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SUPPLEMENTARY METHODS 

Collection and definition of an Epigenetic Enzyme (EE) gene list: 

We used two excellent recent reviews 1, 2, as well as an additional literature search, to 

collate genes with roles in shaping the epigenome. Specifically, we collated genes encoding 

chromatin modification and remodelling enzymes, genes involved in the DNA methylation 

and/or DNA-demethylation pathways, genes involved in histone modification, and genes 

involved in nucleosome positioning. A total of 212 chromatin modification/epigenetic enzyme 

genes, including all main writers, readers, erasers and editors of the epigenome, from more 

than twenty gene families were collected (Table S1). Throughout this manuscript we refer to 

this class of 212 genes, generally as Epigenetic Enzymes (EE). Among the represented gene 

families were DNA (cytosine-5-)-methyltransferases (DNMTs), Methyl-CpG-Binding 

Proteins (MBDs), Isocitrate dehydrogenases (IDHs), Ten-eleven translocation methylcytosine 

dioxygenases (TETs), Zinc finger and BTB domain containing (ZBTBs), Histone deacetylase 

(HDACs), Histone acetyltransferases (HATs), lysine (K)-specific methyltransferase (KMTs), 



protein arginine N-methyltransferase (PRMTs), lysine (K)-specific demethylase (KDMs) and 

chromodomain helicase DNA binding protein (CHDs) (see Table S1 for full list).  

 

Gene expression data (TCGA): 

RNA-SeqV2 level-3 expression data, quantified as RSEM (RNA-Seq by 

Expectation-Maximization) were downloaded from The Cancer Genome Atlas (TCGA). We 

downloaded the data for 10 cancer types that had profiled sufficient numbers of cancer 

samples at both RNAseq and DNA methylation levels (Table S2). This included breast 

invasive carcinoma (BRCA) 3, bladder cancer (BLCA) 4, colon adenocarcinoma (COAD) 5, 

head and neck squamous cell carcinoma (HNSC) 6, kidney renal carcinoma (KIRC) 7, liver 

hepatocellular carcinoma (LIHC) 8, lung adenocarcinoma (LUAD) 9, lung squamous cell 

carcinoma (LUSC) 10, thyroid carcinoma (THCA) 11 and uterine corpus endometrial 

carcinoma (UCEC) 12. The level-3 RNA-Seq data was processed further as follows: (i) 

zero-valued entries were replaced by the minimal positive value of the dataset, (ii) expression 

values were then logarithmically transformed (base 2) in order to regularize the data. 

Inter-sample variability and quality of the data was assessed using Singular Value 

Decompositions (SVD) 13, by checking that the top component of variation correlated with 

normal/cancer status. Before applying the SVD, the log transformed expression values were 

first centered so that each gene had a mean zero across all samples. The number of significant 

components of variation was then inferred by using Random Matrix Theory 14. The significant 

components of variation were correlated to phenotypic and technical factors to assess the 

relative contributions of biological and technical variables to data variability and represented 

in a P-value heatmap between components and factors.  

DNA methylation data (TCGA): 

For the 10 cancer types mentioned above, DNA methylation data generated with the 

Illumina Infinium HumanMethylation450 BeadChip array 15 were downloaded from the 

TCGA data portal. The methylation level for each probe was obtained as the beta value, 

which was calculated from the intensity of methylated (M) and unmethylated (U) alleles: 

beta=Max(M,0)/[Max(M,0)+Max(U,0)+100]. The beta ranges from 0 (unmethylated) and 

1(fully methylated). Probes with missing data in more than 70% of the samples were removed. 

The rest of probes with NA’s were imputed using the k-nearest neighbors (knn) imputation 

procedure 16. Subsequently, BMIQ was used to correct for the type II probe bias 17. Data from 

each cancer type was then subjected to the same SVD quality control analysis, as done for  

gene expression. 

 



Erlangen Illumina 450k breast cancer DNA methylation data: 

Illumina 450k DNA methylation data for 30 normal samples (from healthy women), 21 normal 

samples adjacent to breast cancers, and 165 breast cancer samples were collected within the 

Bavarian Breast Cancer Cases and Controls Study 2. The Ethics Committee of the Medical 

Faculty, Friedrich-Alexander University approved the study (Re. No. 4514) and all patients 

gave written informed consent. The study was done in adherence to the Declaration of Helsinki. 

Data are available in GEO (accession number GSE69914 to be determined). Raw data files 

were processed using the minfi, impute and BMIQ/ChAMP Bioconductor packages. 

 

 

 

 

Differential expression Meta-Analysis of EE genes across cancer 

For each TCGA expression data set, we used moderated t-tests 18 to assess differential 

expression (DE) of approximately 20000 genes between normal and corresponding cancer 

tissue, including the 212 EE genes. We note that we used all cancer samples and not just those 

with matched normal tissue. In view of the subsequent meta-analysis, we used relaxed 

nominal P-value thresholds of 0.05 to declare statistical significance in each individual TCGA 

data set. We counted the number of EE genes which showed significant and consistent (i.e. 

same directionality) differential expression across at least 8 of the 10 cancer/tissue types. To 

assess the overall statistical significance of these counts, we also estimated the proportions of 

all human genome genes with significant overexpression and underexpression in each TCGA 

data set, thus obtaining “null” probabilities of overexpression (upregulation, pu) and 

underexpression (downregulated, pd). We observed that these probabilities did not vary much 

between cancer types. Hence, we next estimated an average null probability for any given 

gene to be significantly upregulated or downregulated in cancer compared to normal tissue, 

by taking the average of the corresponding probabilities across all cancer types. These 

average null probability estimates were �̅�𝑢 ≈ 0.32 and �̅�𝑑 ≈ 0.34. We then estimated the 

null probability that any given gene would be significantly upregulated (downregulated) in at 

least 8 of the 10 cancer types, using the Binomial formula: 
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This yielded values of 𝑝(𝑛𝑈𝑃 ≥ 8) ≈ 0.003 and 𝑝(𝑛𝐷𝑁 ≥ 8) ≈ 0.004. Finally, given a 

pool of 212 random genes we can estimate the expected number which would be significantly 



upregulated (downregulated) in at least 8 of the 10 cancer types. This is given by a Binomial 

distribution B(n,p) with (n=212,p=0.003) in the case of upregulation, and (n=212,p=0.004) 

for the case of downregulation. We find that 𝐸[𝑛𝑈𝑃 ≥ 8] ≈ 0.54(±0.73) and 𝐸[𝑛𝐷𝑁 ≥

