ICR mice ^{*a*}

brain	5.27 ± 0.98	2.28 ± 0.27	$0.81\ \pm 0.06$	0.37 ± 0.06
heart	6.61 ± 1.42	$2.12\ \pm 0.16$	$1.67\ \pm 0.09$	$1.17\ \pm 0.45$
liver	18.12 ± 2.34	12.07 ± 1.06	8.68 ± 1.02	4.64 ± 0.77
spleen	$2.85\ \pm 0.30$	$1.29\ \pm 0.06$	$1.03\ \pm 0.10$	0.84 ± 0.31
lung	10.30 ± 2.16	4.16 ± 0.26	3.56 ± 0.38	3.11 ± 1.02
kidney	9.16 ± 0.59	7.61 ± 1.23	7.44 ± 0.90	6.09 ± 2.17
pancreas	6.45 ± 0.56	$2.44\ \pm 0.28$	$1.75\ \pm 0.10$	1.37 ± 0.41
muscle	3.47 ± 0.45	1.31 ± 0.12	0.99 ± 0.17	1.20 ± 0.26
thyroid ^b	0.13 ± 0.02	0.13 ± 0.01	0.19 ± 0.04	0.34 ± 0.10
stomach ^b	1.30 ± 0.14	1.34 ± 0.16	2.02 ± 0.49	2.27 ± 0.40
intestine ^b	4.81 ± 0.97	10.68 ± 2.60	16.61 ± 3.88	18.84 ± 8.75
	[¹⁸ F] 12a (lo	$g D = 3.84 \pm 0.07$, SA	$\approx 60 \text{ GBq}/\mu \text{mol})$	
blood	7.53 ± 0.80	4.55 ± 0.36	5.91 ± 0.33	5.87 ± 0.19
brain	6.76 ± 0.41	5.73 ± 0.44	5.02 ± 0.32	4.26 ± 0.18
heart	9.11 ± 1.07	4.40 ± 0.36	5.41 ± 0.36	4.76 ± 0.40
liver	13.20 ± 1.45	4.74 ± 0.36	4.84 ± 0.28	4.64 ± 0.21
spleen	4.98 ± 0.32	3.55 ± 0.26	4.29 ± 0.36	3.87 ± 0.34
lung	9.17 ± 1.10	4.91 ± 0.60	5.34 ± 0.31	5.19 ± 0.36
kidney	11.63 ± 0.86	6.19 ± 0.46	6.19 ± 0.37	5.48 ± 0.41
pancreas	8.75 ± 0.33	3.96 ± 0.27	4.55 ± 0.36	3.95 ± 0.25
muscle	5.38 ± 0.47	3.92 ± 0.41	4.71 ± 0.50	4.51 ± 0.49
bone	2.55 ± 0.29	2.13 ± 0.27	3.31 ± 0.21	3.51 ± 0.78
stomach ^b	$1.70\ \pm 0.08$	1.54 ± 0.32	2.09 ± 0.32	1.70 ± 0.29
intestine ^b	7.72 ± 0.54	6.94 ± 0.53	8.09 ± 0.43	8.50 ±1.23

^{*a*} Expressed as % injected dose per gram. Each value represents the mean \pm SD for 4-5 mice at each interval.

^b Expressed as % injected dose per organ.

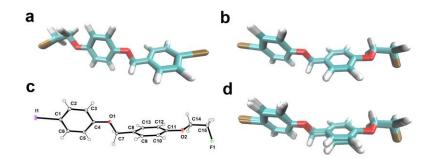

		-		[¹⁸ F]7a			
Organ	Post-injection time (min)	Metabolite [¹²⁵ I]7a-1	Metabolite [¹²⁵ I]7a-2	Parent tracer [¹²⁵ I]7a	Metabolite [¹⁸ F]7a-1 and 2	Parent tracer [¹⁸ F]7a	
	2	4.1%	0.0%	95.9%	15.3%	84.7%	
D	10	5.1%	8.9%	86.0%	30.2%	69.8%	
Brain	30	10.0%	10.6%	79.4%	31.1%	68.9%	
	60	10.3%	17.6%	72.1%	66.0%	34.0%	
	2	14.8%	0.0%	85.2%	56.9%	43.1%	
Plasma	10	58.7%	0.0%	41.3%	78.4%	21.6%	
	30	77.9%	0.0%	22.1%	78.2%	21.8%	
	60	87.7%	0.0%	12.3%	92.8%	7.2%	
	2	60.5%	4.3%	35.2%	20.5%	79.5%	
Liver	10	72.3%	14.2%	13.5%	37.4%	62.6%	
Liver	30	86.3%	4.9%	8.8%	51.3%	48.7%	
	60	93.0%	3.7%	3.3%	76.6%	23.4%	
	2	0.0%	0.0%	0.0%	100%	0.0%	
Urine	10	97.4%	0.0%	2.6%	100%	0.0%	
Urme	30	100%	0.0%	0.0%	100%	0.0%	
	60	100%	0.0%	0.0%	100%	0.0%	
	2	77.1%	0.0%	22.9%	46.4%	53.6%	
Б	10	41.2%	0.0%	58.8%	81.2%	18.8%	
Feces	30	98.0%	0.0%	2.0%	89.5%	10.5%	
	60	91.7%	8.3%	0.0%	92.7%	7.3%	

Table S4 | Percentages of metabolites extracted from the brain, plasma, liver, urine and feces of ICR mice after intravenous injection of $[^{125}I]$ **7a** and $[^{18}F]$ **7a**

			[¹²⁵ I]12a	[¹⁸ F]12a		
Organ	Post-injection time (min)	Metabo lite [¹²⁵ I]12a-1	Metabolite [¹²⁵ I]12a-2	Parent tracer [¹²⁵ I]12a	Metabolite [¹⁸ F]12a-1 and 2	Parent tracer [¹⁸ F]12a
	2	7.9%	0.0%	92.1%	12.1%	87.9%
Brain	10	8.2%	9.7%	82.1%	34.3%	65.7%
Drain	30	9.6%	12.1%	78.3%	50.8%	49.2%
	60	12.7%	18.7%	68.6%	70.2%	29.8%
	2	11.6%	0.0%	88.4%	26.3%	73.7%
Plasma	10	70.5%	0.0%	29.6%	59.6%	40.4%
r iasilia	30	73.7%	0.0%	26.3%	65.9%	34.1%
	60	95.3%	0.0%	4.68%	86.1%	13.9%
	2	48.7%	2.2%	49.1%	8.9%	91.1%
Liver	10	76.7%	1.8%	21.5%	14.7%	85.3%
LIVEI	30	90.5%	3.2%	6.3%	17.8%	82.2%
	60	94.7%	1.5%	3.8%	78.3%	21.7%
	2	0.0%	0.0%	0.0%	100%	0.0%
Urine	10	100%	0.0%	0.0%	100%	0.0%
OTINE	30	100%	0.0%	0.0%	100%	0.0%
	60	98.9%	1.1%	0.0%	100%	0.0%
	2	0.0%	0.0%	0.0%	53.3%	46.7%
Feces	10	0.0%	0.0%	0.0%	79.1%	20.9%
reces	30	0.0%	0.0%	0.0%	83.2%	16.8%
	60	0.0%	0.0%	0.0%	82.6%	17.4%

Table S5 | Percentages of metabolites extracted from the brain, plasma, liver, urine and fecesof ICR mice after intravenous injection of $[^{125}I]$ **12a** and $[^{18}F]$ **12a**

Supplementary Figures

Figure S1 | **Chemical structures of 7a and 12a.** Optimized structures of benzyloxybenzene derivatives **7a** (a) and **12a** (b). (c) X-ray crystal structure of **12a** (CCDC 1063679). Superposition of **12a** optimized and its X-ray crystal structure was show in d. RMSD = 0.190 Å.

