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1 Appendix Supplementary Text: Bayesian Mod-
eling

1.1 Selection of genes for modeling

Due to the relatively low capture efficiency of single-cell transcriptomics,
we observe only a single strongly expressed 3’ isoform for most genes. We
therefore restrict the following analysis to those 493 genes for which we
observe at least two isoforms at an average of at least 0.2 barcodes per cell
each, which corresponds to approximately 8 RNA molecules per isoform in
each cell based on the estimates of the model (see Table EV2 for an overview
of all genes included). For the majority of genes retained, only two isoforms
are expressed at that level; we therefore restrict the following analysis to the
two most abundant isoforms for each gene.

1.2 Formulation of the BATBayes model

To separate the observed variance into technical noise, variance induced
by random partitioning of mRNAs to isoforms and potential contributions
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by variance in isoform preference (Figure 5a), we developed two Bayesian
models. The null model (”first model”) is that isoform preference is the same
in all cells, whereas the alternative model (”second model”) allows isoform
preference to vary (see Figure 5b for a visual depiction of both models). For
each combination of gene g, polyadenylation isoform i, and cell c, we observe
Ngic molecular barcodes. To account for technical noise, we model Ngic as
a sample of the number of RNA molecules Mgic expressed in the cell

Ngic ∼ Binom(Mgic, βc) (1)

where βc is the capture efficiency observed in cell c. βc is determined by
regressing the number of observed ERCC spike in molecules against the
number of molecules put into the reaction (Figure 2c, inset). For an overview
of all quantities used in BATBayes, see inline table 1.

Ngic Number of RNA molecules of gene g and Isoform i observed in cell c

βc Capture efficiency in cell c

Mgic Number of RNA molecules of gene g and Isoform i physically expressed
in cell c

Qgc Number of total RNA molecules of gene g and physically expressed in
cell c

µg Average total expression of gene g

τ Rate parameter for expression of gene g

pgc Probability of choosing Isoform 1 of gene g in an individual cell c

ρg Average Probability of choosing Isoform 1 of gene g

cg Concentration of pgc around ρg
η Mean of cg
τ Log-Precision of cg

Table 1: Quantities used in BATBayes. First subsection contains observed
variables, second subsection contains latent variables.

For both models, we assume that upon expression of an RNA molecule,
the isoform is chosen randomly with a gene- (and possibly cell-) specific
probability pgc. If a total of Qgc RNA molecules are expressed in a given
cell, isoform 1 is chosen Mg1c times according to binomial partitioning of
RNA molecules to two isoforms:

Mg1c ∼ Binom(Qgc, pgc) (2)

and
Mg2c = Qgc −Mg1c (3)

It is evident that under these assumptions, the observed isoform ratios can
be highly variable even if pgc is equal in all cells merely due to technical
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noise and binomial partitioning. For the first model, we therefore assume
equal isoform preference in all cells:

pgc = ρg (4)

In the second model, we assume that pgc is variable across cells. We model
this using the conjugate prior of the binomial distribution in (2), the Beta
distribution:

pgc ∼ Beta(ag, bg) (5)

which we parametrize by its mean

ρg =
ag

ag + bg
(6)

and the so-called concentration parameter, a quantity related to the vari-
ance:

cg =
√
a2g + b2g (7)

We chose this parametrization because cg scales independently of the mean,
whereas the variance is dependent on the mean (Appendix Figure S4a).
We further note that this parametrization allows the model to easily be
extended to more than two isoforms by using a Dirichlet distribution as the
generalized form of the Beta distribution. For ρ, we assume a flat 0, 1 prior:

ρgc ∼ Unif(0, 1) (8)

cg is unknown, but of primary interest to our model as it describes the cell-
cell variability in isoform choice. For c→∞, the Beta distribution becomes
narrowly peaked and the model degenerates to the first model. In a simpler
version of the second model (”second model A”), we assume that cg is equal
for all genes:

cg = 1/η (9)

i.e. that all genes display equal variation in isoform preference. We pa-
rameterize by 1/η based on the consideration that at large values of the
concentration parameter, even large changes have little effect on the result-
ing Beta distribution; a Beta distribution with concentration parameter 100
is almost identical to a Beta distribution with concentration parameter 200,
but radically different from a Beta distribution with concentration parame-
ter 0. We then place an exponential hyperprior on η:

η ∼ exp(1) (10)

