| 1              | SUPPLEMENTARY INFORMATION                                                                                                                                          |  |  |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2              |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 3              |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 4              | The role of OOH binding site and Pt surface structure on ORR activities                                                                                            |  |  |  |  |  |  |  |
| 5              |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 6<br>7         | Qingying Jia <sup>†</sup> , Keegan Caldwell <sup>‡</sup> , Joseph M. Ziegelbauer <sup>§</sup> , Sanjeev Mukerjee <sup>†</sup> and David E.<br>Ramaker <sup>‡</sup> |  |  |  |  |  |  |  |
| 9<br>10        | <sup>+</sup> Dept. of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115                                                                      |  |  |  |  |  |  |  |
| 11<br>12       | <sup>‡</sup> Department of Chemistry, George Washington University, Washington, D.C. 20052                                                                         |  |  |  |  |  |  |  |
| 13<br>14<br>15 | <sup>§</sup> Electrochemical Energy Research Lab, General Motors Research & Development, Warren, MI<br>48090                                                       |  |  |  |  |  |  |  |
| 16             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 17             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 18             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 19             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 20             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 21             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 22             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 23             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 24             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 25             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 26             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 27             |                                                                                                                                                                    |  |  |  |  |  |  |  |
| 28             |                                                                                                                                                                    |  |  |  |  |  |  |  |

## Table S1: Symbol translation table

| Catalyst<br>symbol used | Catalyst symbol<br>used in Ref. 40 | Pre-   | Dealloying gaseous | De-<br>alloying                | Post<br>anneal-  |
|-------------------------|------------------------------------|--------|--------------------|--------------------------------|------------------|
| here                    | (Page 7)                           | cuisoi | environment        | acid                           | ing <sup>2</sup> |
| ANAu                    | 176NA                              | PtNi₃  | Air                | HNO <sub>3</sub>               | No               |
| N <sub>2</sub> NAu      | 280NA                              | PtNi₃  | N <sub>2</sub>     | HNO <sub>3</sub>               | No               |
| N₂SAu                   | 280SA                              | PtNi₃  | N <sub>2</sub>     | H <sub>2</sub> SO <sub>4</sub> | No               |
| N <sub>2</sub> SAa      | 280SA-AN                           | PtNi₃  | N <sub>2</sub>     | H <sub>2</sub> SO <sub>4</sub> | Yes              |

30

## 31 EXAFS analysis

32

33

34

## Table S2: Summary of EXAFS results<sup>\*</sup>

|   | Catalyst           | Cycling | $R_{Pt-Pt}$                                   | $R_{Pt-Ni}$ | R <sub>Ni-Ni</sub> | $N_{Pt-Pt}$                | $N_{Pt-Ni}$ | N <sub>Ni-Pt</sub>         | N <sub>Ni-Ni</sub> | $\sigma^{2}_{Pt-Pt}$              | $\sigma^2_{Pt-Ni}$ | $\sigma^2_{Ni-Ni}$ | R-factor |
|---|--------------------|---------|-----------------------------------------------|-------------|--------------------|----------------------------|-------------|----------------------------|--------------------|-----------------------------------|--------------------|--------------------|----------|
|   | symbol             | stage   | stage $(\Delta R = \pm 0.008 \text{\AA})^{a}$ |             | 8Å) <sup>a</sup>   | $(\Delta N = \pm 0.9)^{b}$ |             | $(\Delta N = \pm 0.5)^{b}$ |                    | $(\Delta \sigma^2 = \pm 0.007)^c$ |                    |                    |          |
| _ |                    | BOL     | 2.738                                         | 2.630       | 2.572              | 9.2                        | 0.7         | 7.5                        | 4.4                |                                   |                    |                    | 0.005    |
|   | ANAu               | 10 k    | 2.743                                         | 2.650       | 2.575              | 9.6                        | 0.6         | 6.8                        | 4.1                | 0.005                             | 0.010              | 0.009              | 0.007    |
|   |                    | 30 k    | 2.748                                         | 2.650       | 2.577              | 10.3                       | 0.4         | 5.9                        | 4.7                |                                   |                    |                    | 0.004    |
| _ |                    | BOL     | 2.713                                         | 2.611       | 2.570              | 8.1                        | 1.8         | 6.9                        | 5.5                |                                   |                    |                    | 0.007    |
|   | N <sub>2</sub> NAu | 10 k    | 2.724                                         | 2.631       | 2.574              | 9.1                        | 1.2         | 6.7                        | 5.5                | 0.004                             | 0.010              | 0.011              | 0.009    |
|   |                    | 30 k    | 2.742                                         | 2.631       | 2.543              | 10.6                       | 0.4         | 6.3                        | 5.6                |                                   |                    |                    | 0.009    |
| - |                    | BOL     | 2.696                                         | 2.601       | 2.581              | 7.3                        | 2.5         | 4.8                        | 7.7                |                                   |                    |                    | 0.010    |
|   | N <sub>2</sub> SAu | 10 k    | 2.716                                         | 2.604       | 2.574              | 8.2                        | 2.2         | 3.8                        | 7.4                | 0.007                             | 0.005              | 0.011              | 0.012    |
|   |                    | 30 k    | 2.736                                         | 2.600       | 2.580              | 9.7                        | 1.3         | 3.7                        | 7.4                |                                   |                    |                    | 0.008    |
|   |                    | BOL     | 2.693                                         | 2.598       | 2.578              | 8.8                        | 2.1         | 5.2                        | 7.1                | 0.007                             | 0.005              | 0.011              | 0.006    |
|   | N <sub>2</sub> SAa | 10 k    | 2.717                                         | 2.600       | 2.575              |                            |             |                            |                    |                                   |                    |                    |          |
|   |                    | 30 k    | 2.734                                         | 2.604       | 2.570              | 10.4                       | 0.9         | 4.6                        | 6.9                | 0.007                             | 0.005              | 0.011              | 0.010    |

