

Supporting Information © Wiley-VCH 2014

69451 Weinheim, Germany

Synthesis of Di-, Tri-, and Tetrasubstituted Oxetanes by Rhodium-Catalyzed O–H Insertion and C–C Bond-Forming Cyclization**

Owen A. Davis and James A. Bull*

anie_201408928_sm_miscellaneous_information.pdf

Table of Contents

Table of Contents	S1
References: Complete references 8a, 8c-8e, 9b, 10a, 14a-14b and 15	S2
General Experimental Considerations	S3
Optimization of Rh-Catalyzed O–H Insertion using Ethylene Glycol	S4
Optimization of Rh-Catalyzed O–H Insertion using Alcohols Incorporating a Leaving Group	S5
Optimization of C-C Bond Forming Cyclization using Tosylate 2b	S6
Optimization of C-C Bond Forming Cyclization using Halides 2c, 2d	S7
Reoptimization of C-C Bond Forming Cyclization for 2,2,4-Trisubstituted Oxetanes	S8
Synthesis of β-Halohydrins 4a–4g , 7a–7g	S9
Synthesis of 2,2-Diethyl Oxetane-2,2-dicarboxylate 3	S17
Synthesis of Trisubstituted Oxetanes 6a-6h, 9a-9i	S20
Synthesis of Tetrasubstituted Oxetanes 12a-12e	S38
Functionalization of Oxetanes 6d and 9c	S45
¹ H and ¹³ C NMR spectra of selected compounds	S51
References	

References: Complete references 8a, 8c-8e, 9b, 10a, 14a-14b and 15 are given below:

- [8] a) J. Du, B.-K. Chun, R. T. Mosley, S. Bansal, H. Bao, C. Espiritu, A. M. Lam, E. Murakami, C. Niu, H. M. Micolochick Steuer, P. A. Furman, M. J. Sofia, *J. Med. Chem.* **2014**, *57*, 1826.
- [8] c) T. H. M. Jonckers, K. Vandyck, L. Vandekerckhove, L. Hu, A. Tahri, S. Van Hoof, T.-I. Lin, L. Vijgen, J. M. Berke, S. Lachau-Durand, B. Stoops, L. Leclercq, G. Fanning, B. Samuelsson, M. Nilsson, Å. Rosenquist, K. Simmen, P. Raboisson, *J. Med. Chem.* 2014, *57*, 1836.
- [8] d) A. A. Estrada, B. K. Chan, C. Baker-Glenn, A. Beresford, D. J. Burdick, M. Chambers, H. Chen, S. L. Dominguez, J. Dotson, J. Drummond, M. Flagella, R. Fuji, A. Gill, J. Halladay, S. F. Harris, T. P. Heffron, T. Kleinheinz, D. W. Lee, C. E. Le Pichon, X. Liu, J. P. Lyssikatos, A. D. Medhurst, J. G. Moffat, K. Nash, K. Scearce-Levie, Z. Sheng, D. G. Shore, S. Wong, S. Zhang, X. Zhang, H. Zhu, Z. K. Sweeney, *J. Med. Chem.* 2014, *57*, 921.
- [8] e) J. E. Dowling, M. Alimzhanov, L. Bao, M. H. Block, C. Chuaqui, E. L. Cooke, C. R. Denz, A. Hird, S. Huang, N. A. Larsen, B. Peng, T. W. Pontz, C. Rivard-Costa, J. C. Saeh, K. Thakur, Q. Ye, T. Zhang, P. D. Lyne, ACS Med. Chem. Lett. 2013, 4, 800.
- [9] b) G. Wuitschik, M. Rogers-Evans, A. Buckl, M. Bernasconi, M. Märki, T. Godel, H. Fischer, B. Wagner, I. Parrilla, F. Schuler, J. Schneider, A. Alker, W. B. Schweizer, K. Müller, E. M. Carreira, *Angew. Chem. Int. Ed.* 2008, *47*, 4512; *Angew. Chem.* 2008, *120*, 4588.
- [10] a) A. F. Stepan, K. Karki, S. McDonald, P. H. Dorff, J. K. Dutra, K. J. DiRico, A. Won, C. Subramanyam, I. V. Efremov, C. J. O'Donnell, C. E. Nolan, S. L. Becker, L. R. Pustilnik, B. Sneed, H. Sun, Y. Lu, A. E. Robshaw, D. Riddell, T. J. O'Sullivan, E. Sibley, S. Capetta, K. Atchison, A. J. Hallgren, E. Miller, A. Wood, R. S. Obach, *J. Med. Chem.* 2011, *54*, 7772.
- [14] a) K. Kinoshita, T. Kobayashi, K. Asoh, N. Furuichi, T. Ito, H. Kawada, S. Hara, J. Ohwada, K. Hattori, T. Miyagi, W.-S. Hong, M.-J. Park, K. Takanashi, T. Tsukaguchi, H. Sakamoto, T. Tsukuda, N. Oikawa, J. Med. Chem. 2011, 54, 6286.
- [14] b) A. A. Estrada, D. G. Shore, E. Blackwood, Y.-H. Chen, G. Deshmukh, X. Ding, A. G. DiPasquale, J. A. Epler, L. S. Friedman, M. F. T. Koehler, L. Liu, S. Malek, J. Nonomiya, D. F. Ortwine, Z. Pei, S. Sideris, F. St-Jean, L. Trinh, T. Truong, J. P. Lyssikatos, *J. Med. Chem.* 2013, *56*, 3090.
- [15] M. A. J. Duncton, M. A. Estiarte, D. Tan, C. Kaub, D. J. R. O'Mahony, R. J. Johnson, M. Cox, W. T. Edwards, M. Wan, J. Kincaid, M. G. Kelly, *Org. Lett.* **2008**, *10*, 3259.

O. A. Davis and J. A. Bull

General Experimental Considerations

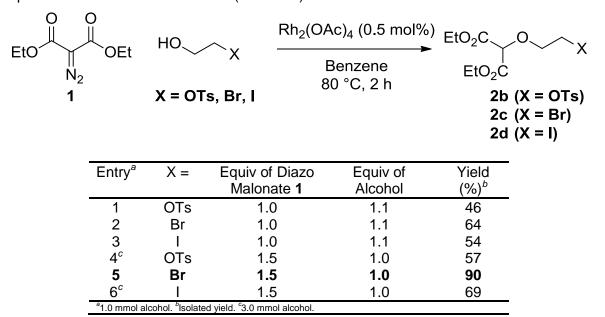
All nonaqueous reactions were run under an inert atmosphere (argon) with flame-dried glassware using anhydrous solvents using standard techniques.

Anhydrous solvents were obtained by filtration through drying columns (THF, DMF, diethyl ether, CH₂Cl₂, toluene) or used as supplied (DMF, ethylene glycol).

Flash column chromatography was performed using 230-400 mesh silica with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm), aqueous potassium permanganate stain, PMA (phosphomolybdic acid) or vanillin.

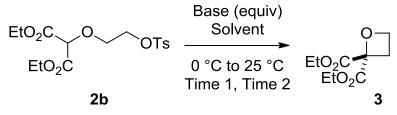
Infrared spectra (ν_{max} , FTIR ATR) were recorded in reciprocal centimeters (cm⁻¹). Nuclear magnetic resonance spectra were recorded on either 400 MHz or 500 MHz spectrometers. Chemical shifts for ¹H NMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform: δ = 7.27 ppm, DMSO: δ = 2.50 ppm). Data is reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), coupling constant in Hz, integration, assignment]. ¹³C NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in parts per million from tetramethylsilane with the solvent resonance as the internal standard (¹³CDCl₃: 77.0 ppm, (¹³CD₃)₂SO: 39.5 ppm). ¹⁹F NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in parts per million referenced to the standard monofluorobenzene: -113.5 ppm. *J* values are reported in Hz. Assignments of ¹H/¹³C spectra were made by the analysis of δ/J values, and COSY, DEPT-135, HSQC, and HMBC experiments as appropriate. Melting points are uncorrected.

Reagents: Commercial reagents were used as supplied or purified by standard techniques where necessary.


Optimization of Rh-Catalyzed O–H Insertion using Ethylene Glycol

Selected optimization of reaction conditions (Table S1).

	o o ↓ ↓		Rh_2	(OAc) ₄ (0	.5 mol%) EtO ₂ C	_0	^∩⊔
EtO) N₂ 1	OEt OH		Solver Temp, T		∣ EtO ₂ C 2a	
	Entry ^a	Solvent (Concn, M)	Time (h)	Temp (°C)	Equiv of Ethylene Glycol	Yield 2a (%) ^b	
	1 ^c	Ethylene Glycol (0.1)	6 d	rt to 40	N/A	56	
	2	Ethylene Glycol (0.1)	2	80	N/A	52	
	3	Toluene (0.1)	2	80	10	65	
	4	Toluene (0.1)	2	80	20	63	
	5	Benzene (0.1)	2	80	10	70 (77) ^d	
	^a 1.0 mmol c	liazo malonate 1 . ^b lsolated yield. ^c Stirr	ed at rt for 3	d followed by 4	0 °C for 3 d. ^d 10 mmol diazo r	nalonate 1 .	


Initially, a 56% isolated yield was obtained for the Rh-catalyzed O-H insertion with ethylene glycol after being stirred at rt for 3 d followed by 40 °C for 3 d (entry 1). Increasing the temperature to 80 °C (entry 2) shortened the reaction time dramatically and a comparable yield was obtained after only 2 h. Switching the solvent to toluene (entry 3) increased the yield to 65%, however doubling the equivalents of ethylene glycol (entry 4) did not improve the yield. Finally, the yield was increased further by using benzene as the solvent (entry 5) and an isolated yield of 77% was obtained on a 10 mmol scale.