We note that the prior variance of η was 1, and the posterior variance of
was 0.00007 or smaller, indicating that η was well defined by the data and
that the exact choice of prior does not influence the conclusions drawn by
the modeling.
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We then allowed cg to vary across genes (”second model B”). Initially,
we fitted second model A to all genes independently. We observed similar
values for cg for most genes, but some outliers with very low concentration
parameters (Appendix Figure S6c, x-axis). When we investigated these
outliers, we found that they were mostly genes with very low expression level,
i.e. typically only one barcode per cell observed. As beta distributions with
extremely high variance (all density at 0 and 1) do not contain more prior
uncertainty than extremely low variance beta distributions (all density at ρ),
Bayesian parameter estimation greatly favored high-variance distributions
in these cases. We therefore share information across genes and allow cg
only to deviate from the typical variance in isoform preference if the data
justifies it by using an empirically estimated lognormal prior on cg:

log(cg) ∼ N
(

log

(
1

η

)
− 1

2τ
,
√

1/τ

)
(11)

We use the lognormal distribution because as described before, at small
concentration parameters, smaller absolute changes in c translate to larger
changes in the Beta distribution than at large concentration parameters.
The distribution was parameterized by its mean η and a precision parameter
τ , upon which we place a conjugate hyperprior:

τ ∼ exp(0.1) (12)

The posteriors of τ are only shifted against the prior by 30% (Appendix
Figure S6b). Based on the DIC and simulations, we use second model B as
final model (”BATBayes”), but we note that the prior on τ influences the
spread of final estimates of gene-wise variances displayed in the lower panel
of figure 5e. The use of a rather conservative exponential prior with rate 0.1
avoids an overestimation of gene-wise differences that is not backed up by
the data. To model the number of RNA molecules for any gene, we assume a
negative binomial distribution, based on the observation that RNA molecule
counts are typically more disperse than a Poisson distribution [5]:

Qgc ∼ NBinom(µg, qg) (13)

parametrized by its expected value and rate parameters, for which we assume
flat priors:

µg ∼ Unif(0.01, 10000) (14)

qg ∼ Unif(0, 1) (15)

The BATBayes source code is given in Code EV1.
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1.3 Model fitting and comparison

We fit the model to the data (molecule count tables Ngic and capture efficien-
cies βc) by using JAGS, a program for Bayesian parameter estimation using
Monte Carlo Markov Chains [3]. Starting parameters for mean gene expres-
sion and isoform ratio can readily be estimated from the data; for all other
parameters, we initialize at values drawn randomly from the prior distribu-
tions. For each combination of model and data considered in the main text,
we ran at least 3 chains for at least 300,000 iterations each. We recorded
values of ρ, η, τ, c, µ and q at each 100th iteration to avoid autocorrelation.
We further monitored the variance of the isoform ratio Ng1·/(Ng1· + Ng2·),
which were used for creating parts of figure 5e. We further recorded the
posterior means of all latent variable.

We use the CODA package of the programming language R to analyze
MCMC chain output [4]. We discard a burn-in of up to 100,000 iterations
and make sure that chains converge by using Gelman and Rubin’s diagnostic
[1], which was consistently below 1.1, as well as by manual inspection of diag-
nostic plots (see Appendix Figure S4b-d for representative examples). The
deviance information criterion was computed using the JAGS DIC module.
The DIC is defined as

DIC = D̂avg(y) + pD (16)

Where D̂avg(y) is the mean deviance of data y across samples from a MCM
chain, and pD is the number of free parameters [6]. Akaike’s Informaiton
Criterion (AIC) and Schwartz’ BIC are not applicable in the context of
hierarchical Bayesian models because parameters can be closely constrained
by their priors. pD is estimated from the difference between the average
deviance and the deviance at the posterior mean of the parameters:

pD = D̂avg(y)−Dθ̂(y) (17)

1.4 Simulation of control data sets

To ascertain that the model provides correct estimates of variability in iso-
form preference, we simulated several control data sets and investigate the
behavior of the model fit. We first simulate data under the assumptions
of the second model B (isoform preference is variable across different cells,
and this variance is different in different genes) by drawing random values
for N , M , Q, p and c from the distributions specified in equations 1-3, 5
and 9. As parameters for ρ, η, τ, µ and q, we assume the posterior means of
the model fit to the ESC-2i data. For β, we assume the measured values.
The parameter estimates obtained from fitting the second model B to the
simulated data deviate from the true values by consistently less than 30%;
the estimate of the important hyperparameter η deviates from the real value
by less than 1% (Figure 5d).
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We then simulated data under the assumptions of the first model (iso-
form preference is equal in all cells) by drawing random values for N , M
and Q from equations 1-4, again assuming the posterior means of the model
fit to the ESC-2i data as parameters. The variance of isoform preference
obtained from fitting the second model B to this simulated data set is cor-
rectly estimated to be close to 0, approximately 10 times lower than the
value estimated for the real data (Figure 5d).