8] ≈ 0.89(±0.94), i.e. effectively we would expect only 1 of 212 genes to be explained by 

random chance. Finally, using the Binomial distribution, we can estimate the statistical 

significance of the observed numbers of significant and consistently overexpressed and 

underexpressed EE genes. The observed numbers were 35 upregulated EE genes, and 27 

downregulated EE’s, which can’t be explained by random chance (P=2e-53 for upregulated 

case, P=9e-33 for downregulated case). 

 

Construction of Epigenetic Instability Indices:  HyperZ and HypoZ 

In order to investigate whether the aberrant expression of epigenetic enzymes in a given 

cancer is associated with changes in the DNA methylome of that cancer, we first calculated 

“Epigenetic Instability Indices” reflecting deviations in DNA methylation in a given cancer 

sample, as assessed relative to normal samples from the same tissue type. We decided to 

construct two such indices, called HyperZ and HypoZ, to account for the potentially distinct 

mechanisms driving cancer DNA hypermethylation and DNA hypomethylation. The indices 

were constructed as follows: all CpGs in the genome were classified into different regional 

classes, according to whether they fall into Open Sea, CpG Island or Shore/Shelve regions, 

respectively 19. All CpG sites within a regional class were then grouped together into regional 

clusters, by using the boundedClusterMaker function of the bumphunter BioC package with a 

maximum cluster width of 1,500bp and a maximum gap of 500bp between any two 

neighboring CpGs 20. The methylation level for each regional cluster was defined as the 

average beta value of the CpGs within that cluster. For a given cluster/region, labeled r, in a 

given tumour sample s, we then computed a Z-score, Zrs , reflecting the absolution deviation 

in DNA methylation of that region in the given cancer sample relative to all normal samples 

of the same tissue type. Specifically, let µr
(N) and σr

(N) denote the mean and standard deviation 

of the DNA methylation level of the regional cluster r over all the normal tissue samples. 

Then Zrs was defined as 𝑍𝑟𝑠 =
𝛽𝑟𝑠−𝜇𝑟

(𝑁)

𝜎𝑟
(𝑁) . Since regional clusters mapping to promoter CGIs 

are usually unmethylated in normal tissue, we only consider clusters for which the Z-score in 

a given cancer sample is positive. Similarly, for open sea regional clusters, which are usually 

methylated in the normal tissue, we only consider clusters in a given cancer sample for which 

the Z-score is negative, although we enforce positivity to ensure that the absolute deviation is 

taken into account. Specifically, the HyperZ index for a given cancer sample s was obtained 

as 
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where the summation is over all promoter CpG island clusters and where H(z) denotes the 

Heaviside function: H(z)=1 if z > 0, H(z)=0 if z ≤ 0. Thus, only regions for which the Z-score 

is positive contribute to the index, and the positivity of the index is guaranteed by definition. 

Similarly, the HypoZ index for a given cancer sample was estimated as 

𝐻𝑦𝑝𝑜𝑍𝑠 =
1

𝑛𝑟
∑ |𝑍𝑟𝑠|𝐻(−𝑍𝑟𝑠)
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where the summation is now over all open sea regional clusters. The term involving the 

Heaviside function ensures that only regions with negative scores, i.e. hypomethylation from 

the methylated state, contribute. Taking the absolute value of the Z-scores thus ensures that 

the index is always positive. 

The HyperZ and HypoZ indices can be thought of as “epigenetic instability” indices in the 

sense that they measure global levels of absolute deviation in DNA methylation in a given 

cancer samples from a normal reference. The HyperZ index does so restricting to promoter 

CpG islands and hence measures the overall level of cancer hypermethylation of these regions, 

whereas the HypoZ index reflects the overall absolute level of cancer hypomethylation in 

open sea regions. 

In this manuscript we also use an alternative definition of the HyperZ and HypoZ indices, 

whereby the average is computed only over genomic regions, r, for which the Z-score, Zrs , is 

significant (P<0.05). This definition of the indices thus only uses significant regions. The 

correlation meta-analysis between RNA-seq of EE genes and the HyperZ/HypoZ indices, 

described below was performed using this latter definition of the indices, since for this 

definition, the HyperZ/HypoZ indices were less well correlated, thus the two indices contain 

less redundant or more complementary information. 

 

 

 

Correlation Meta-Analysis of EE gene expression and Epigenetic Instability Indices 

 

Pearson correlation analysis was used to assess whether the expression of EEs is correlated 

with the HypoZ-and HyperZ-index from matched tumor samples. It is key to emphasize here 

that these correlations were computed only over tumour samples with matched RNA-Seq and 

DNAm data. Pearson correlation coefficients (PCC) were transformed into Fisher Z-statistics 

𝑍 = 0.5 log
1+𝑃𝐶𝐶

1−𝑃𝐶𝐶
 from which P-values were then derived. Unadjusted P-values < 0.05 were 

deemed statistically significant. Once again the relaxed threshold was used because of the 

subsequent meta-analysis which would reassess statistical significance levels over all cancer 



types together. To assess statistical significance in the meta-analysis, we computed for each 