Optimization of Rh-Catalyzed O–H Insertion using Alcohols Incorporating a Leaving Group Selected optimization of reaction conditions (**Table S2**).

The yield of the Rh-catalyzed O–H insertion using 2-[(4-Methylbenzenesulfonyl)oxy]ethan-1-ol, 2bromoethanol and 2-iodoethanol initially gave low yields (entries 1–3), with 2-bromoethanol giving the highest yield of 64% (entry 3). The yields were increased when the alcohol was made the limiting reagent and the equiv of diazo malonate 1 was increased to 1.5 (entries 4–6). Once again 2-bromoethanol gave the highest yield of 90% (entry 5). It is important to note that while iodide 2d can be isolated, it readily decomposes.

Optimization of C–C Bond Forming Cyclization using Tosylate 2b

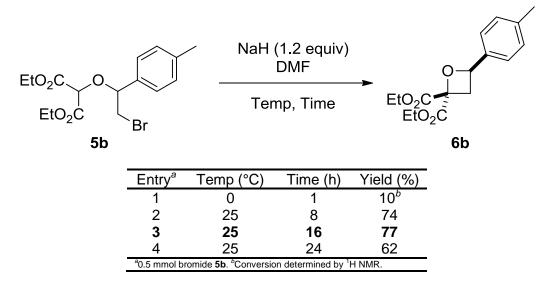
The following reaction variables were screened during optimization (Table S3).

Solvent	DMF; THF; Toluene; Acetonitrile; CH ₂ Cl ₂
Base	NaH; NaOH; KOH; KOtBu; NaOtBu; LiOtBu; NaOEt; KOEt; KHMDS; DBU
Equiv of Base	2.0; 1.8; 1.5; 1.2
Concn (M)	0.025
Temp (°C)	0; 25
Time (h)	2 h 30 min; 3; 6; 19

Selected optimization of reaction conditions (Table S4).

Entry ^a	Solvent	Base (equiv)	Time 1 (h)	Time 2 (h)	Yield 3 (%) ^b	Remaining 2b (%) ^b
1	DMF	NaH (1.8)	1	90 min	65 (43)	0
2	THF	NaH (1.8)	1	2	45	39
3	THF	NaH (1.8)	1	18	61	17
4	THF	KOtBu (1.8)	1	2	56	6
5	DMF	NaH (1.8)	1	2	63	0
6	DMF	NaH (1.5)	1	2	65	6
7	DMF	NaH (1.2)	1	2	48	14
8	DMF	NaH (1.5)	6	-	21	36
9	DMF	DBU (1.5)	-	6	26	42
	tosylate 2b . ^b		H NMR with re	espect to an in	ternal standard	(1,3,5-trimethoxybenzene).

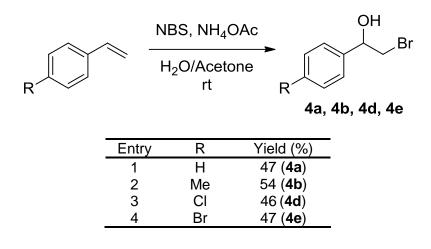
The initial attempt at cyclisation (entry 1) afforded oxetane **3** with a promising isolated yield of 43%. However, none of tosylate **2b** was recovered. Conducting the reaction in THF (entry 2) lowered the yield but return of starting material was observed, which showed promise for optimization. Increasing the reaction time to 18 h (entry 3) gave a yield comparable to that with NaH in DMF (entry 1). However, when KOtBu was used as the base instead (entry 4), the reaction time was once again reduced. Extensive optimization using THF as the solvent was conducted, but unfortunately the yield could not be improved upon the initial result. Therefore investigations focused on optimizing the initial DMF/NaH conditions. Slightly lowering the equiv of NaH to 1.5 did not affect the yield (entry 6), but lowering it to 1.2 equiv reduced the yield significantly (entry 7). A slightly elevated temperature was required (entry 8) as a low yield was obtained when the reaction was left at 0 °C. Finally, DBU was used as the base for cyclization (entry 9).¹ However a disappointing yield of 26% was obtained. Despite all of the optimization conducted, none of the conditions tested improved upon the initial result.

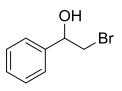

Therefore alternative leaving groups for the C-C bond forming cyclization were examined.

Optimization of C–C Bond Forming Cyclization using Halides 2c, 2d Selected optimization of reaction conditions (**Table S5**).

EtO₂C、	<u>_0</u> _	<u>v</u>	NaH (equ DMF	uiv) ──►	٥Ţ
EtO ₂	 2 ² C	~	0 °C, Tir	ne EtC E	D ₂ C
	c (X = d (X=I)	•			3
Entry ^a	X =	Concn (M)	Equiv of NaH	Time (h)	Yield 3 (%) ^b
1	Br	0.025	1.5	1	79
2	Br	0.025	1.5	2	72
3	Br	0.025	1.8	1	80
4	Br	0.025	1.2	1	90 (79)
5	Br	0.025	1.2	20 min	73
6	Br	0.025	1.2	40 min	80
7	Br	0.05	1.2	1	79
8	Br	0.0125	1.2	1	83
9°	Br	0.025	1.2	1	(73)
10 ^c		0.025	1.2	1	(31)
^a 0.2 mmol ha (1,3,5-trimeth	alide 2c . ^b Y loxybenzen	ield determined e). Isolated yield	by ¹ H NMR with in parentheses.	respect to an ir 1.0 mmol halide	nternal standard 2c, 2d.

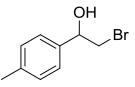
Bromide **2c** was subjected to the best cyclization conditions from the previous optimization (entry 1). Pleasingly the desired oxetane **3** was obtained in a higher yield (79%) than tosylate **2b** (65%, **Table S4**, entry 6). Doubling the reaction time did not improve the yield (entry 2). Increasing the equiv of NaH did not affect the formation of oxetane **3** (entry 3), but lowering the equiv (entry 4) gave a yield of 90% with an isolated yield of 79%. Shortening the reaction time (entries 5 and 6) showed less of oxetane **3** being formed. Both increasing and decreasing the concentration of the reaction (entries 7 and 8) slightly lowered the yield. The reaction was conducted on a 1.0 mmol scale (entry 9) and a desirable 73% isolated yield was obtained. Finally, iodide **2d** was subjected to the optimized cyclization conditions and a disappointing 31% isolated yield was obtained. This is most likely due to degradation of iodide **2d** during the reaction.


Reoptimization of C–C Bond Forming Cyclization for 2,2,4-Trisubstituted Oxetanes Reoptimization was conducted using bromide **5b** (**Table S6**).


Attempting the cyclization of bromide **5b** with the optimized conditions for oxetane **6b** (See **Table S6**), a disappointing 10% conversion was observed (entry 1). Increasing the temperature of the reaction to 25 °C and increasing the reaction time to 8 h (entry 2) afforded oxetane **6b** on a comparable yield to that previously optimized. Allowing the reaction to stir overnight for 16 h (entry 3) increased the yield very marginally, but a lower yield was observed when left for any longer (entry 4). As a result, the optimum conditions for the synthesis of 2,2,4-trisubstituted oxetanes was to stir the reaction at 25 °C for 16 h (entry 3).

Synthesis of β -Halohydrins 4a–4g, 7a–7g

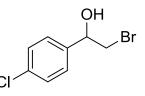
Synthesis of β -bromohydrins 4a, 4b, 4d and 4e from styrene derivatives (Table S7).


(±)-2-Bromo-1-phenylethan-1-ol (4a)

Ammonium acetate (237 mg, 3.1 mmol) was added to a solution of *N*-bromosuccinimide (4.26 g, 36.1 mmol) in acetone (15 mL) and water (15 mL). Styrene (1.72 mL, 15.0 mmol) was then added. The reaction mixture was stirred at rt for 24 h. Water (15 mL) was then added, followed by CH_2CI_2 (30 mL). The layers were separated and the aqueous layer was extracted with CH_2CI_2 (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded alcohol **4a** as a pale yellow oil (1.41 g, 47%); $R_f = 0.25$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 3379 (br O-H), 3031, 2963, 1493, 1454, 1420, 1217, 1198, 1060, 989, 764, 700, 593; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.29 (m, 5 H, 5 x Ph-H), 4.93 (ddd, *J* = 9.0, 3.4, 3.4 Hz, 1 H, *CH*(OH)), 3.65 (dd, *J* = 10.5, 3.4 Hz, 1 H, *CH*(HBr), 3.56 (dd, *J* = 10.5, 9.0 Hz, 1 H, CH*H*Br), 2.74 (d, *J* = 3.4 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 140.2 (Ph-C_q), 128.6 (2 x Ph-CH), 128.4 (Ph-CH), 125.9 (2 x Ph-CH), 73.8 (CH(OH)), 40.2 (CH₂Br).

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.^{2,3}

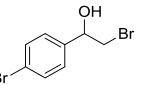
(±)-2-Bromo-1-(4-methylphenyl)ethan-1-ol (4b)


Ammonium acetate (192 mg, 2.5 mmol) was added to a solution of *N*-bromosuccinimide (3.52 g, 30.0 mmol) in acetone (25 mL) and water (25 mL). 4-Methylstyrene (3.29 mL, 25.0 mmol) was then added, after which, the solution turned from orange to cloudy white. The reaction mixture was stirred at rt for 27 h. Water (25 mL) was then added, followed by CH_2Cl_2 (25 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 25 mL). The organic extracts were combined, dried (Na_2SO_4) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded alcohol **4b** as a colourless oil which solidified to a white solid upon storage at $-20^{\circ}C$ (2.89 g, 54%); $R_f = 0.41$ (20% EtOAc in hexanes); mp = 33–35 °C; IR (film) / cm⁻¹ 3391 (br O-H), 3025, 2958, 2921, 1614, 1515, 1421, 1218, 1198, 1067, 993, 818, 766, 723, 643, 574, 559; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.9 Hz, 2 H,

2 x Tol-H), 7.20 (d, J = 7.9 Hz, 2 H, 2 x Tol-H), 4.91 (ddd, J = 8.9, 3.4, 3.4 Hz, 1 H, CH(OH)), 3.63 (dd, J = 10.4, 3.4 Hz, 1 H, CHHBr), 3.55 (dd, J = 10.4, 8.9 Hz, 1 H, CHHBr), 2.62 (d, J = 3.2 Hz, 1 H, OH), 2.37

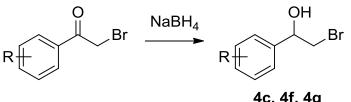
(s, 3 H, Tol-CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 138.3 (Tol-C_q-CH(OH)), 137.3 (Tol-C_q-Me), 129.3 (2 x Tol-CH), 125.9 (2 x Tol-CH), 73.7 (CH(OH)), 40.3 (CH₂Br), 21.2 (Ar-CH₃).