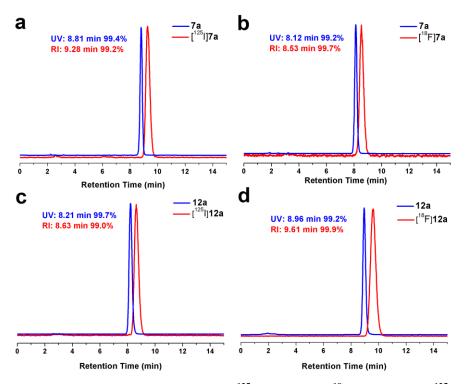


Figure S2 | Co-injection HPLC profiles of 7a and [¹²⁵I]7a; 7a and [¹⁸F]7a; 12a and [¹²⁵I]12a; 12a and [¹⁸F]12a. HPLC conditions: Venusil MP C18 column (Agela Technologies, 5 μ m, 4.6 × 250 mm), CH₃CN/H₂O = 80%/20%, 1 mL/min, UV, 254 nm.

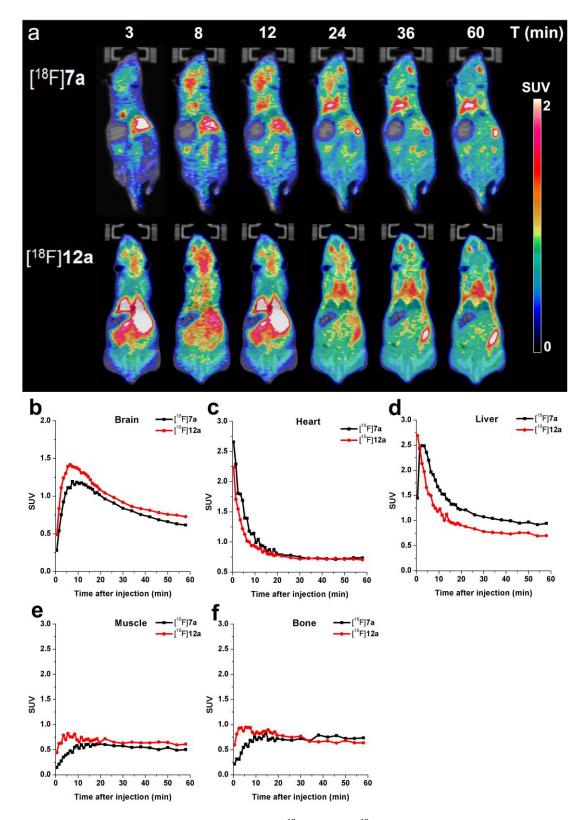


Figure S3 | Dynamic microPET/CT imaging of $[^{18}F]$ 7a and $[^{18}F]$ 12a in normal ICR mice. (a) Whole body time-radioactivity biodistribution by dynamic microPET/CT imaging. PET image color intensities are expressed as standardized uptake value (SUV). (b-f) Time-activity curves (TACs) of $[^{18}F]$ 7a and $[^{18}F]$ 12a in brain, heart, liver, muscle and bone for the entire 60 min PET scan.

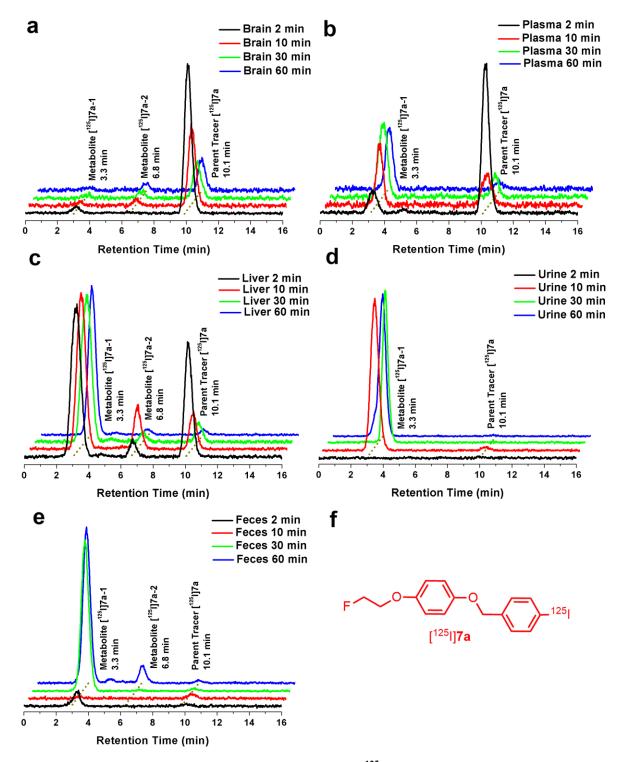


Figure S4 | HPLC profiles for radioactive metabolites of [¹²⁵I]7a in ICR mice brain (a), plasma (b), liver (c), urine (d) and feces (e) at 2, 10, 30 and 60 min post-injection time points. Reversed-phase HPLC performed on a Venusil MP C18 reverse phase column (Agela Technologies, 5 μ m, 4.6 mm × 250 mm) using a binary gradient system (acetonitrile/water : 80%/20%) at a 1.0 mL/min flow rate. (f) Chemical structure of [¹²⁵I]7a.

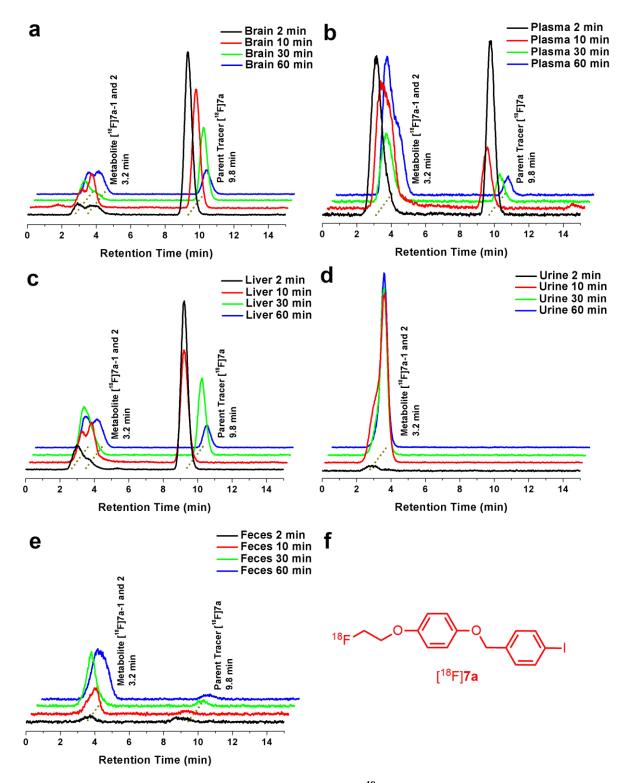


Figure S5 | HPLC profiles for radioactive metabolites of [¹⁸F]7a in ICR mice brain (a), plasma (b), liver (c), urine (d) and feces (e) at 2, 10, 30 and 60 min post-injection time points. Reversed-phase HPLC performed on a Venusil MP C18 reverse phase column (Agela Technologies, 5 μ m, 4.6 mm × 250 mm) using a binary gradient system (acetonitrile/water : 80%/20%) at a 1.0 mL/min flow rate. (f) Chemical structure of [¹⁸F]7a.