TCGA data set, the fraction of genes (from all genes with RNA-Seq data) exhibiting 

significant positive and negative correlations with the HyperZ and HypoZ indices. This 

yielded 4 fractions/probabilities for each TCGA dataset, corresponding to positive 

correlations with HyperZ, negative correlations with HyperZ, positive correlations with 

HypoZ and negative correlations with HypoZ. From these fractions, we then computed an 

overall probability by averaging the corresponding probabilities over all cancer types. Denote 

these average probabilities as follows: �̅�𝑢𝑢 for the average probability that a random gene is 

positively correlated with the HyperZ index, �̅�𝑑𝑢 for the average probability that a random 

gene is negatively correlated with the HyperZ index, �̅�𝑢𝑑 for the case of positive correlations 

with HypoZ, and �̅�𝑑𝑑  for the case of negative correlations with HypoZ. The specific 

estimates for these average probabilities were �̅�𝑢𝑢 ≈ 0.12 , �̅�𝑑𝑢 ≈ 0.25 , �̅�𝑢𝑑 ≈ 0.16 and 

�̅�𝑑𝑑 ≈ 0.25 . 

We then estimated the null probability that any given gene would be significantly positively 

(negatively) correlated with HyperZ in at least 6 of the 10 cancer types, and similarly for 

HypoZ, using the Binomial formulas: 
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This yielded values of 𝑝(𝑛𝑈𝑈 ≥ 6) ≈ 0.0004  , 𝑝(𝑛𝐷𝑈 ≥ 6) ≈ 0.02  , 𝑝(𝑛𝑈𝐷 ≥ 6) ≈

0.002 and 𝑝(𝐷𝐷 ≥ 6) ≈ 0.02 .  Finally, given a pool of 212 random genes we can estimate 

the expected number which would be significantly correlated (anti-correlated) with HyperZ or 

HypoZ in at least 6 of the 10 cancer types. This is given by a Binomial distribution B(n,p) 

with n=212 and with p given by one of the four probabilities given above. We find that 

𝐸[𝑛𝑈𝑈 ≥ 6] ≈ 0.54(±0.73) and 𝐸[𝑛𝐷𝑁 ≥ 8] ≈ 0.89(±0.94), i.e. effectively we would 

expect only 1 of 212 genes to be explained by random chance. Finally, using the Binomial 

distribution, we can estimate the statistical significance of the observed numbers of significant 

and consistently overexpressed and underexpressed EE genes. The observed numbers were 35 

upregulated EE genes, and 27 downregulated EE’s, which can’t be explained by random 

chance (P=2e-53 for upregulated case, P=9e-33 for downregulated case). 



 

 

Causal Network Modelling Meta-Analysis of EE genes 

The differential expression meta-analysis and mRNA expression – HyperZ/HypoZ 

meta-analysis led to 18 EE genes, showing consistent differential expression and correlative 

patterns across cancer types. These 18 EE genes were then subjected to causal network 

modelling analysis in order to assess if the correlations of mRNA expression of these genes to 

the HyperZ/HypoZ indices is likely to be a direct effect, or if instead it is likely to be 

mediated by other factors (other EE genes or promoter DNAm levels of EE genes). Thus, the 

problem can be addressed by adopting a statistical method that can “silence” or remove 

correlations which are likely to be indirect. For this purpose, we used the framework of partial 

correlations/multivariate linear regressions 21. Specifically, we conducted two separately 

analyses, one centred on individual EE genes, and another, including all 18 EE genes in the 

model. In the first approach we estimated partial correlations between HyperZ/HypoZ and 

each EE gene’s expression level using the promoter DNAm level of the EE gene as a 

covariate. This allowed us to assess if the correlation between HyperZ/HypoZ and EE gene 

expression is independent of the EE gene’s DNAm promoter level. In the second approach, 

we used all other 17 EE gene expression as well as all 18 promoter DNAm levels as 

covariates, when estimating the partial correlation between a given EE gene’s expression with 

either the HyperZ or HypoZ index. This allowed us to assess if the correlation of a EE gene’s 

expression with HyperZ/HypoZ is not only independent of its promoter DNAm level, but also 

independent from the expression (and promoter DNAm) levels of the other 17 EE genes. 

Application of this procedure in each cancer-type led to a partial correlation network. We then 

constructed a consensus network over all 10 cancer types, with edges defining significant and 

consistent partial correlations present in at least 6 of the 10 cancer types. 

 

Correlation of genomic loci with EE gene expression 

To assess if the same genomic loci are affected by a given EE gene, independently of cancer 

type, we adopted a genome-wide correlation approach. Specifically, we computed Pearson 

correlations between the DNAm level of any given region/cluster and the EE gene expression 

level, using only cancer samples to estimate the correlation. In the case of correlations with 

HyperZ, we only considered CpG island associated regions/clusters. In the case of 

correlations with HypoZ, we only considered opensea regions/clusters. Pearson correlations 

were transformed to Fisher Z-statistics. Spearman rank correlation and P-values of the 

ranking obtained in each cancer type were used to evaluate consistency of rankings across 

cancer types. 

 

SUPPLEMENTARY FIGURES 



 

Figure.S1: Quality Control (QC) Analysis of RNA-Seq data from the TCGA. Illustrated is the example 

of colon cancer which passed QC. Top panel plots the fractional variation of the total data variation 

accounted for by each of the top-ranked and significant singular vectors (principal components-PC) 

from the SVD analysis. The number of significantly variable singular vectors was determined by 

Random Matrix Theory (RMT) analysis 14. Lower panel depicts a heatmap of P-values of association 

between each singular vector/principal component and phenotypic and technical factors. Color Codes: 

Dark-red (P<1e-10), Red (P<1e-5), Orange (P<0.001), Pink (P<0.05), White (P > 0.05). As we can see, 

the top PC correlates most strongly with normal/cancer status, as we would expect. Only those 

cancer-types for which the top-PC correlated unambiguously with normal/cancer status (for both 

RNA-Seq and 450k DNA methylation) were used in this study.  