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.^{4,5}


(±)-2-Bromo-1-(4-chlorophenyl)ethan-1-ol (4d)

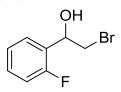
Ammonium acetate (472 mg, 6.0 mmol) was added to a solution of *N*-bromosuccinimide (8.50 g, 72.0 mmol) in acetone (30 mL) and water (30 mL). 4-Chlorostyrene (3.60 mL, 30.0 mmol) was then added. The reaction mixture was stirred at rt for 22 h. Water (30 mL) was then added, followed by CH_2Cl_2 (60 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 x 60 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded alcohol **4d** as a white solid (3.26 g, 46%); $R_f = 0.15$ (10% EtOAc in hexanes); mp = 60–61 °C (lit.⁶ mp = 61–62 °C); IR (film) / cm⁻¹ 3401 (br O-H), 2961, 2895, 1596, 1491, 1409, 1217, 1194, 1091, 1067, 1014, 991, 857, 831, 727, 688, 623, 546; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.34 (m, 2 H, 2 x Ar-H), 7.34–7.30 (m, 2 H, 2 x Ar-H), 4.90 (ddd, J = 8.7, 3.4, 3.4 Hz, 1 H, CH(OH)), 3.61 (dd, J = 10.5, 3.4 Hz, 1 H, CHHBr), 3.50 (dd, J = 10.5, 8.7 Hz, 1 H, CHHBr), 2.77 (d, J = 3.4 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 138.7 (Ar-C_q-CH(OH), 134.2 (Ar-C_q-Cl), 128.8 (2 x Ar-CH), 127.3 (2 x Ar-CH), 73.0 (CH(OH)), 39.8 (CH₂Br).

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.^{6,7,8}


(±)-2-Bromo-1-(4-bromophenyl)ethan-1-ol (4e)

Ammonium acetate (227 mg, 3.0 mmol) was added to a solution of *N*-bromosuccinimide (4.28 g, 36.3 mmol) in acetone (15 mL) and water (15 mL). 4-Bromostyrene (1.96 mL, 15.0 mmol) was then added. The reaction mixture was stirred at rt for 24 h. Water (15 mL) was then added, followed by CH_2Cl_2 (30 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10%–20% EtOAc in hexanes) afforded alcohol **4e** as a white crystalline solid (1.96 g, 47%); $R_f = 0.29$ (20% EtOAc in hexanes); mp = 64–66 °C; IR (film) / cm⁻¹ 3387 (br O-H), 2960, 2890, 1593, 1488, 1421, 1403, 1217, 1194, 1071, 1011, 992, 855, 828, 722, 680, 615, 541; ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.50 (m, 2 H, 2 x Ar-H), 7.30–7.26 (m, 2 H, 2 x Ar-H), 4.91 (ddd, J = 8.8, 3.4, 3.4 Hz, 1 H, CH(OH)), 3.63 (dd, J = 10.5, 3.4 Hz, 1 H, CHHBr), 3.51 (dd, J = 10.5, 8.8 Hz, 1 H, CHHBr), 2.64 (d, J = 3.4 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 139.2 (Ar-Cq-CH(OH)), 131.8 (2 x Ar-CH), 127.7 (2 x Ar-CH), 122.4 (Ar-Cq-Br), 73.1 (CH(OH)), 30.9 (CH₂Br).

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.^{3,9}


Synthesis of β -bromohydrins **4c**, **4f** and **4g** from Ketones (**Table S8**).

чυ,	– •,	τy

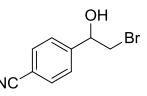
	Entry	R	Yie	ld (%)
-	1	2-F	65	(4c)
	2	3-OMe	65	(4 f)
_	3	4-CN	70	(4g)

(±)-2-Bromo-1-(2-fluorophenyl)ethan-1-ol (4c)

Sodium borohydride (205 mg, 5.4 mmol) was added portionwise to a solution of 2-bromo-2'-fluoroacetophenone (0.83 mL, 6.0 mmol) in MeOH (30 mL) at 0 °C. The reaction mixture was warmed to rt and stirred for 3 h. The reaction mixture was concentrated *in vacuo*, and water (20 mL) was added. The aqueous mixture was extracted with Et₂O (3 x 20 mL). The organic extracts were combined, washed with saturated aq. NH₄Cl (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purificaiton by flash chromatography (10% EtOAc in hexanes) afforded alcohol **4c** as a white solid (863 mg, 65%); R_f = 0.57 (30% EtOAc in hexanes); mp = 51–53 °C (lit.¹⁰ mp = 52–53 °C); IR (film) / cm⁻¹ 3400 (br O-H), 3068, 2965, 1617, 1587, 1487, 1455, 1421, 1230, 1181, 1066, 1032, 827, 795, 757, 659, 595; ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.51 (m, 1 H, Ar-H), 7.36–7.28 (m, 1 H, Ar-H), 7.23–7.16 (m, 1 H, Ar-H), 7.10–7.02 (m, 1 H, Ar-H), 5.24 (ddd, *J* = 8.6, 4.2, 3.2 Hz, 1 H, C*H*(OH)), 3.75 (dd, *J* = 10.4, 3.2 Hz, 1 H, C*H*HBr), 3.56 (dd, *J* = 10.4, 8.6 Hz, 1 H, CH*H*Br), 2.73 (d, *J* = 4.2 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 159.6 (d, *J*_{CF} = 246 Hz, Ar-Cq-F), 129.8 (d, *J*_{CF} = 8 Hz, Ar-CH), 127.4 (d, *J*_{CF} = 4 Hz, Ar-CH), 127.3 (d, *J*_{CF} = 13 Hz, Ar-Cq-CH(OH)), 124.4 (d, *J*_{CF} = 3 Hz, Ar-CH), 115.4 (d, *J*_{CF} = 22 Hz, Ar-CH), 67.9 (d, *J*_{CF} = 2 Hz, CH(OH)), 39.0 (CH₂Br); ¹⁹F NMR (376 MHz, CDCl₃) δ –119.0.

Observed data (¹H, ¹³C) was consistent with that previously reported.¹¹

(±)-2-Bromo-1-(3-methoxyphenyl)ethan-1-ol (4f)¹²

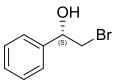


Sodium borohydride (157 mg, 4.2 mmol) in water (1.8 mL) was added to a solution of 2-bromo-3'-methoxyacetophenone (1.38 g, 6.0 mmol) in dioxane (6.0 mL). The mixture was stirred at rt for 3 h 30 min. The reaction mixture was neutralised with 1 M H₂SO₄, diluted with water (10 mL) and the aqueous mixture extracted with Et₂O (4 x 15 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded alcohol **4f** as a colourless oil (901 mg, 65%); R_f = 0.27 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 3403 (br O-H), 2961, 2836, 1600, 1586, 1488, 1455, 1434, 1319, 1255, 1216, 1159, 1141, 1065, 1039, 994, 870, 785, 753, 700, 689, 570, 551; ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.25 (m, 1 H, Ar-H), 6.97–6.91 (m, 2 H, 2 x Ar-H),

6.89–6.83 (m, 1 H, Ar-H), 4.88 (d, J = 7.8 Hz, 1 H, CH(OH)), 3.81 (s, 3 H, OCH₃), 3.62 (dd, J = 10.4, 3.4 Hz, 1 H, CHHBr), 3.52 (dd, J = 10.4, 9.0 Hz, 1 H, CHHBr), 2.85 (br s, 1 H, OH); ¹³C NMR (101 MHz, CDCI₃) δ 159.7 (Ar-C_q-OMe), 141.9 (Ar-C_q-CH(OH)), 129.6 (Ar-CH), 118.2 (Ar-CH), 113.9 (Ar-CH), 111.4 (Ar-CH), 73.6 (CH(OH)), 55.2 (OCH₃), 40.0 (CH₂Br).

Observed data (¹H) was consistent with that previously reported.¹³

(±)-4-(2-Bromo-1-hydroxyethyl)benzonitrile (4g)¹⁴

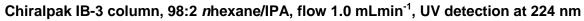


Sodium borohydride 4.2 mmol) was added portionwise solution (160 mg, to а of 2-bromo-4'-cyanoacetophenone (1.34 g, 6.0 mmol) in MeOH at 0 °C. The reaction mixture was warmed to rt and stirred for 90 min. The reaction mixture was concentrated in vacuo, and water (20 mL) was added. The aqueous mixture was extracted with Et₂O (3 x 20 mL). The organic extracts were combined, washed with saturated aq. NH₄Cl (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20%-30% EtOAc in hexanes) afforded alcohol 4g as a colourless oil (950 mg, 70%); R_f = 0.23 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 3448 (br O-H), 2962, 2229 (C=N), 1609, 1503, 1410, 1219, 1197, 1068, 1018, 992, 838, 757, 681, 636, 556, 531; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2 H, 2 x Ar-H), 7.53 (d, J = 8.2 Hz, 2 H, 2 x Ar-H), 5.00 (ddd, J = 8.4, 3.6, 3.5 Hz, 1 H, CH(OH)), 3.65 (dd, J = 10.6, 3.5 Hz, 1 H, CHHBr), 3.52 (dd, J = 10.6, 8.4 Hz, 1 H, CHHBr), 2.90 (d, J = 3.6 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 145.5 (Ar-C₀-CH(OH)), 132.5 (2 x Ar-CH), 126.8 (2 x Ar-CH), 118.5 (C=N), 112.2 (Ar-C_α-CN), 72.81 (CH(OH)), 39.4 (CH₂Br).