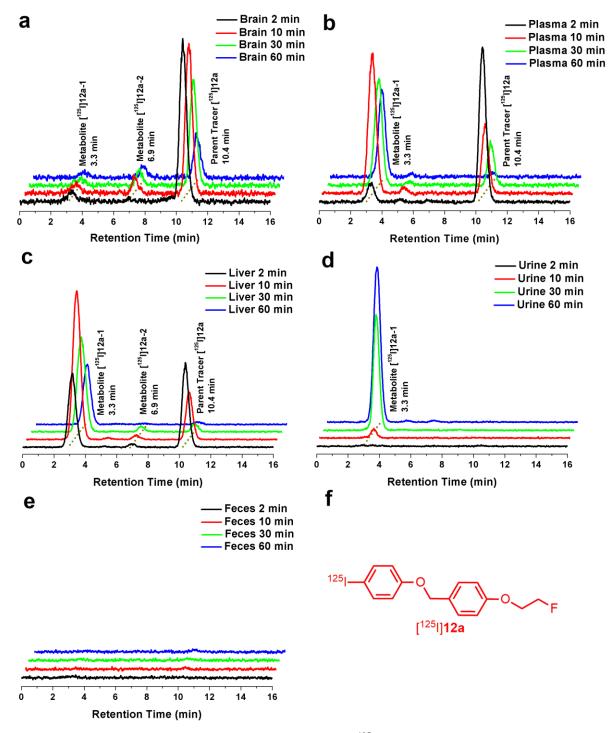


Figure S6 | HPLC profiles for radioactive metabolites of [¹²⁵I]12a in ICR mice brain (a), plasma (b), liver (c), urine (d) and feces (e) at 2, 10, 30 and 60 min post-injection time points. Reversed-phase HPLC performed on a Venusil MP C18 reverse phase column (Agela Technologies, 5 μ m, 4.6 mm × 250 mm) using a binary gradient system (acetonitrile/water : 80%/20%) at a 1.0 mL/min flow rate. (f) Chemical structure of [¹²⁵I]12a.

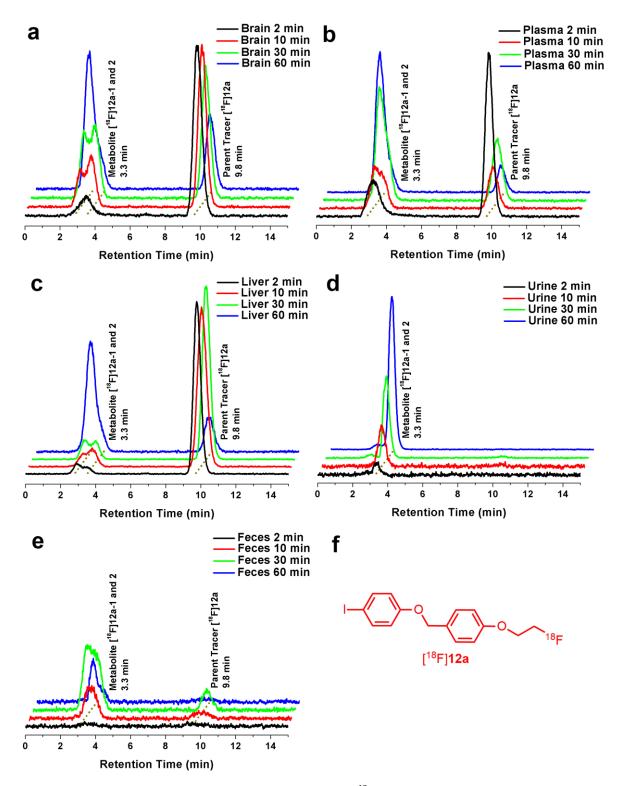
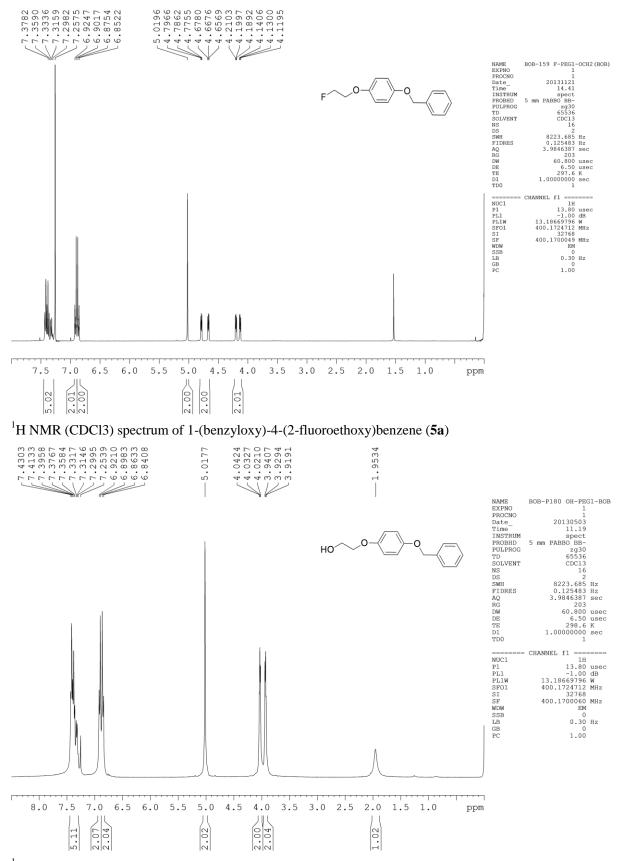
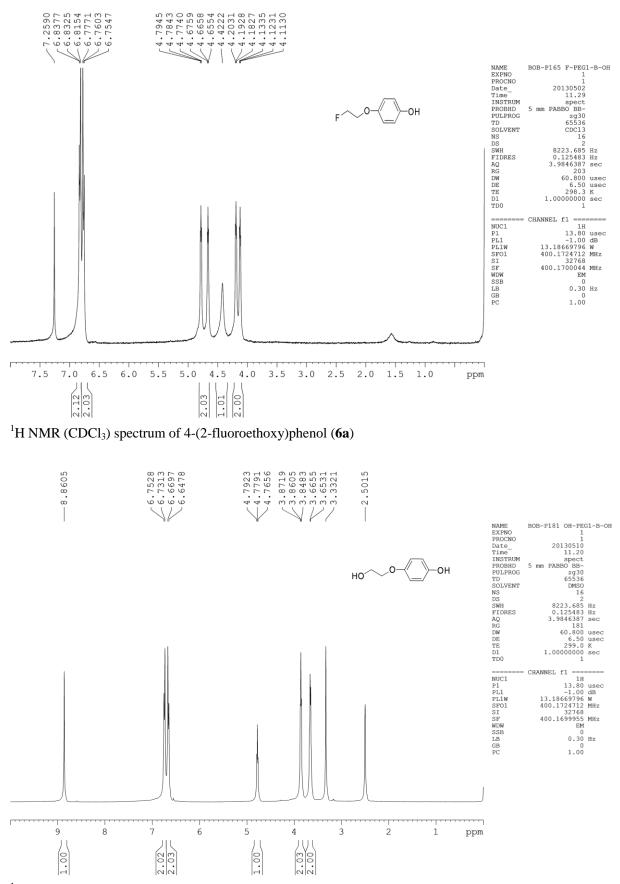
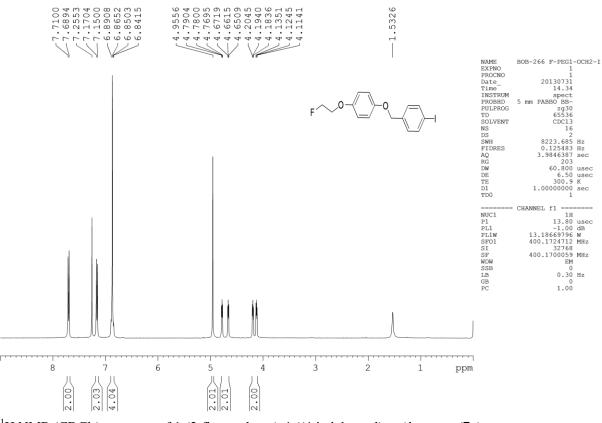
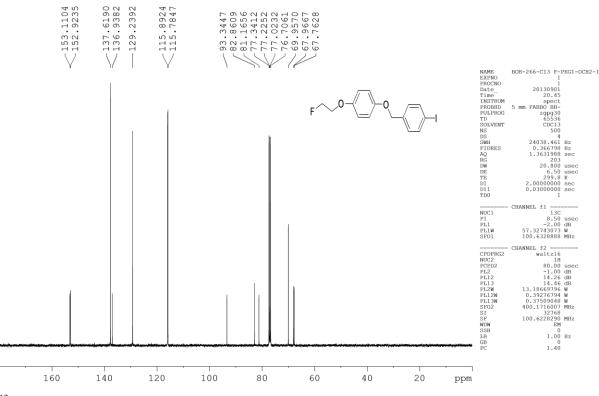
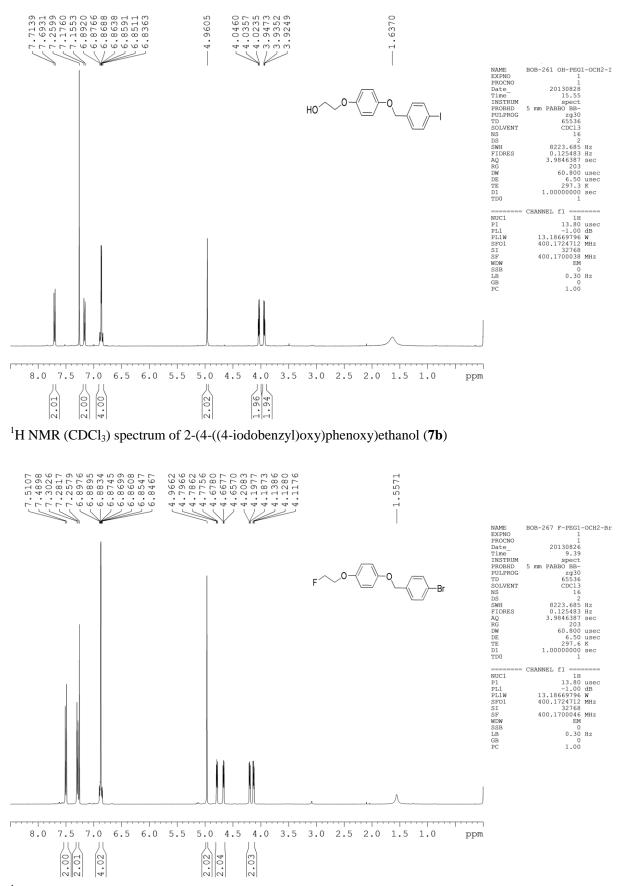
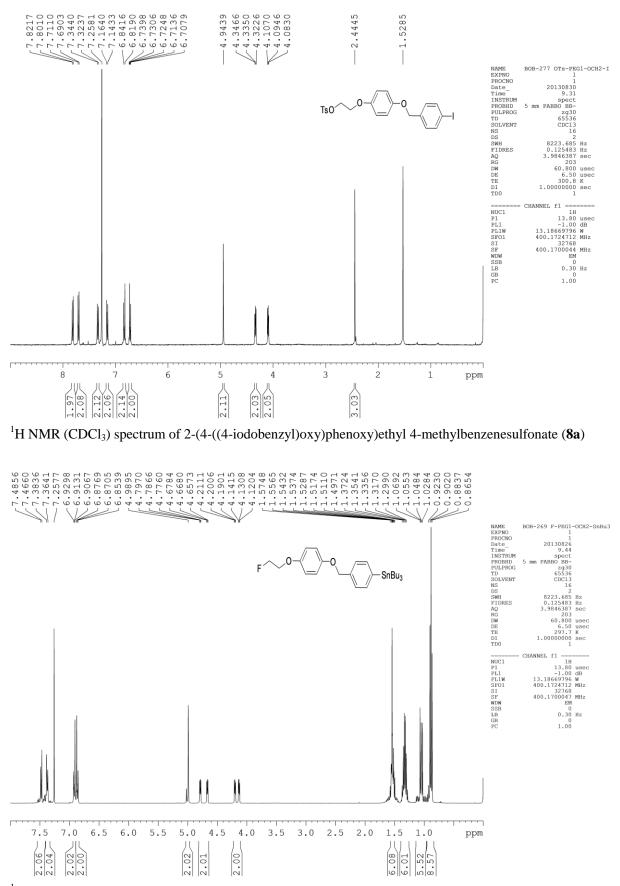