 

 



 

 

Figure.S2: For each cancer type, we display two-dimensional density plots (bright yellow indicates 

highest density) illustrating the distribution of tumours in the plane defined by the HyperZ and HypoZ 

indices. The number of tumours is given above each panel. For each cancer type, we provide the 

Spearman Correlation Coefficient (SCC), its P-value, as well as the R2-value for a linear regression. 

Cancer types are abbreviated as in Fig.2. We note that the HyperZ and HypoZ indices used in this plot 

were defined by restricting to genomic regions which showed significant Z-scores.  

 

 

 

 



Figure.S3: Boxplot of HyperZ and HypoZ DNA methylation instability indices across the breast 

cancers of the TCGA study, stratified according to the PAM50 intrinsic subtype 22. P-values are from a 

Wilcoxon rank sum test. 

 



 



Figure.S4: Heatmap of Pearson Correlations between expression of EE genes and the HyperZ index, as 

assessed over cancer samples of a given cancer type. Color Codes: Magenta=significant positive 

correlation, White=no significant correlation, Cyan=significant negative correlation. 

 

 



 



Figure.S5: Heatmap of Pearson Correlations between expression of EE genes and the HypoZ index, as 

assessed over cancer samples of a given cancer type. Color Codes: Magenta=significant positive 

correlation, White=no significant correlation, Cyan=significant negative correlation. 

 

 

 

Figure.S6: Heatmap of Partial Correlations between mRNA expression of EE genes and the HyperZ 

and HypoZ index, respectively, as assessed over cancer samples of a given cancer type. Color Codes: 



Magenta=significant positive partial correlation, White=no significant partial correlation, 

Cyan=significant negative partial correlation. Partial correlations were estimated from running 

multivariate regression models of the form HyperZ/HypoZ ~ promoterDNAm(gene) + mRNAexpr.(gene) 

+ error. 

 

 

Figure.S7: Scatterplots of DNA methylation beta-value of a genomic CGI locus (as shown) with a 

relatively high HyperZ index across most cancer types (y-axis) against UHRF1 gene expression (log2 

level-3 RNA-Seq count, x-axis) for each cancer type as shown. Normal samples are shown in blue, 

cancer samples in red. Dashed horizontal and vertical lines represent the mean levels of DNAm and 

mRNA expression in the normal (blue) and cancers (red). R2, Spearman Correlation Coefficient (SCC) 

and associated P-value are given in each plot. These numbers were calculated across cancer samples 

only. 

 

 



 

Figure.S8: Scatterplots of DNA methylation beta-value of a genomic CGI locus (as shown) with a 

relatively high HyperZ index across most cancer types (y-axis) against WHSC1 gene expression (log2 

level-3 RNA-Seq count, x-axis) for each cancer type as shown. Normal samples are shown in blue, 

cancer samples in red. Dashed horizontal and vertical lines represent the mean levels of DNAm and 

mRNA expression in the normal (blue) and cancers (red). R2, Spearman Correlation Coefficient (SCC) 

and associated P-value are given in each plot. These numbers were calculated across cancer samples 

only. 

 



 

Figure.S9: Scatterplots of DNA methylation beta-value of a genomic open sea single probe locus (as 

shown) with a relatively high HypoZ index across most cancer types (y-axis) against CBX7 gene 

expression (log2 level-3 RNA-Seq count, x-axis) for each cancer type as shown. Normal samples are 

shown in blue, cancer samples in red. Dashed horizontal and vertical lines represent the mean levels of 

DNAm and mRNA expression in the normal (blue) and cancers (red). R2, Spearman Correlation 

Coefficient (SCC) and associated P-value are given in each plot. These numbers were calculated across 

cancer samples only. 

 

 

 



 

Figure.S10: Heatmap of associations between principal components (singular vectors) from a SVD 

and various factors for the Erlangen Breast cancer Illumina 450k DNA methylation study. The study 

included 50 normal samples from healthy women, 42 normal samples taken adjacent to a tumor, and 

over 200 breast cancers. The factors shown in the SVD heatmap include normal-cancer status (Status), 

Age, Beadchip, oestrogen receptor (ER), progesterone receptor (PR), HER2 status and KI67 status, as 

determined by immunohistochemistry. Also included is the comparison between normal-adjacent to 

normal-healthy, i.e. potential field defects (FD). Colors indicate statistical significance as follows: 

brown (P<1e-10), red (P<1e-5), orange (P<0.001), pink (P<0.05), white (not significant). 

 

 

 

 

Figure.S11: Scatterplot of the HypoZ and HyperZ indices for the Erlangen Breast Cancer Illumina 



450k study. In each case, y-axis labels the Z index of cancer samples as estimated relative to the 50 

normal samples from healthy women, whereas the x-axis labels the corresponding Z-indices estimated 

relative to the 42 normal samples adjacent to tumors. R2 values, Pearson Correlation Coefficient (PCC) 

and associated P-value are given. 

 

 

 

 

 

 

 

Figure.S12: Scatterplot of differential expression t-statistics of the 212 EE genes between normal 

colon and colon cancer samples of the TCGA, with the x-axis labeling the case where only paired 

normal samples were used (n=26) and y-axis labeling the case where only unpaired normal samples 

(n=12) were used. R2 value, Pearson Correlation Coefficient (PCC) and associated P-value are given. 

Plot shows that the statistics of differential expression of the 212 EE genes would not alter significantly, 

had we used unpaired normal samples as reference. 