Observed data (¹H, ¹³C) was consistent with that previously reported.¹⁴

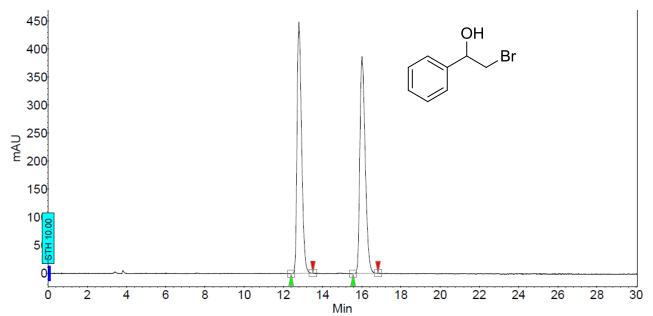
Synthesis of Enantioenriched β -bromohydrin (S)-4a

(1S)-2-bromo-1-phenylethan-1-ol ((S)-4a)¹⁵



A solution of BH₃.THF (1 M in THF, 1.71 mL, 1.71 mmol) was added slowly to a cooled, stirring solution of L-valine (134 mg, 1.15 mmol) in THF (1.71 mL) at 0 °C. The mixture was stirred at 70 °C for 17 h. The mixture was further diluted with THF (4.0 mL). The mixture was cooled to 60 °C and B(OMe)₃ (56 mL, 0.50 mmol) was added and the mixture stirred at 60 °C for 1 h. The mixture was cooled to rt and BH₃.SMe₂ (0.46 mL, 4.85 mmol) was added over 1 h *via* syringe pump. After this time, 2-bromoacetophenone (797 mg, 4.00 mmol) in THF (3.56 mL) was added to the mixture over 1 h *via* syringe pump. The reaction was stirred at rt for a further 30 min, then cooled to 0 °C. Methanol (3 mL) and water (10 mL) were added and the mixture concentrated *in vacuo*. The remaining aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded alcohol **(S)-4a** as a colourless oil (717 mg, 85% ee, 89%); $[\alpha]_D^{21} + 44.6^\circ$ (c. 3.14, CHCl₃) (lit.¹⁶ $[\alpha]_D^{20} + 30.0^\circ$ (c. 1.61, CHCl₃)); **ee = 85%** by HPLC, Chiralpak IB-3 column, 98:2 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 224 nm, 12.7 min (**(S)-4a**), 16.1 min (**(R)-4a**).

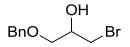
Observed data was identical to the racemic alcohol (±)-4a.


(1S)-2-Bromo-1-phenylethan-1-ol ((S)-4a)

Index	Name		Quantity [% Area]		Area [mAU.Min]		ee = 85%
1	UNKNOWN	12.746	92.30	667.6	191.1	92.301	
2	UNKNOWN	16.079	7.70	60.6	15.9	7.699	
Total			100.00	728.2	207.1	100.000	

(±)-2-Bromo-1-phenylethan-1-ol ((±)-4a)

Chiralpak IB-3 column, 98:2 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 224 nm


Index	Name	Time [Min]			Area [mAU.Min]	Area % [%]
1	UNKNOWN	12.786	49.67	448.3	120.5	49.668
2	UNKNOWN	16.012	50.33	387.1	122.1	50.332
Total			100.00	835.4	242.5	100.000

Synthesis of β -halohydrins **7a–7f** from Epoxides (**Table S9**).

Synthesis of β -halohydrins **7a–7f** was performed using 230-400 mesh silica.

R	<u>م</u>	LiX ((3.0 equiv)	OH R、↓ ∠X
	~	Si	lica Gel rt	7a-7f
	Entry	R	Х	Yield (%)
	1	OBn	Br	72 (7 a)
	2	OPh	Br	76 (7b)
	3	Br	Br	75 (7c)
	4	CI	Br	73 (7d)
	5 ^a	CI	Cl	71 (7e)
	6 ^a	OiPr	Cl	74 (7 f)
	^a 3.0 equiv H ₂ O	added.		

(±)-1-(Benzyloxy)-3-bromopropan-2-ol (7a)

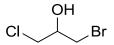
Benzyl glycidyl ether (0.91 mL, 6 mmol) was added to a slurry of lithium bromide (1.57 g, 18 mmol) and silica gel (1.71 g) in CH₂Cl₂ (10 mL). The solvent was removed under reduced pressure and the mixture was stirred at rt for 2 d. The solid was filtered, washed with CH₂Cl₂ (50 mL) and the filtrate was concentrated *in vacuo* to afford alcohol **7a** as a pale yellow oil (1.05 g, 72%); IR (film) / cm⁻¹ 3336 (br O-H), 2863, 1454, 1362, 1216, 1101, 1028, 909, 836, 738, 699, 609, 574; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.30 (m, 5 H, 5 x Ph-H), 4.58 (s, 2 H, OCH₂Ph), 4.04–3.97 (m, 1 H, C*H*(OH)), 3.62 (dd *J* = 9.6, 5.3 Hz, 1 H, C*H*HOBn), 3.60 (dd, *J* = 9.6, 4.9 Hz, 1 H, CHHOBn), 3.55 (dd, *J* = 10.3, 5.3 Hz, 1 H, C*H*HBr), 3.49 (dd, *J* = 10.3, 5.7 Hz, 1 H, CHHBr), 2.64 (d, *J* = 5.7 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 137.5 (C_q-Ph), 128.5 (2 x Ph-CH), 127.9 (Ph-CH), 127.7 (2 x Ph-CH), 73.5 (OCH₂Ph), 71.4 (CH₂OBn), 69.9 (CH(OH)), 35.1 (CH₂Br).

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.¹⁷

(±)-2-Bromo-1-phenylethan-1-ol (7b)

Phenyl glycidyl ether (2.0 mL, 15 mmol) was added to a slurry of lithium bromide (3.93 g, 45 mmol) and silica gel (4.15 g) in CH₂Cl₂ (20 mL). The solvent was removed under reduced pressure and the mixture was stirred at rt for 18 h. The mixture was loaded directly onto a silica column and purification by flash chromatography (20% Et₂O in hexanes) afforded alcohol **7b** as a pale yellow oil (2.57 g, 76%); $R_f = 0.30$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 3404 (br O-H), 2930, 2878, 1598, 1588, 1494, 1457, 1423, 1291, 1239, 1172, 1108, 1078, 1042, 811, 751, 690, 527; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.29 (m, 2 H, 2 x Ph-H), 7.02–6.98 (m, 1 H, Ph-H), 6.95–6.92 (m, 2 H, 2 x Ph-H), 4.24–4.19 (m, 1 H, CH(OH)), 4.15–4.07 (m, 2 H, CH₂OPh), 3.68 (dd, *J* = 10.4, 5.2 Hz, 1 H, CHHBr), 3.61 (dd, *J* = 10.4, 5.4 Hz, 1 H, CHHBr), 2.51 (br s, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 156.0 (C_q-Ph), 129.4 (2 x Ph-CH), 121.3 (Ph-CH), 114.4 (2 x Ph-CH), 69.3 (CH(OH)), 69.0 (CH₂OPh), 34.8 (CH₂Br).

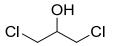
Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.^{18,19}


(±)-1,3-Dibromopropan-2-ol (7c)

OH Br_____Br

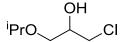
Epibromohydrin (1.28 mL, 15 mmol) was added to a slurry of lithium bromide (3.92 g, 45 mmol) and silica gel (4.44 g) in CH₂Cl₂ (20 mL). The solvent was removed under reduced pressure and the mixture was stirred at rt for 18 h. The solid was filtered, washed with CH₂Cl₂ (70 mL) and the filtrate and concentrated *in vacuo* to afford alcohol **7d** as a colourless oil (2.44 g, 75%); ¹H NMR (400 MHz, CDCl₃) δ 4.05–3.98 (m, 1 H, CH(OH)), 3.62 (dd, *J* = 10.5, 5.4 Hz, 2 H, 2 x CHHBr), 3.58 (dd, *J* = 10.5, 5.4 Hz, 2 H, CHHBr), 2.45 (d, *J* = 6.8 Hz, 1 H, OH).

Observed data (¹H) was consistent with that previously reported²⁰ and the compound is commercially available.²¹


(±)-1-Bromo-3-chloropropan-2-ol (7d)²²

Epichlorohydrin (1.17 mL, 15 mmol) was added to a slurry of lithium bromide (3.92 g, 45 mmol) and silica gel (4.90 g) in CH₂Cl₂ (20 mL). The solvent was removed under reduced pressure and the mixture was stirred at rt for 24 h. The solid was filtered, washed with CH₂Cl₂ (70 mL) and the filtrate concentrated *in vacuo* to afford alcohol **7c** as a colourless oil (1.91 g, 73%); ¹H NMR (400 MHz, CDCl₃) δ 4.09–4.00 (m, 1 H, CH(OH)), 3.74 (dd, *J* = 11.3, 4.8 Hz, 1 H, CHHCl), 3.70 (dd, *J* = 11.3, 5.3 Hz, 1 H, CHHCl) 3.61–3.58 (m, 2 H, CH₂Br), 2.46 (d, *J* = 7.0 Hz, 1 H, OH).