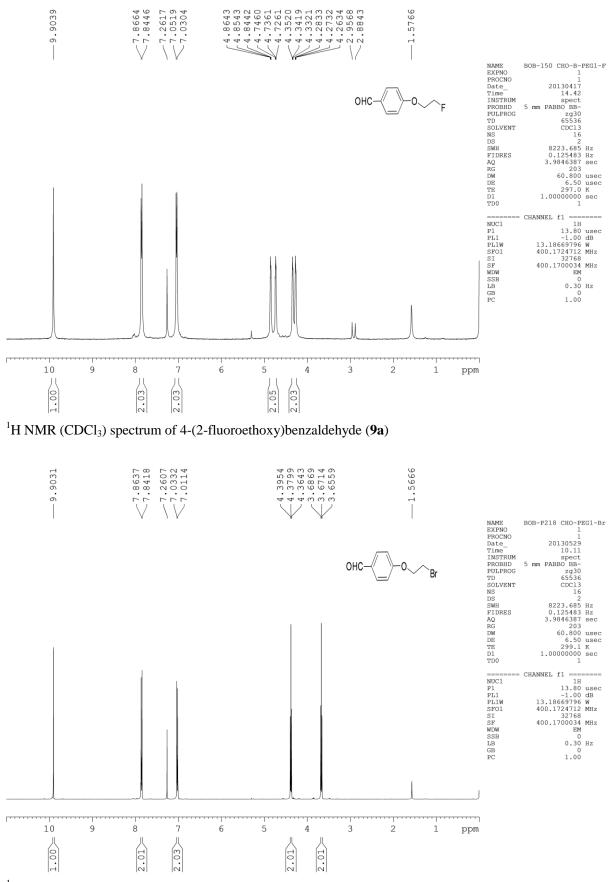
Figure S7 | HPLC profiles for radioactive metabolites of [¹⁸F]12a in ICR mice brain (a), plasma (b), liver (c), urine (d) and feces (e) at 2, 10, 30 and 60 min post-injection time points. Reversed-phase HPLC performed on a Venusil MP C18 reverse phase column (Agela Technologies, 5 μ m, 4.6 mm × 250 mm) using a binary gradient system (acetonitrile/water : 80%/20%) at a 1.0 mL/min flow rate. (f) Chemical structure of [¹⁸F]12a.