Besides the observed data N , the model depends on the capture ef-
ficiencies β, which were estimated based on the use of spiked-in in vitro
transcripts. To make sure that the conclusions drawn from the model are
insensitive to experimental inaccuracies in determining β, we simulated data
under the assumption of the first model (no variability in isoform preference)
and one of the following scenarios. In the first scenario, we assume that the
true value β′ is really lower than the experimental estimate β by a fixed
factor

β′c = ϕ · βc (18)

In the second scenario, we assume that β′ is different for different genes

β′cg = S(Logit(βc) + eg) (19)

were S is the sigmoid function and

eg ∼ N (0, ϕ) (20)

In the third scenario, we assume that β′ is different for different genes and
isoforms

β′cig = S(Logit(βc) + egi) (21)

egi ∼ N (0, ϕ) (22)

The second model B was fit to data simulated from these models for several
arbitrarily chosen parameters ϕ, and the fits correctly displayed no evidence
for the presence of variability in isoform preference (Appendix Figure S5b-
d).

1.5 BATBayes2: Clustering of single cells based on polyadeny-
lation site usage

To cluster cells based on polyadenylation site usage, we assume that a global
correlation structure exists on the matrix pcg. We initially fitted the second
model B (”BATBayes”) to the data pooled from all 107 cells, and per-
formed a principal component analysis on the posterior means of p. While
this approach allowed us to retrieve a rough population structure (Figure
7b), the ESC-FCS and NSC population were difficult to separate using the
first two principal components. A possible reason for this relatively weak
separation may be that the BATBayes model assumes that no non-random
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correlation on p exists between different genes. We therefore extended the
second model to explicitly include such a correlation structure on p (see also
Figure EV4a), and fit the extended model to the data using the MCMC
methodology described above.

In analogy to independent component analysis, we define a score δc for
each cell and a loading εg for each gene. We then allow the mean percentage
of major isoform produced (equation 6) to be different for different cells and
calculate the expected isoform usage as

ρcg = S(ρ′g + δc · εg) (23)

We replace the prior in equation 8 by

ρ′g ∼ Unif(−10, 10) (24)

The magnitude of the correlation on p is unknown, and determined by
the product δ · ε. Priors on δ and ε therefore cannot be uniquely identified.
We fix the prior on δ:

δc = N (0, 1) (25)

And estimate the prior on εg empirically

εg = N (0,
√

1/θ) (26)

with hyperprior
θ ∼ exp(0.1) (27)

To make sure that this approach does indeed cluster only based on 3’
UTR usage and does not require differences in gene expression levels to work,
we simulated a mixed population, where the parameters governing mRNA
levels (µ and q) were taken from the fit of BATBayes to the NSC population
for half of the cells and from the fit to the ESC-2i population for the other
half. The parameter governing isoform ratios (ρ) was taken from the fit to
the ESC-2i population for all cells. Evidently, cells clustered apart using
hierarchical clustering on downsampled gene expression level [2], but not
using BATBayes2 (Figure EV4b). We then simulated a population taking
µ and q from the fit to the ESC-2i population for all cells, whereas ρ was
taken from the ESC-2i population for half of the cells and from the NSC
population for the other half. Cells could not be distinguished based on gene
expression levels, but isoform-based clustering separated populations very
well (Figure EV4b).

The BATBayes2 source code is given in Code EV 2.
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2 Appendix Figures S1-7
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Appendix Figure S 1: Gating strategy during FACS sorting. Cells were
stained with Hoechst 34580 and sorted to include only small cells (gate C,
top) with 1N chromosome set (gate D, bottom).
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Appendix Figure S 2: Processing of raw reads.

a Overview of filtering strategy. In total, 42.3 million reads were obtained, of which 10.3
million reads passed quality control filters.

b Venn diagram of unique molecules (UMI-cell-gene combinations) identified during four
MiSeq runs. After constructing sequencing libraries on magnetic beads, PCR enrich-
ment was performed prior to sequencing like in standard library preparation protocols.
Sequencing deeper into a library did not yield higher coverage (PCR 2, seq. 1 and 2)
whereas repeating the final enrichment PCR did increase coverage.

c Distribution of observed UMIs across cells. In total, 869.000 unique molecules were
observed.

d Correlations of read and molecule counts. Each row/column of the heatmaps corre-
sponds to a single cell.

e Use of a well-specific spike-in reveals that template switching occurs at very low fre-
quencies. A concern in UMI-based protocols is template switching during PCR, which
would result in single original molecules being represented by multiple UMIs in the
final sequencing data. In our protocol, such template switches would not only affect
the UMI, but also the cell barcode; we therefore included an additional synthetic RNA
spike-in (pGIBS-THR) in rows C & G before cell lysis. As multiple rows were pooled
prior to PCR, a switch in barcode would result in pGIBS-THR reads in other rows.

f Alternative strategy of simulating the experiment shown in Figure 2d. Here, true ex-
pression values were estimated by dividing the measured gene expression values from
the bulk experiment by the capture efficiency estimate. Obtained correlations are quan-
titatively identical to the correlations shown in Figure 2d.