 

 

SUPPLEMENTARY TABLES 

 

Gene Symbol Gene Family Group Functional class 

DNMT1 
DNA (cytosine-5-)-methyltransferase 1 

(DNMT) 
DNA modification DNA methylation maintain 

DNMT3A DNA (cytosine-5-)-methyltransferase 2 DNA modification De novo methylation 



(DNMT) 

DNMT3B 
DNA (cytosine-5-)-methyltransferase 3 

(DNMT) 
DNA modification De novo methylation 

DNMT3L 
DNA (cytosine-5-)-methyltransferase 4 

(DNMT) 
DNA modification De novo methylation 

MBD1 Methyl-CpG-Binding Protein (MBD) DNA modification DNA methylation reader 

MBD2 Methyl-CpG-Binding Protein (MBD) DNA modification DNA methylation reader 

MBD3 Methyl-CpG-Binding Protein (MBD) DNA modification DNA methylation reader 

MBD4 Methyl-CpG-Binding Protein (MBD) DNA modification DNA methylation reader 

MECP2 Methyl-CpG-Binding Protein (MBD) DNA modification DNA methylation reader 

IDH1 Isocitrate dehydrogenase 1 (IDH) DNA modification DNA methylation editor/eraser 

IDH2 Isocitrate dehydrogenase 2 (IDH) DNA modification DNA methylation editor/eraser 

TET1 
Ten-eleven translocation methylcytosine 

dioxygenase (TET) 
DNA modification DNA methylation editor/eraser 

TET2 
Ten-eleven translocation methylcytosine 

dioxygenase (TET) 
DNA modification DNA methylation editor/eraser 

TET3 
Ten-eleven translocation methylcytosine 

dioxygenase (TET) 
DNA modification DNA methylation editor/eraser 

ZBTB33 
Zinc finger and BTB domain containing 

(ZBTB) 
DNA modification DNA methylation reader 

ZBTB4 
Zinc finger and BTB domain containing 

(ZBTB) 
DNA modification DNA methylation reader 

ZBTB38 
Zinc finger and BTB domain containing 

(ZBTB) 
DNA modification DNA methylation reader 

PCNA proliferating cell nuclear antigen DNA modification DNA methylation reader 

UHRF1 
ubiquitin-like with PHD and ring finger 

domains 1 
DNA modification DNA methylation reader 

AICDA cytidine deaminase family DNA modification DNA methylation editor/eraser 

ALKBH1 alkylation repair homolog  DNA modification DNA methylation editor/eraser 

ALKBH3 alkylation repair homolog  DNA modification DNA methylation editor/eraser 

APOBEC1 cytidine deaminase enzyme DNA modification DNA methylation editor/eraser 

FTO fat mass and obesity associated DNA modification DNA methylation editor/eraser 

TDG TDG/mug DNA glycosylase family DNA modification DNA methylation editor/eraser 

MGMT 
O-6-methylguanine-DNA 

methyltransferase 
DNA modification DNA methylation editor/eraser 

HDAC1 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC2 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC3 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC4 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC5 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC6 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC7 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC8 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC9 Histone deacetylase (HDAC) Histone Modification K27 eraser 



HDAC10 Histone deacetylase (HDAC) Histone Modification K27 eraser 

HDAC11 Histone deacetylase (HDAC) Histone Modification K27 eraser 

KAT2A Histone acetyltransferases (HAT)  Histone Modification acetylation writer 

KAT2B Histone acetyltransferases (HAT)  Histone Modification acetylation writer 

KAT5 Histone acetyltransferases (HAT)  Histone Modification acetylation writer 

MYST3 Histone acetyltransferases (HAT) KAT6A Histone Modification acetylation writer 

MYST4 Histone acetyltransferases (HAT) KAT6B Histone Modification acetylation writer 

MYST2 Histone acetyltransferases (HAT) KAT7 Histone Modification acetylation writer 

MYST1 Histone acetyltransferases (HAT) KAT8 Histone Modification acetylation writer 

EP300 E1A binding protein p300 Histone Modification Histone acetyltransferases 

CREBBP CREB binding protein Histone Modification Histone acetyltransferases 

NCOA1 
p160/steroid receptor coactivator (SRC) 

family  
Histone Modification Histone acetyltransferases 

NCOA2 
p161/steroid receptor coactivator (SRC) 

family 
Histone Modification Histone acetyltransferases 

NCOA3 
p162/steroid receptor coactivator (SRC) 

family 
Histone Modification Histone acetyltransferases 

NCOA4 
p163/steroid receptor coactivator (SRC) 

family 
Histone Modification Histone acetyltransferases 

NCOA5 
p164/steroid receptor coactivator (SRC) 

family 
Histone Modification Histone acetyltransferases 

NCOA6 
p165/steroid receptor coactivator (SRC) 

family 
Histone Modification Histone acetyltransferases 

NCOA7 
p166/steroid receptor coactivator (SRC) 

family 
Histone Modification Histone acetyltransferases 

GTF3C1 
general transcription factor IIIC, 

polypeptide  
Histone Modification Histone acetyltransferases 

CLOCK clock circadian regulator Histone Modification Histone acetyltransferases 

ASH1L ash1 (absent, small, or homeotic)-like Histone Modification 
Histone methyltransferases 

(HMT) 

EHMT1 
euchromatic histone-lysine 

N-methyltransferase 
Histone Modification 

Histone methyltransferases 

(HMT) 

EHMT2 
euchromatic histone-lysine 

N-methyltransferase 
Histone Modification 

Histone methyltransferases 

(HMT) 

EZH1 
enhancer of zeste 1 polycomb repressive 

complex 2 subunit 
Histone Modification 

Histone methyltransferases 

(HMT) 

EZH2 
enhancer of zeste 1 polycomb repressive 

complex 3 subunit 
Histone Modification 

Histone methyltransferases 

(HMT) 

MLL 
lysine (K)-specific methyltransferase 

(KMT2A) 
Histone Modification 

Histone methyltransferases 

(HMT) 

MLL2 
lysine (K)-specific methyltransferase 

(KMT2D) 
Histone Modification 

Histone methyltransferases 

(HMT) 