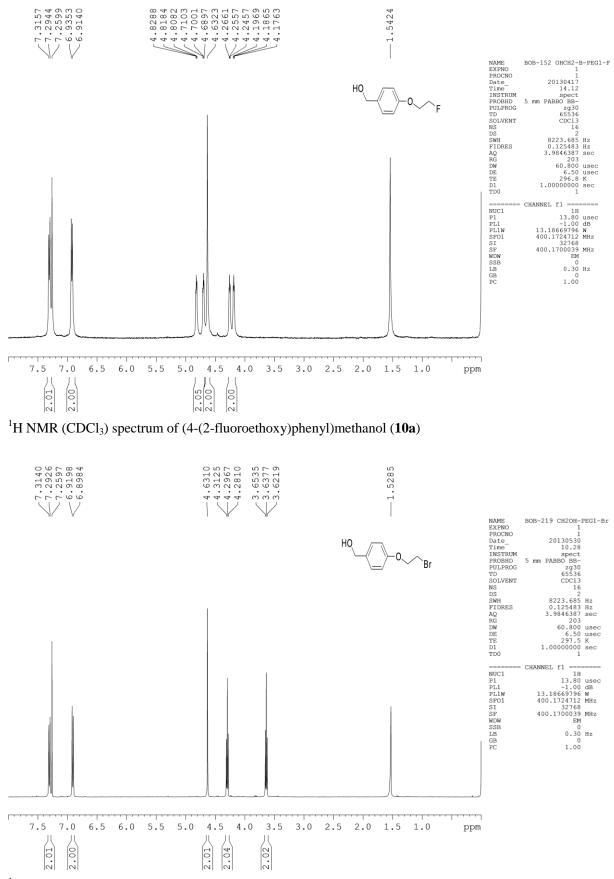


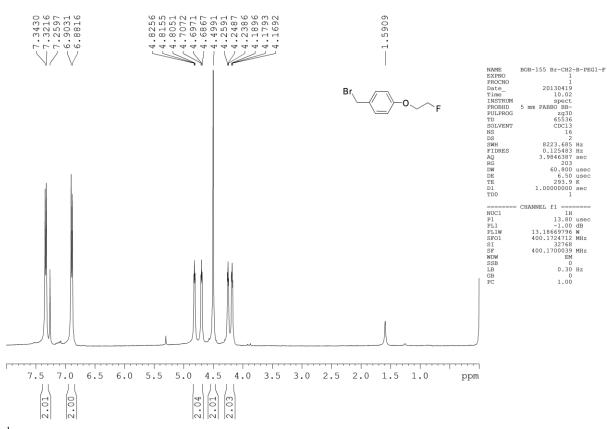

¹H NMR (CDCl₃) spectrum of 2-(4-(benzyloxy)phenoxy)ethanol (**5b**)

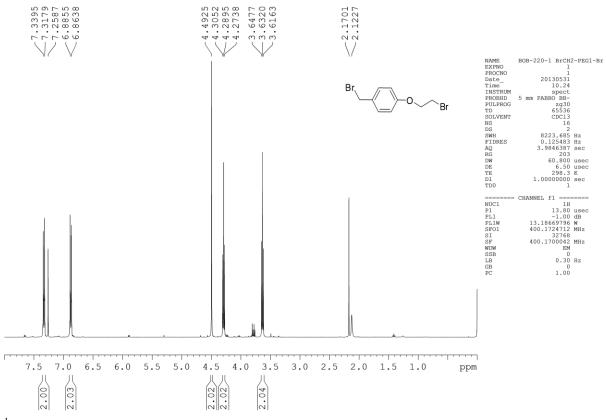

¹H NMR (DMSO-*d*₆) spectrum of 4-(2-hydroxyethoxy)phenol (**6b**)

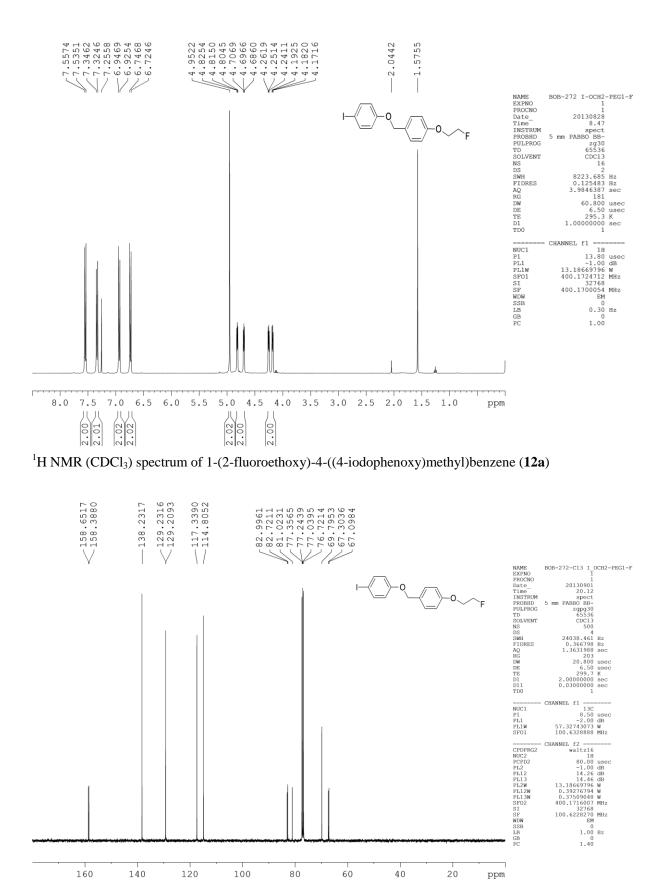

¹H NMR (CDCl₃) spectrum of 1-(2-fluoroethoxy)-4-((4-iodobenzyl)oxy)benzene (7**a**)

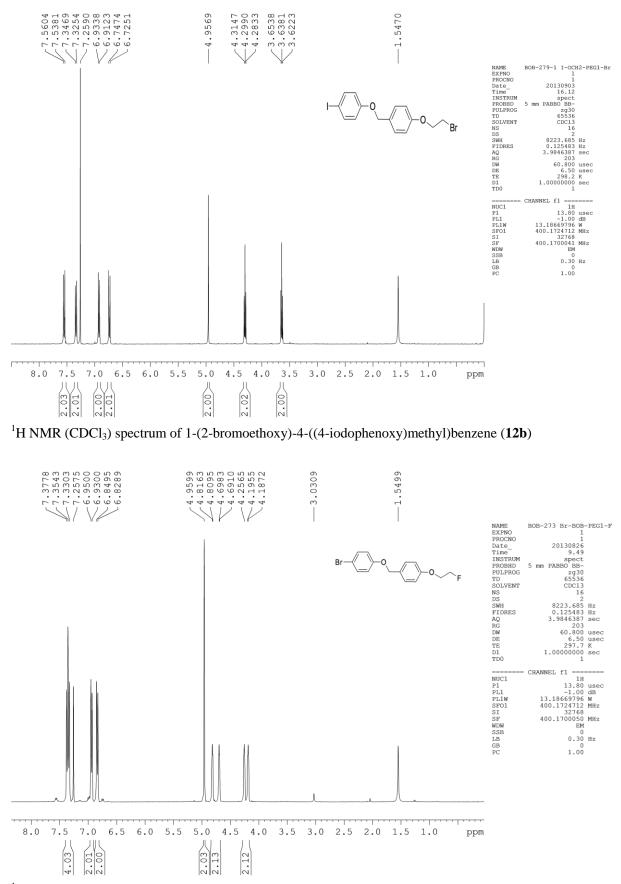

 $^{13}C\ NMR\ (CDCl_3)\ spectrum\ of\ 1-(2-fluoroethoxy)-4-((4-iodobenzyl)oxy) benzene\ (\textbf{7a})$

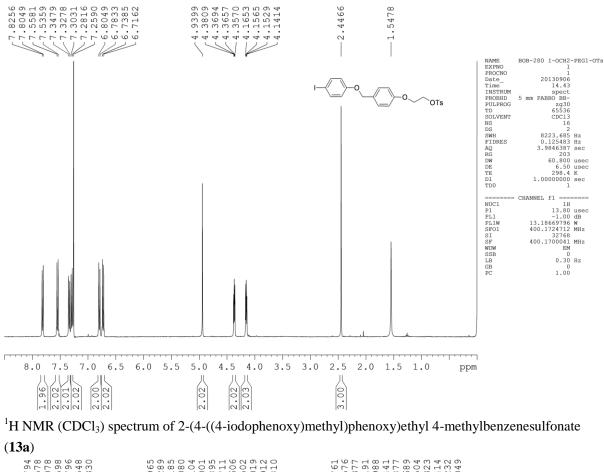

¹H NMR (CDCl₃) spectrum of 1-bromo-4-((4-(2-fluoroethoxy)phenoxy)methyl)benzene (7c)