10

A B

DC

E F



TCCTGGAAAAACCTTTGCTGGATATTTGTTAAATCAATAGCCCTAAATAGGATGCAGAGAATATCAAAGCGGAAAAAATCCAAAAAAAAAAAAAAAAAAAA

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

20
40

A_2_2i

A_4_2i

B_2_2i

B_5_2i

B_6_2i

C_10_ESC

C_6_NSC

D_1_2i

D_5_NSC

D_8_ESC

E_4_2i

E_4_NSC

E_5_NSC

F_1_2i

G_1_NSC

G_2_NSC

G_4_NSC

H_10_ESC

H_5_2i

H_8_ESC

Sequence

400 425 450 475 500
Position

U
M

Is
 o

bs
er

ve
d

ERCC−00074
ERCC−00002 ERCC−00003 ERCC−00004 ERCC−00009

ERCC−00022 ERCC−00035 ERCC−00042 ERCC−00043

ERCC−00044 ERCC−00046 ERCC−00060 ERCC−00071

ERCC−00074 ERCC−00076 ERCC−00079 ERCC−00092

ERCC−00095 ERCC−00096 ERCC−00108 ERCC−00111

ERCC−00113 ERCC−00116 ERCC−00130 ERCC−00131

ERCC−00136 ERCC−00162 ERCC−00171

0
1000
2000
3000

0
25
50
75

0
250
500
750

0
20
40
60
80

0
10
20
30
40

0
10
20
30

0
50

100
150
200
250

0
20
40
60

0

5

10

0
250
500
750

1000
1250

0
20
40
60

0
3
6
9

0

1000

2000

0
10
20
30
40
50

0
2
4
6

0
10
20
30

0

5

10

0
1000
2000
3000

0
25
50
75

100
125

0

20

40

0
100
200
300
400

0
3
6
9

0

2000

4000

0
10
20
30
40

0
100
200
300
400

0
3
6
9

0
100
200
300
400

−60 −40 −20 0 −60 −40 −20 0 −60 −40 −20 0
Position relative to 3' end

C
ou

nt
ed

 m
ol

ec
ul

es

Appendix Figure S 3: Polyadenylation site mapping of control in vitro tran-
script (IVT) spike ins.

a Pooled data for all IVTs detected. Shown are mapped polyadenylation sites of 27
polyadenylated IVT spike-ins with known poly-A site (0). Mappings did not devi-
ate from the true poly-A site by more than 12 bases. Therefore, for all genes, mapping
positions within a window of 12 bases were collapsed (red vertical lines).

b Single-cell data for a sample IVT. Alignment to a single spike (ERCC-00074) across
20 randomly selected single cells is shown. No obvious biases across single cells were
apparent.
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Appendix Figure S 4: Model fitting based on Monte Carlo Markov Chains.

a Choice of parametrization. The Beta distribution governing isoform preference was
parameterized by a concentration parameter instead of a variance because the concen-
tration parameter is independent of the mean.

b Convergence diagnostics for a typical Monte Carlo Markov Chain, the second model
fitted to ESC-2i data. Here, three randomly initialized chains were run for 300.000
iterations each, a burn-in of 100.000 iterations was discarded and a thinning interval
of 300 was applied. For the hyperparameters η and τ , as well as for randomly selected
gene-wise isoform variability parameters c, the plots display autocorrelation (b), trace
(c) and density (d).
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Appendix Figure S 5: Simulations to assess model sensitivity to input pa-
rameters.

a Simulations recapitulate data. Distributions of bulk isoform ratios, gene expression
levels and molecular counts estimated from the ESC-2i data and for a data set that was
simulated using the assumption of no variability in isoform preference (First Model).

b Model output is robust to changes in the estimated capture efficiency. Posterior densities
of variability in isoform preference η for the second model fit to data sets simulated
using the assumption that isoform preference is identical in all single cells, and that
the BATSeq capture efficiencies were not measured correctly. In b) true RT efficiencies
were assumed to be lower than the estimated value by a factor between 0.2 and 0.8. In
c), capture efficiencies were assumed differ for different genes by a standard deviation
between 0.1 and 1. In d), RT capture efficiencies were assumed differ for different genes
and isoforms by a standard deviation between 0.05 and 0.5. The posterior density of
the fit to the ESC-2i data was included for reference.
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Appendix Figure S 6: Model Comparison.