MLL3 
lysine (K)-specific methyltransferase 

(KMT2C) 
Histone Modification 

Histone methyltransferases 

(HMT) 



MLL4 
lysine (K)-specific methyltransferase 

(KMT2B) 
Histone Modification 

Histone methyltransferases 

(HMT) 

MLL5 
lysine (K)-specific methyltransferase 

(KMT2E) 
Histone Modification 

Histone methyltransferases 

(HMT) 

NSD1 
nuclear receptor binding SET domain 

protein 1 
Histone Modification 

Histone methyltransferases 

(HMT) 

PRDM1 PR domain containing Histone Modification Histone methyltransferases 

PRDM2 PR domain containing Histone Modification Histone methyltransferases 

PRDM4 PR domain containing Histone Modification Histone methyltransferases 

PRDM5 PR domain containing Histone Modification Histone methyltransferases 

PRDM6 PR domain containing Histone Modification Histone methyltransferases 

PRDM7 PR domain containing Histone Modification Histone methyltransferases 

PRDM8 PR domain containing Histone Modification Histone methyltransferases 

PRDM9 PR domain containing Histone Modification Histone methyltransferases 

PRDM10 PR domain containing Histone Modification Histone methyltransferases 

PRDM11 PR domain containing Histone Modification Histone methyltransferases 

PRDM12 PR domain containing Histone Modification Histone methyltransferases 

PRDM13 PR domain containing Histone Modification Histone methyltransferases 

PRDM14 PR domain containing Histone Modification Histone methyltransferases 

PRDM15 PR domain containing Histone Modification Histone methyltransferases 

PRDM16 PR domain containing Histone Modification Histone methyltransferases 

PRMT1 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT2 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT3 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT5 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT6 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT7 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT8 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

PRMT10 
protein arginine N-methyltransferase 

(PRMT)  
Histone Modification Histone methyltransferases 

SET SET nuclear proto-oncogene Histone Modification histone acetylases (HAT) 

SETBP1 SET binding protein 1 Histone Modification 
Histone methyltransferases 

(HMT) 

SETD1A SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD1B SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 



SETD2 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD3 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD4 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD5 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD6 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD7 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETD8 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

C5orf35 SET domain containing (SETD9) Histone Modification 
Histone methyltransferases 

(HMT)  

SETDB1 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETDB2 SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SETMAR SET domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SMYD1 SET and MYND domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SMYD2 SET and MYND domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SMYD3 SET and MYND domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SMYD4 SET and MYND domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SMYD5 SET and MYND domain containing Histone Modification 
Histone methyltransferases 

(HMT) 

SUV39H1 suppressor of variegation 3-9 Histone Modification 
Histone methyltransferases 

(HMT) 

SUV39H2 suppressor of variegation 3-9 Histone Modification 
Histone methyltransferases 

(HMT) 

SUV420H1 suppressor of variegation 4-20 homolog Histone Modification 
Histone methyltransferases 

(HMT) 

SUV420H2 suppressor of variegation 4-20 homolog Histone Modification 
Histone methyltransferases 

(HMT) 

KDM1A lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM1B lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM2A lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM2B lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 



KDM3A lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM3B lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM4A lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM4B lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM4C lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM4D lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM5A lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM5B lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM5C lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM5D lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM6A lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

KDM6B lysine (K)-specific demethylase (KDM) Histone Modification Histone demethylase (HDM) 

JMJD1C jumonji domain containing Histone Modification 
protein hydroxylases or histone 

demethylases 

JMJD6 jumonji domain containing Histone Modification 
protein hydroxylases or histone 

demethylases 

SIRT1 sirtuin family Histone Modification acetylation editor 

SIRT2 sirtuin family Histone Modification acetylation editor 

SIRT3 sirtuin family Histone Modification acetylation editor 

SIRT4 sirtuin family Histone Modification acetylation editor 

SIRT5 sirtuin family Histone Modification acetylation editor 

SIRT6 sirtuin family Histone Modification acetylation editor 

SIRT7 sirtuin family Histone Modification acetylation editor 

EYA1 eyes absent (EYA) family  Histone Modification Phosphorylation editor 

EYA2 eyes absent (EYA) family  Histone Modification Phosphorylation editor 

EYA3 eyes absent (EYA) family  Histone Modification Phosphorylation editor 

EYA4 eyes absent (EYA) family  Histone Modification Phosphorylation editor 

SMEK1 SMEK homolog Histone Modification Phosphorylation editor 

SMEK2 SMEK homolog Histone Modification Phosphorylation editor 

SMEK3P SMEK homolog Histone Modification Phosphorylation editor 

DUSP1 dual specificity phosphatase 1 Histone Modification Phosphorylation editor 

CHD1 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD2 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD3 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD4 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD5 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD6 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD7 chromodomain helicase DNA binding Histone Modification Acetylation, methylation and 



protein (CHD) phosphorylation Reader 

CHD8 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CHD9 
chromodomain helicase DNA binding 

protein (CHD) 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

ZMYM1 zinc finger, MYM-type Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

ZMYM2 zinc finger, MYM-type Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

ZMYM3 zinc finger, MYM-type Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

ZMYM4 zinc finger, MYM-type Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

ZMYM5 zinc finger, MYM-type Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

ZMYM6 zinc finger, MYM-type Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

UTY 
ubiquitously transcribed tetratricopeptide 

repeat containing, Y-linked 
Histone Modification Histone demethylase (HDM) 