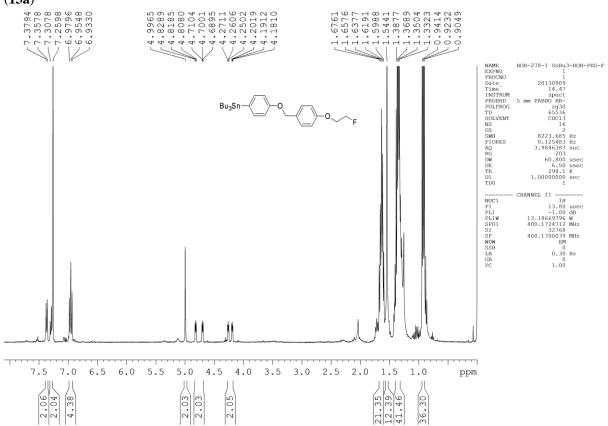

¹H NMR (CDCl₃) spectrum of tributyl(4-((4-(2-fluoroethoxy)phenoxy)methyl)phenyl)stannane (**8b**)


¹H NMR (CDCl₃) spectrum of 4-(2-bromoethoxy)benzaldehyde (**9b**)

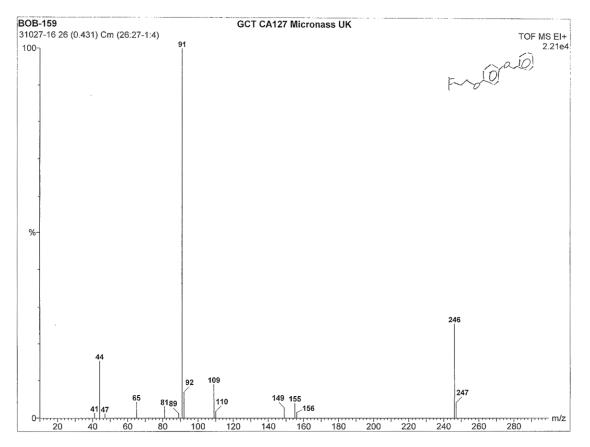

¹H NMR (CDCl₃) spectrum of (4-(2-bromoethoxy)phenyl)methanol (**10b**)


¹H NMR (CDCl₃) spectrum of 1-(bromomethyl)-4-(2-fluoroethoxy)benzene (**11a**)

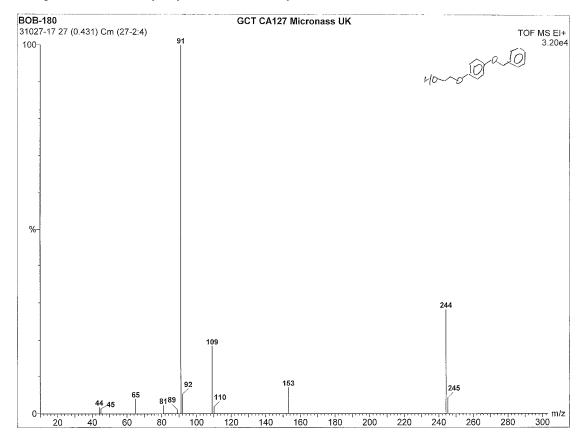

¹H NMR (CDCl₃) spectrum of 1-(2-bromoethoxy)-4-(bromomethyl)benzene (**11b**)

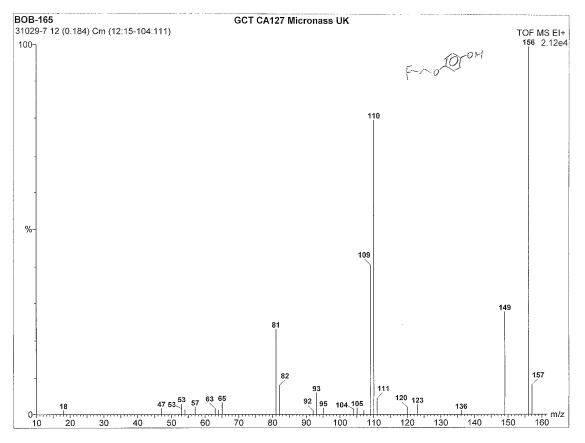


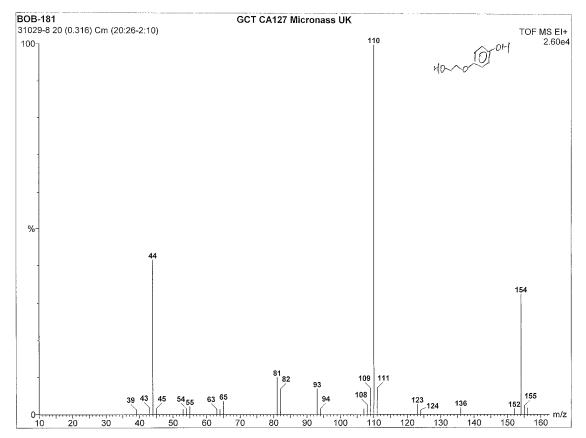
¹³C NMR (CDCl₃) spectrum of 1-(2-fluoroethoxy)-4-((4-iodophenoxy)methyl)benzene (**12a**)

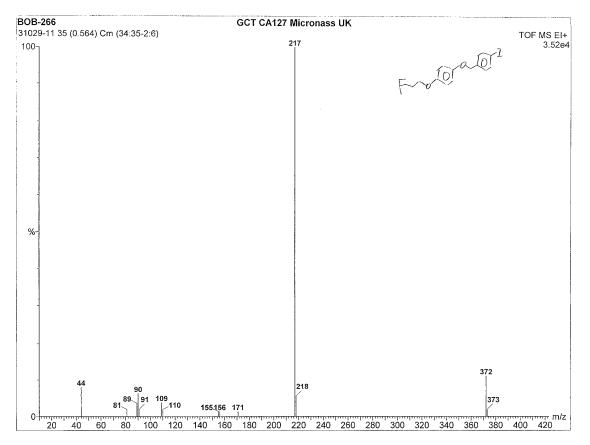


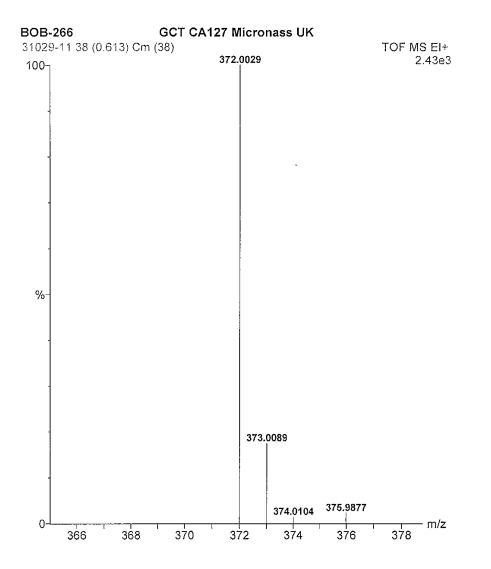
¹H NMR (CDCl₃) spectrum of 1-bromo-4-((4-(2-fluoroethoxy)benzyl)oxy)benzene (12c)




¹H NMR (CDCl₃) spectrum of tributyl(4-((4-(2-fluoroethoxy)benzyl)oxy)phenyl)stannane (**13b**)