\*All the data were collected at 0.54 V vs RHE (double layer region) in N<sub>2</sub>-saturated 0.1 M HClO<sub>4</sub> electrolyte except for the Pt L<sub>3</sub> edge data of the 10k-cycled N<sub>2</sub>SAa catalyst that were collected under *ex situ* conditions (thus only the bond distance values are given).  $S_0^2$  fixed at 0.766 and 0.682 for Pt and Ni, respectively as obtained by fitting the reference foils. Fits were done in *R*space,  $k^{1,2,3}$  weighting at Pt L<sub>3</sub> and Ni k edges simultaneously. For Pt, 1.1< *R* < 3.4 Å and  $\Delta k =$ 2.95 - 12.14 Å<sup>-1</sup> were used; for Ni, 1.2 < *R* < 3.0 Å and  $\Delta k =$  1.87 – 11.93 Å<sup>-1</sup> were used. <sup>*a,b,c*</sup>Values

41 represent the largest statistical errors of all of the least-squares fits determined by ARTEMIS.

42

43

44 45

46

47

47

48



Figure S1. Pt L<sub>3</sub> edge (left) and Ni K edge (right) EXAFS spectra collected at 0.54 V in N<sub>2</sub>saturated 0.1 M HClO<sub>4</sub> electrolyte and the corresponding least-squares fits for dealloyed PtNi<sub>3</sub>/C (ANAu) NP catalyst under different voltage cycling stages: BOL (top), 10k (middle), and 30k (bottom). The vertical black lines are drawn as guides to the eye.





Figure S2. Pt L<sub>3</sub> edge (left) and Ni K edge (right) EXAFS spectra collected at 0.54 V in N<sub>2</sub>saturated 0.1 M HClO<sub>4</sub> electrolyte and the corresponding least-squares fits for dealloyed PtNi<sub>3</sub>/C (N<sub>2</sub>NAu) NP catalyst under different voltage cycling stages: BOL (top), 10k (middle), and 30k (bottom). The vertical black lines are drawn as guides to the eye.



Figure S3. Pt L<sub>3</sub> edge (left) and Ni K edge (right) EXAFS spectra collected at 0.54 V in N<sub>2</sub>saturated 0.1 M HClO<sub>4</sub> electrolyte and the corresponding least-squares fits for dealloyed PtNi<sub>3</sub>/C (N<sub>2</sub>SAu) NP catalyst under different voltage cycling stages: BOL (top), 10k (middle), and 30k (bottom). The vertical black lines are drawn as guides to the eye.





**Figure S4.** Pt L<sub>3</sub> edge (left) and Ni K edge (right) EXAFS spectra collected at 0.54 V in N<sub>2</sub>saturated 0.1 M HClO<sub>4</sub> electrolyte and the corresponding least-squares fits for dealloyed PtNi<sub>3</sub>/C (N<sub>2</sub>SAa) NP catalyst under different voltage cycling stages: BOL (top), 10k (the Pt L<sub>3</sub> edge data were collected under ex situ condition) (middle), and 30k (bottom). The vertical black lines are drawn as guides to the eye.

## 108 XANES data



111 Figure S5. Normalized Pt L<sub>3</sub> edge XANES spectra collected at various potentials in N<sub>2</sub>- (left) or O<sub>2</sub>-

112 (right) saturated 0.1 M HClO<sub>4</sub> electrolyte for dealloyed PtNi<sub>3</sub>/C (ANAu) NP catalyst under 113 different voltage cycling stages: BOL (top), 10k (middle), and 30k (bottom).





Figure S6. Normalized Pt L<sub>3</sub> edge XANES spectra collected at various potentials in N<sub>2</sub>- (left) or O<sub>2</sub>-(right) saturated 0.1 M HClO<sub>4</sub> electrolyte for dealloyed PtNi<sub>3</sub>/C (N<sub>2</sub>NAu) NP catalyst under different voltage cycling stages: BOL (top), 10k (middle), and 30k (bottom).





Figure S7. Normalized Pt L<sub>3</sub> edge XANES spectra collected at various potentials in N<sub>2</sub>- (left) or O<sub>2</sub>-(right) saturated 0.1 M HClO<sub>4</sub> electrolyte for dealloyed PtNi<sub>3</sub>/C (N<sub>2</sub>SAu) NP catalyst under different voltage cycling stages: BOL (top), 10k (middle), and 30k (bottom).



Figure S8. Normalized Pt L<sub>3</sub> edge XANES spectra collected at various potentials in N<sub>2</sub>- (left) or O<sub>2</sub>-(right) saturated 0.1 M HClO<sub>4</sub> electrolyte for dealloyed PtNi<sub>3</sub>/C (N<sub>2</sub>SAa) NP catalyst under

different voltage cycling stages: BOL (top) and 30k (bottom).