TAF1 
TATA box binding protein 

(TBP)-associated factor 
Histone Modification 

Acetylation, methylation and 

phosphorylation 

TAF3 
TATA box binding protein 

(TBP)-associated factor 
Histone Modification K4 reader 

BRD4 bromodomain containing  Histone Modification K27 reader 

BRD8 bromodomain containing  Histone Modification K27 reader 

RAG2 recombination activating gene 2 Histone Modification K4 reader 

BPTF 
bromodomain PHD finger transcription 

factor 
Histone Modification K4 reader 

PHF2 PHD finger protein Histone Modification K4 reader 

PHF6 PHD finger protein Histone Modification K4 reader 

PHF8 PHD finger protein Histone Modification K4 reader 

MECOM MDS1 and EVI1 complex locus Histone Modification K9 writer 

CBX5 chromobox homolog Histone Modification K9 reader 

CBX7 chromobox homolog Histone Modification K36 reader 

WHSC1 Wolf-Hirschhorn syndrome candidate 1 Histone Modification K36 writer 

GLYATL1 glycine-N-acyltransferase-like 1 (GNAT) Histone Modification K27 writer 

TP53BP1 tumor protein p53 binding protein 1 Histone Modification K79 reader 

DOT1L 
DOT1-like histone H3K79 

methyltransferase 
Histone Modification K79 writer 

MORF4L1 mortality factor 4 like 1 Histone Modification K36 reader 

BRPF1 
bromodomain and PHD finger containing, 

1 
Histone Modification K36 reader 

ADNP 
activity-dependent neuroprotector 

homeobox 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 



ATXN7 ataxin 7 Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

DHX30 DEAH (Asp-Glu-Ala-His) box helicase 30 Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

EP400 E1A binding protein Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

MGA MAX dimerization protein Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

GABRG1 
gamma-aminobutyric acid (GABA) A 

receptor, gamma 1 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

CARM1 
coactivator-associated arginine 

methyltransferase 1 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

GATAD2A GATA zinc finger domain containing Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

GATAD2B GATA zinc finger domain containing Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

HCFC1 host cell factor family Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

HCFC2 host cell factor family Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

TRRAP 
phosphoinositide 3-kinase-related kinases 

(PIKK) family 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

SMC1A 
structural maintenance of chromosomes 

1A 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

SMCHD1 
structural maintenance of chromosomes 

flexible hinge domain containing 1 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

POGZ 
pogo transposable element with ZNF 

domain 
Histone Modification 

Acetylation, methylation and 

phosphorylation Reader 

ZMYND8 zinc finger, MYND-type containing 8 Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

NIPBL Nipped-B homolog Histone Modification 
Acetylation, methylation and 

phosphorylation Reader 

SUZ12 Polycomb group protein Histone Modification chromatin silencing 

EED Polycomb group protein Histone Modification histone deacetylation 

CTCF CTCF gene family Histone Modification 
histone acetyltransferase or 

deacetylase 

SMARCA1 SWI/SNF family 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

SMARCB1 SWI/SNF family 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

SMARCA4 SWI/SNF family 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

SMARCA5 SWI/SNF family 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 



SRCAP Snf2-related CREBBP activator protein 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

ATRX 
alpha thalassemia/mental retardation 

syndrome X-linked 

Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

BTAF1 
BTAF1 RNA polymerase II, B-TFIID 

transcription factor-associated 

Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

HELLS helicase, lymphoid-specific 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

TTF2 SWI2/SNF2 family  
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

ERCC6 
excision repair cross-complementation 

group 6 

Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

INO80 INO80 complex subunit 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

RAD54L DEAD-like helicase superfamily 
Nucleosome Positioning 

and Remodeling 
Chromatin remodelling helicase 

 

Table.S1: The full list of 212 Epigenetic Enzyme genes, loosely defined as genes with a role in 

regulating/modulating any epigenetic mark. We provide the gene symbol, the gene description, its 

functional role and gene family it belongs to. 

 

 

 

 

 

Cancer 

Type 

#N(DNAm) #C(DNAm) #N(mRNA) #C(mRNA) #MN(DNAm) #MC(mRNA) 

BRCA 81 652 97 1008 68 648 

BLCA 19 201 17 323 15 195 

COAD 38 272 41 270 19 254 

HNSC 45 405 42 475 20 396 

KIRC 160 299 72 515 24 297 

LIHC 47 176 50 349 38 173 

LSCC 41 275 45 473 8 275 

LUAD 32 399 58 471 21 392 

THCA 53 489 56 495 48 487 

UCEC 34 374 10 364 9 253 

 

Table.S2: Numbers of normal (#N) and cancer (#C) tissue samples for each tissue type, and for each 

data type (DNAm=Illumina 450k DNA methylation, mRNA=RNA-SeqV3). Numbers of normals 

(#MN) and cancers (#MC) with matched DNAm and mRNA data are also given. 

 

 

 



 

 

 

 

BLCA BRCA COAD HNSC KIRC LIHC LSCC LUAD THCA UCEC Mean 

ALL 20231 20248 20037 20253 20247 20164 20243 20190 20161 20358 20213.2 

nDEG 10392 15238 14320 12249 15421 13111 15154 14342 13822 10116 13416.5 

nDN 5097 8421 7934 6086 7814 5748 7697 6673 8593 5308 6937.1 

nUP 5295 6817 6386 6163 7607 7363 7457 7669 5229 4808 6479.4 

pDEG 0.51 0.75 0.71 0.6 0.76 0.65 0.75 0.71 0.69 0.5 0.66 

pDN 0.25 0.42 0.4 0.3 0.39 0.29 0.38 0.33 0.43 0.26 0.34 

pUP 0.26 0.34 0.32 0.3 0.38 0.37 0.37 0.38 0.26 0.24 0.32 

 

Table.S3: For each TCGA cancer data set, we list the total number of genes which underwent 

Differential Expression analysis (ALL), the number of differentially expressed genes passing a P-value 

threshold of 0.05 (nDEG), the number of these which are downregulated (nDN) or upregulated (nUP) 

in cancer, and the corresponding probabilities of differential expression (pDEG), downregulation (pDN) 

and upregulation (pUP). We also provide the average values over all 10 cancer types in the last column. 