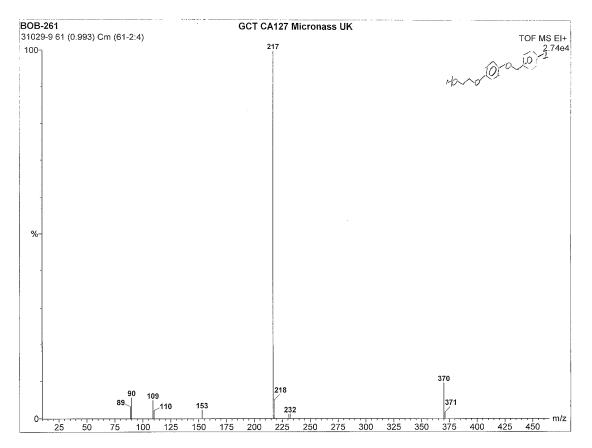

MS spectrum of 1-(benzyloxy)-4-(2-fluoroethoxy)benzene (5a)


MS spectrum of 2-(4-(benzyloxy)phenoxy)ethanol (5b)

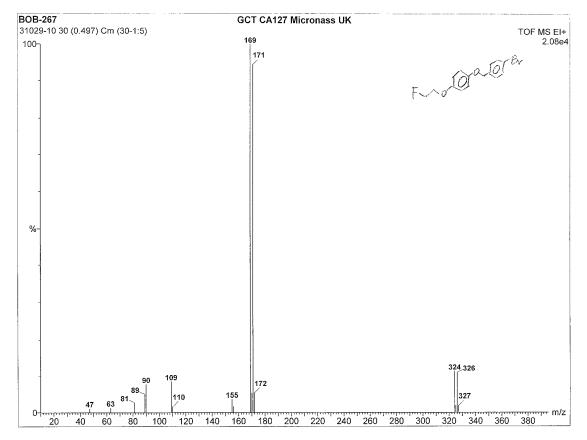

MS spectrum of 4-(2-fluoroethoxy)phenol (6a)

MS spectrum of 4-(2-hydroxyethoxy)phenol (6b)

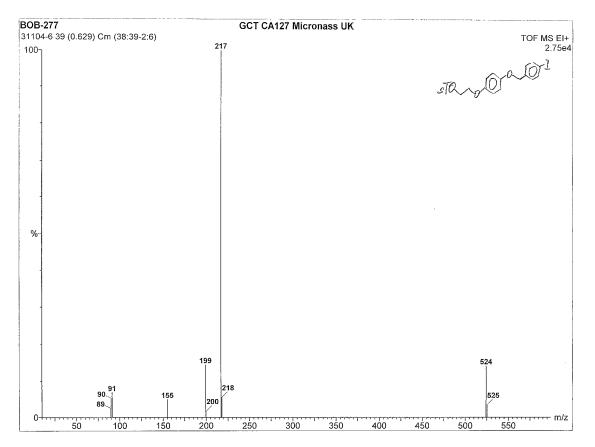
MS spectrum of 1-(2-fluoroethoxy)-4-((4-iodobenzyl)oxy)benzene (7a)

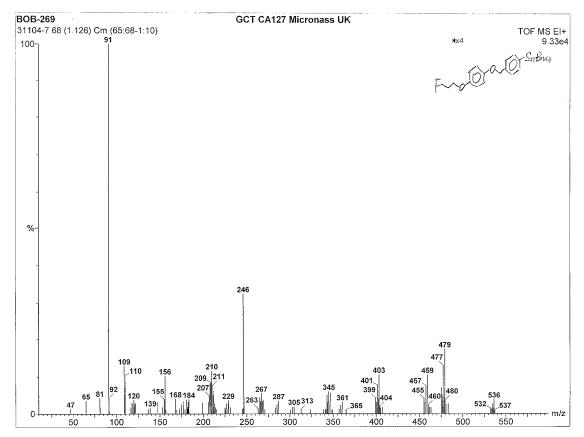

Elemental Composition Report

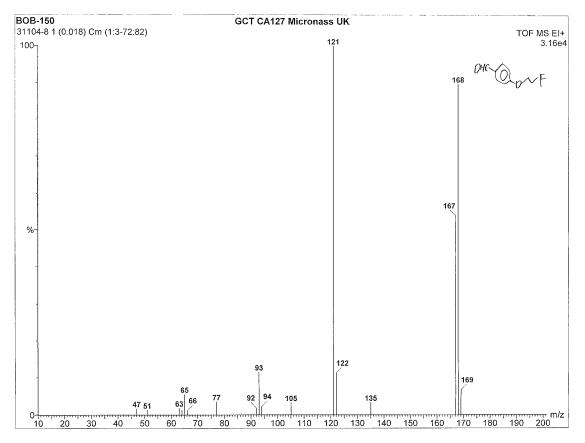
Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

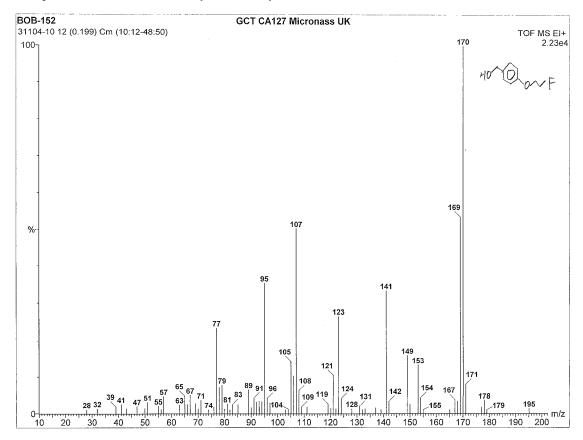

Monoisotopic Mass, Odd and Even Electron Ions 87 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

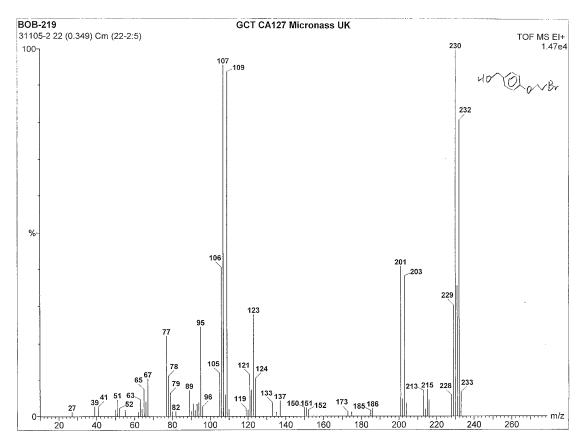
Minimum: Maximum: Mass 372.0029 I	80.00 100.00 RA Calc. Mass 100.00 372.0023	200.0 10.0 mDa PPM 0.6 1.7	-1.5 50.0 DBE Score 8.0 1	Formula C15 H14 O2 F
				$\sim \sim \sim$

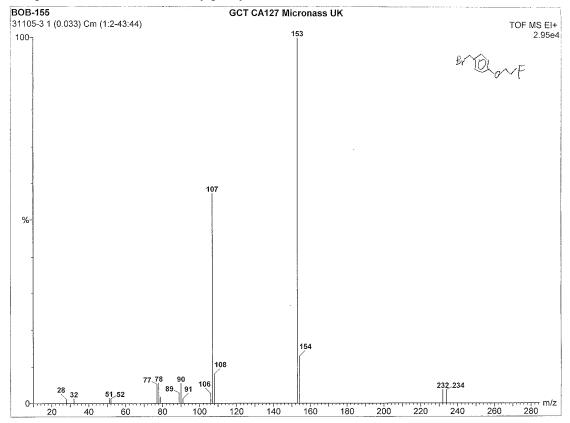

HRMS spectrum of 1-(2-fluoroethoxy)-4-((4-iodobenzyl)oxy)benzene (7a)