Observed data (¹H) was consistent with that previously reported²² and the compound is commercially available.²³


(±)-1,3-Dichloropropan-2-ol (7e)²²

Epichlorohydrin (1.17 mL, 15 mmol) was added to a slurry of lithium chloride (1.92 g, 45 mmol) and silica gel (4.76 g) in CH_2Cl_2 (20 mL). The solvent was removed under reduced pressure and water (0.81 mL, 45 mmol) was added. The mixture was stirred at rt for 5 d. The solid was filtered, washed with CH_2Cl_2 (70 mL) and the filtrate concentrated *in vacuo* to afford alcohol **7e** as a colourless oil (1.37 g, 71%); ¹H NMR (400 MHz, CDCl₃) δ 4.14–4.00 (m, 1 H, C*H*(OH)), 3.70 (d, *J* = 5.3 Hz, 4 H, 2 x CH₂Cl), 2.68 (br s, 1 H, OH).

Observed data (¹H) was consistent with that previously reported²² and the compound is commerically available.²⁴

(±)-1-Chloro-3-(propan-2-yloxy)propan-2-ol (7f)

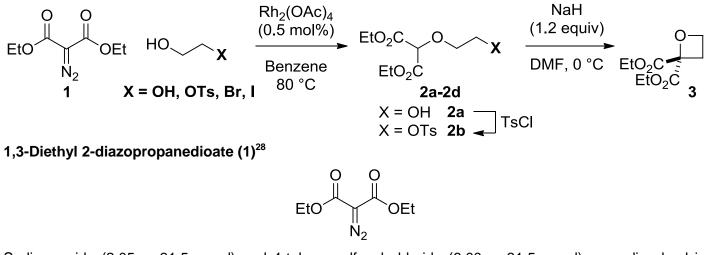
Glycidyl isopropyl ether (1.9 mL, 15 mmol) was added to a slurry of lithium chloride (1.92 g, 45 mmol) and silica gel (4.32 g) in CH₂Cl₂ (20 mL). The solvent was removed under reduced pressure and water (0.81 mL, 45 mmol) was added. The mixture was stirred at rt for 4 d. The solid was filtered, washed with CH₂Cl₂ (70 mL) and the filtrate was concentrated *in vacuo* to afford alcohol **7f** as a colourless oil (1.70 g, 74%); IR (film) / cm⁻¹ 3419 (br O-H), 2973, 2928, 2873, 1470, 1430, 1370, 1336, 1175, 1127, 1088, 1066, 976, 927, 848, 823, 743, 707, 618; ¹H NMR (400 MHz, CDCl₃) δ 4.00–3.90 (m, 1 H, C*H*(OH)), 3.69–3.56 (m, 3 H, OC*H*(CH₃)₂ and CH₂OⁱPr), 3.54 (d, *J* = 5.1 Hz, 2 H, CH₂Cl), 2.54 (d, *J* = 5.7 Hz, 1 H, OH), 1.18 (d, *J* = 6.1

O. A. Davis and J. A. Bull

Hz, 6 H, CH(C*H*₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ 72.3 (O*C*H(CH₃)₂), 70.4 (CH(OH)), 68.5 (CH₂OⁱPr), 45.9 (CH₂Cl), 22.0 (CH₃), 21.9 (CH₃).

Observed data (¹H, ¹³C) was consistent with that previously reported.²⁵

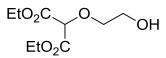
Synthesis of β -chlorohydrin **7g** from (±)-3-Chloro-1,2-propanediol.


(±)-1-[(tert-Butyldimethylsilyl)oxy]-3-chloropropan-2-ol (7g)²⁶

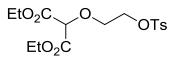
ОН ТВSO_____СІ

Imidazole (680 mg, 10.0 mmol) and 4-dimethylaminopyridine (301 mg, 2.5 mmol) was added to a solution of (±)-3-chloro-1,2-propanediol (0.84 mL, 10.0 mmol) in DMF (10 mL) and then cooled to 0 °C. *tert*-Butyldimethylsilyl chloride (1.51 g, 10.0 mmol) was added portionwise and the reaction mixture was stirred at rt for 15 h. The reaction mixture was diluted with H₂O (100 mL) and the aqueous mixture was extracted with CH₂Cl₂ (3 x 20 mL). The organic extracts were combined, washed with H₂O (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (15% EtOAc in hexanes) afforded alcohol **7g** as a colourless oil (1.96 g, 87%); R_f = 0.48 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 3429 (br O-H), 2956, 2930, 2858, 1474, 1429, 1362, 1253, 1115 (C-O), 1048 (C-O), 1006, 969, 938, 834, 776, 739 (C-Cl), 667; ¹H NMR (400 MHz, CDCl₃) δ 3.89–3.81 (m, 1 H, CH(OH)), 3.74 (dd, *J* = 10.1, 4.6 Hz, 1 H, CHHOTBS), 3.69 (dd, *J* = 10.1, 5.0 Hz, 1 H, CHHOTBS), 3.62 (dd, *J* = 11.0, 5.9 Hz, 1 H, CHHCl), 3.58 (dd, *J* = 11.0, 5.6 Hz, 1 H, CHHCl), 2.57 (d, *J* = 6.3 Hz, 1 H, OH), 0.91 (s, 9 H, C(CH₃)₃), 0.09 (s, 6 H, OSi(CH₃)₂(tBu)). ¹³C NMR (101 MHz, CDCl₃) δ 71.4 (CH(OH)), 63.4 (CH₂OTBS), 45.3 (CH₂Cl), 25.8 (C(CH₃)₃), 18.2 (C_q(CH₃)₃), -5.5 (OSi(CH₃)₂(tBu)).

Observed data (¹H) was consistent with that previously reported.²⁷

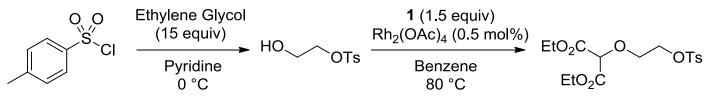

Synthesis of 2,2-Diethyl Oxetane-2,2-dicarboxylate 3

Sodium azide (2.05 g, 31.5 mmol) and 4-toluenesulfonyl chloride (6.00 g, 31.5 mmol) were dissolved in EtOH (63 mL) and H₂O (27 mL). The mixture was stirred at rt for 4 h. Diethyl malonate (4.55 mL, 30.0 mmol) and triethylamine (4.39 mL, 31.5 mmol) were then added. The mixture turned a yellow/orange colour after the triethylamine was added. The mixture was stirred at rt for 70 h. Water (300 mL) was added, and the aqueous layer was extracted with Et₂O (3 x 150 mL). The organic extracts were combined, washed with brine (150 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% Et₂O in hexanes) afforded diazo malonate **1** as an orange liquid (5.14 g, 92%); R_f = 0.23 (25% Et₂O in hexanes); IR (film) / cm⁻¹ 2984, 2133 (C=N=N out-of-phase),²⁹ 1757 (C=O), 1732 (C=O), 1687, 1395, 1371 (C=N=N in-phase),²⁹ 1266, 1072, 759; ¹H NMR (400 MHz, CDCl₃) δ 4.31 (q, *J* = 7.1 Hz, 4 H, 2 x CH₃CH₂CO₂), 1.32 (t, *J* = 7.1 Hz, 6 H, 2 x CH₃CH₂CO₂); ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (2 x CO₂), 61.6 (2 x CO₂CH₂CH₃), 14.3 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₇H₁₁N₂O₄⁺ [M+H]⁺: 187.0713, Found: 187.0711.


Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.³⁰

1,3-Diethyl 2-(2-hydroxyethoxy)propanedioate (2a)

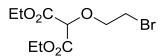
A mixture of diazo malonate **1** (1.86 g, 10.0 mmol), ethylene glycol (5.56 mL, 100 mmol) and dirhodium(II) tetraacetate (22 mg, 0.05 mmol) in benzene (100 mL) was heated under reflux (85 °C) for 2 h. The reaction mixture was allowed to cool to rt. Water (100 mL) was added, and the aqueous mixture was extracted with CHCl₃ (2 x 100 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (50% EtOAc in hexanes) afforded alcohol **2a** as a colourless oil (1.70 g, 77%); $R_f = 0.21$ (50% EtOAc in hexanes); IR (film) / cm⁻¹ 3476 (br O-H), 2984, 2940, 1736 (C=O), 1448, 1371, 1228, 1181, 1138, 1075, 1023, 888, 851, 600; ¹H NMR (400 MHz, CDCl₃) δ 4.53 (s, 1 H, CH(CO₂Et)₂), 4.33–4.21 (m, 4 H, 2 x CH₃CH₂CO₂), 3.80–3.72 (m, 4 H, OCH₂CH₂OH), 2.67 (br s, 1 H, OH), 1.29 (t, *J* = 7.1 Hz, 6 H, 2 x CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (2 x CO₂), 79.2 ((EtO₂C)₂CHO), 73.1 (CH₂OH), 62.2 (2 x CO₂CH₂CH₃), 61.4 (OCH₂CH₂OH), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₉H₁₆NaO₆⁺ [M+Na]⁺: 243.0845, Found: 243.0856.