 

 

 

 

 nEE 

(Observed) 

P 

(k≥8) 

nEE (212*P)  

(Expected) 

SD Binomial  

P-value 

UP 35 0.0026 0.54 0.74 <10-50 

DN 27 0.0042 0.89 0.94 <10-30 

 

 

Table.S4: Table summarizing the analytical model result for estimating the overall statistical 

significance of observing 35 (27) significantly and consistently upregulated (downregulated) EE genes 

across at least 8 of the 10 cancer types. UP=upregulated, DN=downregulated. Columns label the 

observed numbers of EE genes (nEE), the null probability of observing a random gene (i.e. one of the 

~20,000 genes) to be significantly and consistently differentially expressed across at least 8 of the 10 

cancer types (P, k≥8), the number of EE genes expected under the Binomial test (there were 212 EE 

genes), the standard deviation of the Binomial count (SD) and the corresponding Binomial test P-value. 

We can see that for a random set of 212 genes, that the expected numbers of significantly and 

consistently differentially expressed genes across at least 8 of the 10 cancer types, are very low, 

approximately 0 to 1 genes in the case of upregulation, and only 0 to 2 genes in the case of 

downregulation. 

 

 

 

 

 

  BRCA BLCA COAD HNSC KIRC LIHC LSCC LUAD THCA UCEC Mean 



ALL 20219 20176 20008 20216 20214 20062 20222 20154 20154 20354 20177.9 

Positive- 

HyperZ  

3420 

(0.17) 

1340 

(0.07) 

2888 

(0.14) 

2048 

(0.1) 

3855 

(0.19) 

1259 

(0.06) 

1717 

(0.08) 

2462 

(0.12) 

2895 

(0.14) 

1616 

(0.08) 

2350 

(0.12) 

Negative-

HyperZ 

6799 

(0.34) 

2454 

(0.12) 

6053 

(0.3) 

7761 

(0.38) 

4590 

(0.23) 

3810 

(0.19) 

3565 

(0.18) 

5017 

(0.25) 

4602 

(0.23) 

5446 

(0.27) 

5009.7 

(0.25) 

Positive- 

HypoZ 

3176 

(0.16) 

2528 

(0.13) 

1708 

(0.09) 

4787 

(0.24) 

3028 

(0.15) 

3296 

(0.16) 

3940 

(0.19) 

5022 

(0.25) 

4072 

(0.2) 

1213 

(0.06) 

3277 

(0.16) 

Negative-

HypoZ 

7470 

(0.37) 

4608 

(0.23) 

4995 

(0.25) 

5297 

(0.26) 

4610 

(0.23) 

4200 

(0.21) 

4715 

(0.23) 

6657 

(0.33) 

5914 

(0.29) 

2876 

(0.14) 

5134.2 

(0.25) 

 

Table.S5: For each TCGA cancer data set, we list the total number of genes (ALL) which underwent 

correlation analysis between mRNA expression and the HyperZ or HypoZ indices, the number of  

genes correlating significantly (i.e. with a correlation P < 0.05) and positively with HyperZ index, the 

number of genes correlating significantly and negatively with HyperZ, the number of genes correlating 

significantly and positively with the HypoZ index, and finally, the number of genes correlating 

significantly and negatively with the HypoZ index. In brackets, we give the corresponding 

fractions/probabilities. The last columns labels the mean over all cancer-types. 

 

 

 

 

  

nEE 

(Observed) 

P    

(k≥6) 

nEE (212*P) 

(Expected) 

SD      

 

Binomial 

P-value 

positive-HyperZ (uu)  5 0.0004 0.08 0.29 <10-9 

negative-HyperZ (du) 11 0.02 4.24 2.04 0.001 

positive-HypoZ (ud) 18 0.002 0.42 0.65 <10-24 

negative-hypoZ (dd) 15 0.02 4.24 2.04 <10-5 

 

Table.S6: Table summarizing the analytical model result for estimating the overall statistical 

significance of observing EE genes correlating significantly and positively/negatively with 

HyperZ/HypoZ across at least 6 of the 10 cancer types. Columns label the observed numbers of EE 

genes (nEE) correlating positively or negatively with either HyperZ or HypoZ across at least 6 cancer 

types, the null probability of observing a random gene (i.e. one of the ~20,000 genes) correlating 

significantly and consistently across at least 6 of the 10 cancer types (P, k≥6), the number of EE genes 

expected under the Binomial test (there were 212 EE genes), the standard deviation of the Binomial 

count (SD) and the corresponding Binomial test P-value. We can see that for a random set of 212 genes, 

that the expected numbers of genes correlating significantly and consistently with HyperZ/HypoZ 

across at least 6 of the 10 cancer types is significantly less than expected by random chance. 

 

 

 

 

 



 

 

 

 

DNAm BRCA BLCA COAD HNSC KIRC LIHC LSCC LUAD THCA UCEC 

paired normals 75 19 38 45 160 47 40 29 53 33 

unpaired normals 6 0 0 0 0 0 1 3 0 1 

cancer 652 201 272 405 299 176 275 399 489 374 

           

           

           RNA-seq BRCA BLCA COAD HNSC KIRC LIHC LSCC LUAD THCA UCEC 

paired normals 96 17 26 41 71 50 45 57 56 10 

unpaired normals 1 0 15 1 1 0 0 1 0 0 

cancer 1008 323 270 475 515 349 473 471 495 364 

 

Table.S7: Table summarizing the number of paired and unpaired normals and cancer samples for each 

of the 10 TCGA cancer types considered in this manuscript. We note that unpaired normal samples may 

still represent tissue adjacent to cancer, but don’t have a corresponding cancer sample (RNA or DNA) 

available. Only for colon (COAD) there were sufficient numbers of unpaired normals, with 12 of the 15 

RNA-Seq samples not having any matched cancer sample (be it RNA-Seq or DNAm). 
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