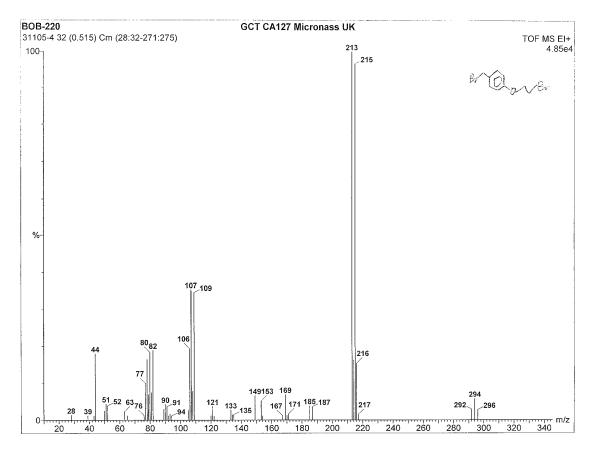

MS spectrum of 2-(4-((4-iodobenzyl)oxy)phenoxy)ethanol (7b)

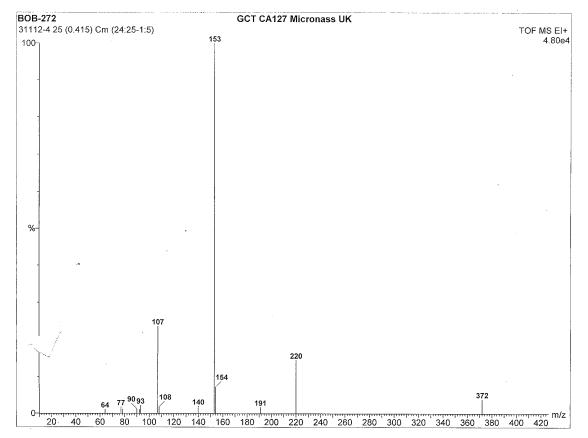

MS spectrum of 1-bromo-4-((4-(2-fluoroethoxy)phenoxy)methyl)benzene (7c)

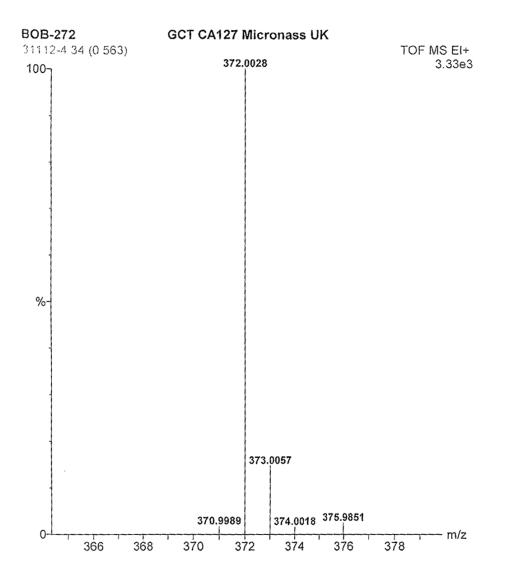

MS spectrum of 2-(4-((4-iodobenzyl)oxy)phenoxy)ethyl 4-methylbenzenesulfonate (8a)


MS spectrum of tributyl(4-((4-(2-fluoroethoxy)phenoxy)methyl)phenyl)stannane (8b)


MS spectrum of 4-(2-fluoroethoxy)benzaldehyde (9a)

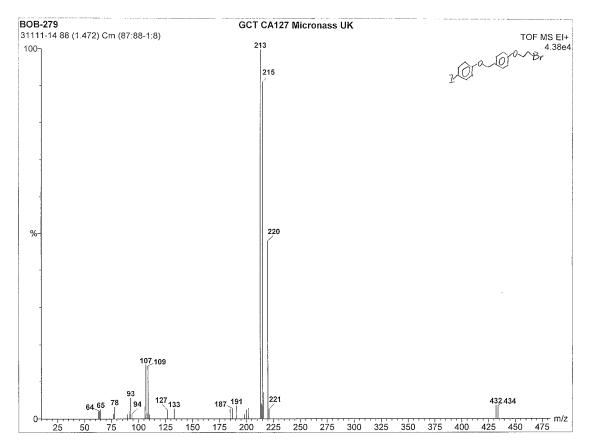

MS spectrum of (4-(2-fluoroethoxy)phenyl)methanol (10a)



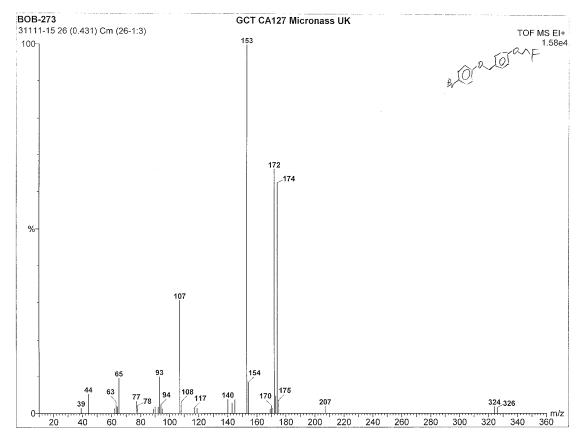

MS spectrum of 1-(bromomethyl)-4-(2-fluoroethoxy)benzene (11a)

MS spectrum of 1-(2-bromoethoxy)-4-(bromomethyl)benzene (11b)

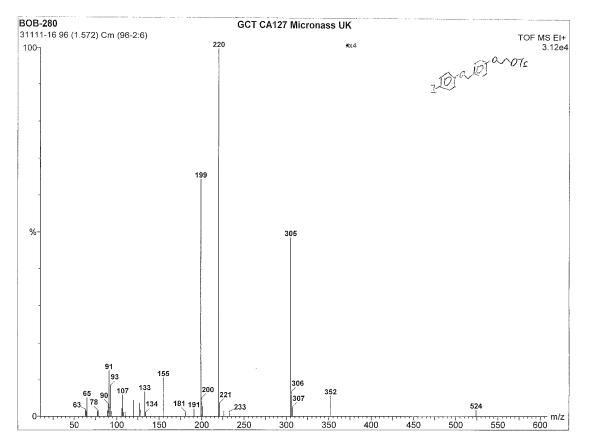
MS spectrum of 1-(2-fluoroethoxy)-4-((4-iodophenoxy)methyl)benzene (12a)

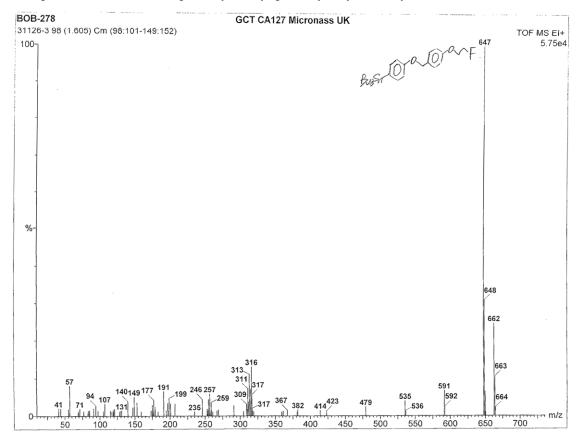

Elemental Composition Report

Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%


Monoisotopic Mass, Odd and Even Electron lons 82 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

Minimum: Maximum: Mass 372.0028	80.00 100.00 RA 100.00	Calc. Mass 372.0023	200.0 mDa 0.5	10.0 PPM 1.5	-1.5 50.0 DBE 8.0	Score 2	Formula C15 H14 O2 F I
						ľ	Draldran F


HRMS spectrum of 1-(2-fluoroethoxy)-4-((4-iodophenoxy)methyl)benzene (12a)


MS spectrum of 1-(2-bromoethoxy)-4-((4-iodophenoxy)methyl)benzene (12b)

MS spectrum of 1-bromo-4-((4-(2-fluoroethoxy)benzyl)oxy)benzene (12c)

MS spectrum of 2-(4-((4-iodophenoxy)methyl)phenoxy)ethyl 4-methylbenzenesulfonate (13a)

MS spectrum of tributyl(4-((4-(2-fluoroethoxy)benzyl)oxy)phenyl)stannane (13b)