1,3-Diethyl 2-{2-[(4-methylbenzenesulfonyl)oxy]ethoxy}propanedioate (2b)

Method A - From alcohol 2a:

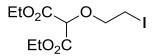
Triethylamine (2.85 mL, 20.4 mmol) and trimethylamine hydrogen chloride (62.2 mg, 0.65 mmol) were added to a solution of alcohol **2a** (1.50 g, 6.8 mmol) in toluene (30 mL). The mixture was stirred at 0 °C for 10 min. 4-Toluenesulfonyl chloride (2.60 g, 13.6 mmol) was added in one portion and the resulting mixture was stirred at 0 °C for 15 min and then was warmed to rt and stirred for a further 2 h. Water (60 mL) was added followed by EtOAc (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 x 60 mL). The organic extracts were combined, washed with brine (60 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20%–40% EtOAc in hexanes) afforded tosylate **2b** as a colourless oil (2.42 g, 95%); R_f= 0.09 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2985, 1740 (C=O), 1598, 1448, 1358, 1232, 1175, 1096, 1019, 916, 816, 773, 731, 662, 577, 553; ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.79 (m, 2 H, 2 x Ts-H), 7.37–7.33 (m, 2 H, 2 x Ts-H), 4.52 (s, 1 H, CH(CO₂Et)₂), 4.32–4.20 (m, 6 H, 2 x CO₂CH₂CH₃ and CH₂OTs), 3.91–3.86 (m, 2 H, OCH₂CH₂OTs), 2.46 (s, 3 H, Ts-CH₃), 1.30 (t, *J* = 7.1 Hz, 6 H, 2 x CO₂CH₃CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (2 x CO₂), 144.9 (Ts-Cq-SO₂), 132.7 (Ts-Cq-Me), 129.8 (2 x Ts-CH), 128.0 (2 x Ts-CH), 79.2 ((EtO₂C)₂CHO), 68.6 (CH₂OTs), 68.4 (OCH₂CH₂OTs), 62.1 (2 x CO₂CH₂CH₃), 21.6 (Ts-CH₃), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₃O₈S⁺ [M+H]⁺: 375.1108, Found: 375.1115.

Method B – From diazo malonate 1:



2-[(4-Methylbenzenesulfonyl)oxy]ethan-1-ol was prepared according to the procedure of Bradshaw and co-workers.³¹ 4-Toluenesulfonyl chloride (1.90 g, 10.0 mmol) in pyridine (9.53 mL) was added dropwise to ethylene glycol (8.36 mL, 150.0 mmol) at 0 °C over 18 min. The reaction mixture was stirred at 0 °C for 30 min. Saturated aq. NH₄Cl (30 mL) was added followed by CHCl₃ (30 mL). The layers were separated and the aqueous layer was extracted with CHCl₃ (2 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (50% EtOAc in hexanes) afforded 2-[(4-Methylbenzenesulfonyl)oxy]ethan-1-ol as a pale yellow oil (1.56 g, 72%); R_f = 0.37 (50% EtOAc in hexanes); IR (film) / cm⁻¹ 3418 (br O-H), 2954, 2881, 1598, 1452, 1349, 1171, 1095, 997, 909, 814, 771, 661, 578, 551; ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.80 (m, 2 H, 2 x Ts-H), 7.37 (d, *J* = 8.2 Hz, 2 H, 2 x Ts-H), 4.18–4.13 (m, 2 H, CH₂OTs), 3.86–3.80 (m, 2 H, CH₂OH), 2.47 (s, 3 H, Ts-CH₃), 1.93 (t, *J* = 6.5 Hz, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 145.1 (Ts-C_q-SO₂), 132.6 (Ts-C_q-Me), 129.9 (2 x Ts-CH), 127.9 (2 x Ts-CH), 71.6 (CH₂OTs), 60.6 (CH₂OH), 21.6 (Ts-CH₃).

Observed data (IR, ¹H) was consistent with that previously reported.³²


A mixture of diazo malonate **1** (839 mg, 4.5 mmol), 2-[(4-Methylbenzenesulfonyl)oxy]ethan-1-ol (648 mg, 3.0 mmol) and dirhodium(II) tetraacetate (6.5 mg, 0.015 mmol) in benzene (30 mL) was heated at 80 °C for 4 h. The reaction mixture was allowed to cool to rt. Water (30 mL) was added, and the aqueous mixture was extracted with CHCl₃ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20%–30% EtOAc in hexanes) afforded tosylate **2b** as a colourless oil (640 mg, 57%).

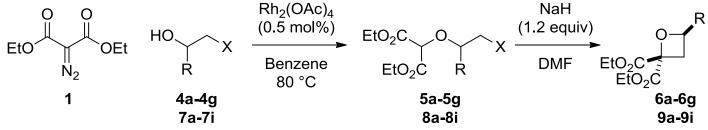
1,3-Diethyl 2-(2-bromoethoxy)propanedioate (2c)

A mixture of diazo malonate **1** (279 mg, 1.5 mmol), 2-bromoethanol (71 μ L, 1.0 mmol) and dirhodium(II) tetraacetate (2.1 mg, 0.005 mmol) in benzene (10 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (10 mL) was added, and the aqueous mixture was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **2c** as a colourless oil (256 mg, 90%); R_f = 0.56 (40% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 2940, 2905, 1739 (C=O), 1447, 1392, 1370, 1281, 1229, 1180, 1132, 1026, 860, 601, 569; ¹H NMR (400 MHz, CDCl₃) δ 4.58 (s, 1 H, CH(CO₂Et)₂), 4.33–4.25 (m, 4 H, 2 x CH₃CH₂CO₂), 3.97 (t, *J* = 6.7 Hz, 2 H, OCH₂CH₂Br), 3.54 (t, *J* = 6.7 Hz, 2 H, OCH₂CH₂Br), 1.32 (t, *J* = 7.1 Hz, 6 H, 2 x CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (2 x CO₂), 79.2 ((EtO₂C)₂CHO), 70.9 (OCH₂CH₂Br), 62.1 (2 x CO₂CH₂CH₃), 29.0 (OCH₂CH₂Br), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₉H₁₆BrO₅⁺ [M+H]⁺: 283.0176, Found: 283.0186.

1,3-Diethyl 2-(2-iodoethoxy)propanedioate (2d)

A mixture of diazo malonate **1** (840 mg, 4.5 mmol), 2-iodoethanol (235 μ L, 3.0 mmol) and dirhodium(II) tetraacetate (6.7 mg, 0.015 mmol) in benzene (30 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (30 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded iodide **2d** as a colourless oil (683 mg, 69%); R_f = 0.51 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2939, 2905, 1738 (C=O), 1466, 1446, 1369, 1230, 1177, 1115, 1024, 858, 745, 706, 598; ¹H NMR (400 MHz, CDCl₃) δ 4.54 (s, 1 H, CH(CO₂Et)₂), 4.33–4.22 (m, 4 H, 2 x CO₂CH₂CH₃), 3.92–3.85 (m, 2 H, OCH₂CH₂I), 3.34–3.27 (m, 2 H, OCH₂CH₂I), 1.32–1.27 (m, 6 H, 2 x CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (2 x CO₂), 78.8 (EtO₂C)₂CHO), 71.7 (OCH₂CH₂I), 62.1 (2 x CO₂CH₂CH₃), 14.0 (2 x CO₂CH₂CH₃), 0.9 (OCH₂CH₂I); Calcd for C₉H₁₅O₅INa⁺ [M+Na]⁺: 352.9856, Found: 352.9850.

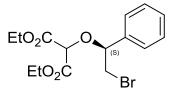
2,2-Diethyl Oxetane-2,2-dicarboxylate (3)



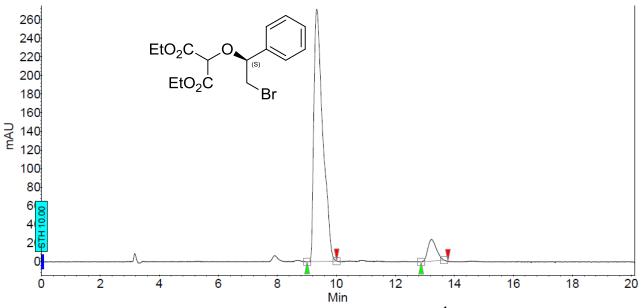
DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **2c** (383 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 0 °C for 1 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **3** as a colourless oil (148 mg, 73%); R_f = 0.25 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 2904, 1740 (C=O), 1448, 1369, 1277, 1258, 1191, 1108, 1065, 1014, 971, 946, 857, 766, 686; ¹H NMR (400 MHz, CDCl₃) δ 4.65 (t, *J* = 7.7 Hz, 2 H, OCH₂), 4.294 (q, *J* = 7.1, 2 H, CO₂CH₂CH₃), 4.291 (q, *J* = 7.1, 2 H, CO₂CH₂CH₃), 3.08 (t, *J* = 7.7 Hz, 2 H, CH₂), 1.30 (t, *J* = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.6 (2 x CO₂), 84.4 (*C*_q(CO₂Et)₂), 67.9 (OCH₂), 62.1 (2 x CO₂CH₂CH₃), 28.4 (CH₂), 13.9 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/z Calcd for C₉H₁₅O₅⁺ [M+H]⁺: 203.0914, Found: 203.0908.