a A frequentist approach to single-cell isoform analysis. For each gene, the observed vari-
ance in isoform ratios (x-axis) was plotted against the variance obtained by simulating
the first model (isoform preference equal in all cells). Points (y-axis) denote medians,
error bars denote the interquartile range. 1000 simulations were run for each gene. For
genes below the diagonal (blue), the observed variance exceeds what is expected from
simulations, for genes above the diagonal (red) the observed variance is smaller than
expected from simulations.

b Different genes differ slightly in isoform noise level. Comparison of model A (isoform
preference variability is equal in different genes) and model B (isoform preference vari-
ability is different in different genes). Upper panel: Posterior densities of the gene-gene
variance in isoform noise levels (1/τ) for the ESC-2i data (red) and a dataset that was
simulated under the assumptions of model A(green). The prior is also shown (blue).
Lower panel: Comparison of model A and model B by the DIC.

c Information sharing across genes leads to moderated estimates of isoform preference
variation in the limit of data. Concentration parameters c were once estimated for all
genes individually (x-axis) and once for all genes in parallel, assuming an empirically
estimated log-normal prior. For genes with extremely sparse data, the model frequently
returned very low estimates of c when no information sharing was applied.
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Appendix Figure S 7: Raw smFISH data for additional genes. As in Main
Figure 6, dots from the alternative 3’ UTR channel are superimposed on the
gene body channel to demonstrate colocalization.
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3 Appendix Table S1: List of buffers used for BAT-
Seq

For primer sequences, see Appendix Table S2. All volumes given in this
table are sufficient to process one 96-well plate of cells.

Single-Cell lysis buffer
10% NP-40 10 µL
RNAsin plus (Promega, 40U/µL) 5µL
RNAse-free water 135µL
ERCC Spike-In Mix, 1:1.000.000 diluted (Invitrogen) 50 µL
Priming master mix
10x PCR Buffer w/ 15mM MgCl (Applied Biosystems) 165µL
10 mM dNTPs (NEB) 5.5 µL
RNAsin plus (Promega, 40U/µL) 110µL
RNase-free water 764.5 µL
Priming buffer
Priming master mix 9.5µL
0.8333µM early multiplexing primer eaMPX 0.5µL
Barcoding RT buffer
10x PCR Buffer w/ 15mM MgCl2 (Applied Biosystems) 15 µL
0.1M DTT (Invitrogen) 18.75µL
RNase free water 97.5 µL
SuperScript III (Invitrogen, 200U/µL) 18.75µL
ExoI buffer
NEBuffer 2 (NEB) 12µL
Exonuclease I (NEB, 20U/µL) 9µL
RNase free water 99µL
PolyA tailing buffer
10x PCR Buffer w/ 15mM MgCl2 (Applied Biosystems) 25µL
100mM dATP 7.5µL
RNASeq H (Invitrogen, 2U/µL) 6µL
TdT Enzyme (Roche, 400U/µL) 20.4µL
RNase free water 190µL
PCR mix I
2x Terra Direct Buffer (Clontech) 612.5µL
10M Tagging primer 7µL
Terra DNA polymerase 50µL
Water 205.5µL
PCR mix II
2x Terra Direct Buffer 616µL
100M PCR Primer 23.8µL
Water 606µL
Elution buffer
10mM Tris-HCl in water, pH 7.5, filtered through 0.22µM pores
IVT mix
10x Transcription Reaction Buffer (Roche) 39µL
10mM NTP (Invitrogen) 39µL
T7 RNA Polymerase (Roche, 20U/µL) 19.5µL

16



RNase-free water 19.5µL
RNAsin plus (Promega) 13µL
RNA fragmentation buffer
200mM Tris Acetate, pH 8.1
500nM KOAc
150mM MgOAc
Library RT buffer
5x First strand buffer (Invitrogen) 20µL
0.1M DTT (Invitrogen) 10µL
Actinomycin D (1.25mg/mL) 1.5µL
RNAsin plus (Promega) 2.5µL
Superscript II (Invitrogen, 200U/µL) 2.5µL
Second Strand buffer
10x DNA polymerase I buffer (Fermentas) 25µL
10mM dNTP 12.5µL
RNase H (2U/µL, Invitrogen) 2.5µL
DNA polymerase I (Fermentas, 10U/µL) 10µL
2x B&W buffer
10mM Tris-HCl, pH 7.5
1mM EDTA
2M NaCl
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