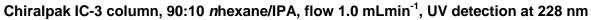
O. A. Davis and J. A. Bull

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.¹



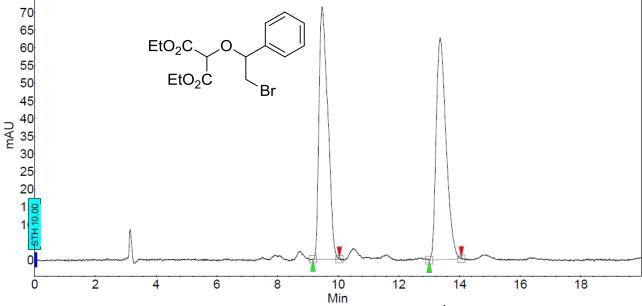
A mixture of diazo malonate **1** (836 mg, 4.5 mmol), alcohol **4a** (605 mg, 3.0 mmol) and dirhodium(II) tetraacetate (6.9 mg, 0.016 mmol) in benzene (30 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (30 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **5a** as a colourless oil (568 mg, 79%); R_f = 0.27 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 1738 (C=O), 1494, 1455, 1370, 1284, 1226, 1204, 1178, 1157, 1114, 1026, 859, 758, 700, 668, 602, 547; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.35 (m, 5 H, 5 x Ph-H), 4.74 (dd, *J* = 7.5, 5.3 Hz, 1 H, OCH(Ph)), 4.41 (s, 1 H, CH(CO₂Et)₂), 4.35–4.23 (m, 2 H, CH₃CH₂CO₂), 4.20–4.10 (m, 2 H, CH₃CH₂CO₂), 3.74 (dd, *J* = 10.7, 7.5 Hz, 1 H, CH(HBr), 3.53 (dd, *J* = 10.7, 5.3 Hz, 1 H, CHHBr), 1.31 (t, *J* = 7.1 Hz, 3 H, CH₃CH₂CO₂), 1.21 (t, *J* = 7.1 Hz, 3 H, CH₃CH₂CO₂); ¹³C NMR (101 MHz, CDCl₃) δ 166.5 (CO₂), 165.8 (CO₂), 137.3 (Ph-C_q), 129.1 (Ph-CH), 128.8 (2 x Ph-H), 127.3 (2 x Ph-H), 82.4 (OCH(Ph)), 77.2 ((EtO₂C)₂CHO), 62.0 (CO₂CH₂CH₃), 61.9 (CO₂CH₂CH₃), 35.0 (CH₂Br), 14.1 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (CI) *m/z* Calcd for C₁₅H₂₃BrNO₅⁺ [M+NH₄]⁺: 376.0754, Found: 376.0769.


1,3-Diethyl 2-[(1S)-2-bromo-1-phenylethoxy]propanedioate ((S)-5a)

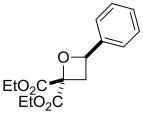


Following the procedure for the synthesis of (±)-**5a** using enantioenriched **(S)-4a** (402 mg, 2.0 mmol, 85% ee) afforded bromide **(S)-5a** as a colourless oil (607 mg, 85% ee, 84%); $[\alpha]_D^{2^2}$ +56.7° (c. 2.61, CHCl₃); ee = 85% by HPLC, Chiralpak IC-3 column, 90:10 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 228 nm, 9.3 min (**(S)-5a**), 13.2 min (**(R)-5a**).

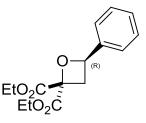
Observed data was identical to the racemic bromide (\pm) -5a.


1,3-Diethyl 2-[(1S)-2-bromo-1-phenylethoxy]propanedioate ((S)-5a)

Index	Name	Time [Min]			Area [mAU.Min]		oo 95%
1	UNKNOWN UNKNOWN	9.333 13.226		271.0 23.4	94.8 7.7	92.474 7.526	ee = 85%
Total			100.00	294.4	102.5	100.000	

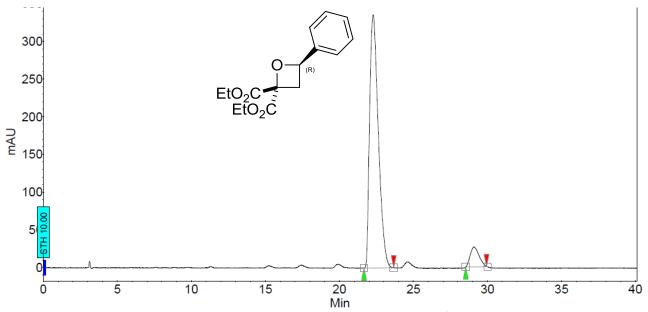

(±)-1,3-Diethyl 2-(2-bromo-1-phenylethoxy)propanedioate (5a)

Chiralpak IC-3 column, 90:10 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 228 nm


Index	Name		Quantity			
		liviinj	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	9.479	50.16	71.1	24.0	50.160
2	UNKNOWN	13.359	49.84	62.8	23.8	49.840
Total			100.00	133.8	47.8	100.000

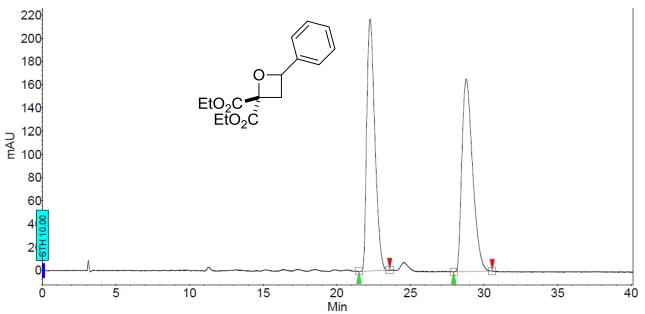
(±)-2,2-Diethyl 4-phenyloxetane-2,2-dicarboxylate (6a)

DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 49 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **5a** (359 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 30 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **6a** as a colourless oil (234 mg, 84%); R_f= 0.29 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2938, 2938, 1739 (C=O), 1447, 1369, 1260, 1228, 1127, 1055, 1012, 961, 856, 757, 698, 593, 532; ⁻¹H NMR (400 MHz, CDCl₃) δ 7.50–7.45 (m, 2 H, 2 x Ph-H), 7.42–7.36 (m, 2 H, 2 x Ph-H), 7.36–7.31 (m, 1 H, Ph-H), 5.80 (t, *J* = 7.6 Hz, 1 H, OCH(Ph)), 4.41–4.30 (m, 4 H, 2 x CO₂CH₂CH₃), 3.39 (dd, *J* = 12.0, 7.7 Hz, 1 H, C/HH), 3.12 (dd, *J* = 12.0, 7.5 Hz, 1 H, CHH), 1.35 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.33 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.0 (CO₂), 168.4 (CO₂), 140.9 (Ph-Cq), 128.5 (3 x Ph-CH), 125.8 (2 x Ph-CH), 80.8 (Cq(CO₂Et)₂), 78.9 (OCH(Ph)), 62.3 (CO₂CH₂CH₃), 62.1 (CO₂CH₂CH₃), 36.7 (CH₂), 14.00 (CO₂CH₂CH₃), 13.98 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₅H₁₉O₅⁺ [M+H]⁺: 279.1227, Found: 279.1238.


2,2-Diethyl (4R)-4-phenyloxetane4-phenyloxetane-2,2-dicarboxylate ((R)-6a)

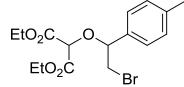
Following the procedure for the synthesis of (±)-**6a** using enantioenriched **(S)-5a** (360 mg, 1.0 mmol, 85% ee) afforded oxetane **(R)-6a** as a colourless oil (232 mg, 85% ee, 83%); $[\alpha]_{D}^{22}$ +60.0° (c. 2.67, CHCl₃); **ee = 85%** by HPLC, Chiralpak IC-3 column, 90:10 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 228 nm, 22.3 min (**(R)-6a**), 29.1 min (**(S)-6a**).

Observed data was identical to the racemic oxetane (\pm) -6a.



Chiralpak IC-3 column, 90:10 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 228 nm

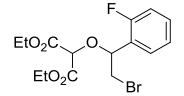
Index	Name	Quantity [% Area]		Area [mAU.Min]		ee = 85%
1	UNKNOWN UNKNOWN			229.1 18.4	92.550 7.450	ee = 05%
Total		100.00	362.5	247.5	100.000	


(±)-2,2-Diethyl 4-phenyloxetane-2,2-dicarboxylate (6a)

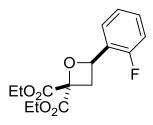
Chiralpak IC-3 column, 90:10 *n*hexane/IPA, flow 1.0 mLmin⁻¹, UV detection at 228 nm

Index	Name	Time [Min]			Area [mAU.Min]	
1	UNKNOWN	22.265	49.69	216.8	138.0	49.689
2	UNKNOWN	28.785	50.31	165.4	139.7	50.311
Total			100.00	382.2	277.8	100.000

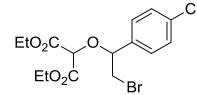
(±)-1,3-Diethyl 2-[2-bromo-1-(4-methylphenyl)ethoxy]propanedioate (5b)


A mixture of diazo malonate **1** (280 mg, 1.5 mmol), alcohol **4b** (215 mg, 1.0 mmol) and dirhodium(II) tetraacetate (2.4 mg, 0.005 mmol) in benzene (10 mL) was heated at 80 °C for 1 h. The reaction mixture was allowed to cool to rt. Water (10 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 10 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (5% EtOAc in hexanes) afforded bromide **5b** as a pale yellow oil (285 mg, 76%); R_f = 0.33 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2939, 2905, 1764 (C=O), 1739 (C=O), 1615, 1514, 1446, 1370, 1226, 1179, 1112, 1027, 818, 724, 647, 600, 564; ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 2 H, 2 x Tol-H), 7.19 (d, *J* = 8.0 Hz, 2 H, 2 x Tol-H), 4.70 (dd, *J* = 7.4, 5.5 Hz, 1 H, OCH(Tol)), 4.40 (s, 1 H, CH(CO₂Et)₂), 4.35–4.23 (m, 2 H, CO₂CH₂CH₃), 4.21–4.11 (m, 2 H, CO₂CH₂CH₃), 3.73 (dd, *J* = 10.6, 7.4 Hz, 1 H, CH/HBr), 3.51 (dd, *J* = 10.6, 5.4 Hz, 1 H, CH/HBr), 2.36 (s, 3 H, Tol-CH₃), 1.32 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.22 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (CO₂), 165.9 (CO₂), 139.1 (Tol-Cq-Me), 134.2 (Tol-Cq-CH(O), 129.5 (2 x Tol-CH), 127.3 (2 x Tol-CH), 82.3 (OCH(Tol)), 77.3 ((EtO₂C)₂CHO), 62.0 (CO₂CH₂CH₃), 61.9 (CO₂CH₂CH₃), 35.1 (CH₂Br), 21.2 (Tol-CH₃), 14.1 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₁BrNaO₅⁺ [M+Na]⁺: 395.0470, Found: 395.0487.

(±)-2,2-Diethyl 4-(4-methylphenyl)oxetane-2,2-dicarboxylate (6b)

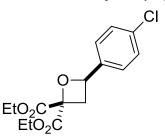

DMF (16.3 mL) was added to a flask containing sodium hydride (60% w/v, 24 mg, 0.6 mmol) which had been cooled to 0 °C. Bromide 5b (187 mg, 0.5 mmol) in DMF (3.7 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated ag. NH₄CI (20 mL) was added followed by EtOAc (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (4 x 20 mL). The organic extracts were combined, dried (Na_2SO_4) and concentrated in vacuo. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **6b** as a pale yellow oil (113 mg, 77%); $R_f = 0.34$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2939, 1739 (C=O), 1615, 1447, 1369, 1261, 1227, 1128, 1060, 954, 928, 856, 815, 765, 679; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.0 Hz, 2 H, 2 x Tol-H), 7.20 (d, J = 8.0 Hz, 2 H, 2 x Tol-H), 5.76 (t, J = 7.6 Hz, 1 H, OCH(Tol)), 4.36 (q, J = 7.2 Hz, 2 H, CO₂CH₂CH₃), 4.34 (q, J = 7.1 Hz, 2 H, CO₂CH₂CH₃), 3.36 (dd, J = 12.0, 7.6 Hz, 1 H, CHH), 3.12 (dd, J = 12.0, 7.6 Hz, 1 H, CHH), 2.36 (s, 3 H, Tol-CH₃), 1.35 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.33 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.2 (CO₂), 168.5 (CO₂), 138.4 (Tol-C_a-Me), 137.9 (Tol-C_a-CH(O)), 129.2 (2 x Tol-CH), 126.0 (2 x Tol-CH), 80.7 (C₀(CO₂Et)₂), 78.9 (OCH(Tol)), 62.2 (CO₂CH₂CH₃), 62.1 (CO₂CH₂CH₃), 36.8 (CH₂), 21.2 (Tol-CH₃), 14.03 (CO₂CH₂CH₃), 14.00 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₁O₅⁺ [M+H]⁺: 293.1384, Found: 293.1385.

(±)-1,3-Diethyl 2-[2-bromo-1-(2-fluorophenyl)ethoxy]propanedioate (5c)


A mixture of diazo malonate **1** (557 mg, 3.0 mmol), alcohol **4c** (439 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.8 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **5c** as a colourless oil (717 mg, 95%); R_f= 0.53 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2984, 1740 (C=O), 1616, 1588, 1489, 1457, 1369, 1230, 1179, 1118, 1027, 859, 826, 760, 661, 607, 566; ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.49 (m, 1 H, Ar-H), 7.38–7.30 (m, 1 H, Ar-H), 7.22–7.17 (m, 1 H, Ar-H), 7.10–7.03 (m, 1 H, Ar-H), 5.12 (d, *J* = 7.1, 5.1 Hz, 1 H, OCH(Ar)), 4.47 (s, 1 H, CH(CO₂Et)₂), 4.34–4.24 (m, 2 H, CO₂CH₂CH₃), 4.21–4.11 (m, 2 H, CO₂CH₂CH₃), 3.71 (dd, *J* = 10.8, 7.1 Hz, 3 H, CCO₂H₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.2 (CO₂), 165.7 (CO₂), 160.5 (d, *J*_{CF} = 247 Hz, Ar-Cq-F), 130.5 (d, *J*_{CF} = 8 Hz, Ar-CH), 128.2 (d, *J*_{CF} = 3 Hz, Ar-CH), 124.7 (d, *J*_{CF} = 13 Hz, Ar-Cq-CH(O)), 124.6 (d, *J*_{CF} = 3 Hz, Ar-CH), 115.5 (d, *J*_{CF} = 22 Hz, Ar-CH), 7.7 ((EtO₂C)₂CH₃), 13.8 (CO₂CH₂CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –118.4; HRMS (ESI-TOF) *m*/z Calcd for C₁₅H₁₈BrO₅FNa⁺ [M+Na]⁺: 399.0219, Found: 399.0231.

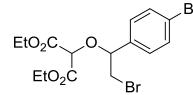
(±)-2,2-Diethyl 4-(2-fluorophenyl)oxetane-2,2-dicarboxylate (6c)

DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide 5c (377 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated ag. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **6c** as a colourless oil (240 mg, 81%); R_f = 0.38 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2984, 1741 (C=O), 1618, 1588, 1491, 1457, 1369, 1260, 1232, 1128, 1061, 1013, 979, 857, 818, 759, 598; ¹H NMR (400 MHz, CDCl₃) § 7.75–7.68 (m, 1 H, Ar-H), 7.34–7.25 (m, 1 H, Ar-H), 7.23–7.16 (m, 1 H, Ar-H), 7.05–6.96 (m, 1 H, Ar-H), 6.04 (t, J = 7.6 Hz, 1 H, OCH(Ar)), 4.39–4.26 (m, 4 H, 2 x CO₂CH₂CH₃), 3.46 (dd, J = 12.0, 7.9 Hz, 1 H, C*H*H), 3.08 (dd, J = 12.0, 7.3 Hz, 1 H, CH*H*), 1.34 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.30 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCI₃) δ 168.7 (CO₂), 168.3 (CO₂), 159.2 (d, J_{CF} = 247 Hz, Ar-C_a-F), 129.8 (d, J_{CF} = 8 Hz, Ar-CH), 128.3 (d, J_{CF} = 13 Hz, Ar-C_a-CH(O)), 127.3 (d, J_{CF} = 4 Hz, Ar-CH), 124.3 (d, J_{CF} = 3 Hz, Ar-CH), 115.1 (d, J_{CF} = 21 Hz, Ar-CH), 81.3 (C_{α} (CO₂Et)₂), 73.5 (d, J_{CF} = 4 Hz, OCH(Ar)), 62.4 (CO₂CH₂CH₃), 62.1 (CO₂CH₂CH₃), 36.0 (CH₂), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –119.2; HRMS (ESI-TOF) *m/z* Calcd for C₁₅H₁₈O₅F⁺ [M+H]⁺: 297.1138 Found: 297.1142.

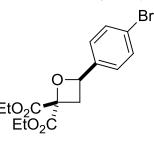

(±)-1,3-Diethyl 2-[2-bromo-1-(4-chlorophenyl)ethoxy]propanedioate (5d)

A mixture of diazo malonate **1** (837 mg, 4.5 mmol), alcohol **4d** (707 mg, 3.0 mmol) and dirhodium(II) tetraacetate (6.9 mg, 0.016 mmol) in benzene (30 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (30 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **5d** as a colourless oil (830 mg, 70%); $R_f = 0.61$ (30% EtOAc in hexanes); IR (film) / cm⁻¹2982, 1738 (C=O), 1598, 1491, 1370, 1297, 1227, 1203, 1178, 1116, 1090, 1027, 1014, 828, 729, 633, 596, 551, 530; ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.32 (m, 2 H, 2 x Ar-H), 7.36–7.28 (m, 2 H, 2 x Ar-H), 4.72 (dd, J = 6.9, 5.8 Hz, 1 H, OCH(Ar)), 4.39 (s, 1 H, CH(CO₂Et)₂), 4.36–4.20 (m, 2 H, CO₂CH₂CH₃), 4.22–4.09 (m, 2 H, CO₂CH₂CH₃), 3.71 (dd, J = 10.6, 6.9 Hz, 1 H, CHHBr), 3.49 (dd, J = 10.6, 5.8 Hz, 1 H, CHHBr), 1.31 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.22 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.3 (CO₂), 165.7 (CO₂), 135.9 (Ar-Cq⁻CH(O)), 135.0 (Ar-Cq⁻CI), 129.0 (2 x Ar-CH), 128.7 (2 x Ar-CH), 81.6 (OCH(Ar)), 77.2 ((EtO₂C)₂CHO), 62.1 (CO₂CH₂CH₃), 62.0 (CO₂CH₂CH₃), 3.47 (CH₂Br), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₅H₁₈BrClO₅Na⁺ [M+Na]⁺: 414.9924, Found: 414.9924.

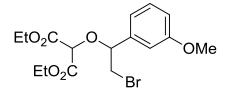
Reaction performed on a large scale (9.0 mmol alcohol **4d**) afforded an improved isolated yield of bromide **5d** (3.11 g, 88%).


(±)-2,2-Diethyl 4-(4-chlorophenyl)oxetane-2,2-dicarboxylate (6d)

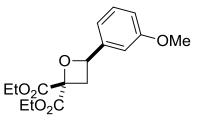
DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **5d** (393 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **6d** as a colourless oil (238 mg, 76%); R_f = 0.29 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2984, 2939, 2909, 1739 (C=O), 1599, 1493, 1446, 1369, 1261, 1128, 1090, 1060, 1014, 958, 882, 856, 824, 775, 744, 690, 539; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.37 (m, 2 H, 2 x Ar-H), 7.37–7.33 (m, 2 H, 2 x Ar-H), 5.75 (t, *J* = 7.6 Hz, 1 H, OCH(Ar)), 4.39–4.29 (m, 4 H, 2 x CO₂CH₂CH₃), 3.39 (dd, *J* = 12.0, 7.6 Hz, 1 H, CHH), 1.34 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.31 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.8 (CO₂), 168.3 (CO₂), 139.4 (Ar-Cq⁻CH(O)), 134.3 (Ar-Cq⁻CI), 128.8 (2 x Ar-CH), 127.2 (2 x Ar-CH), 80.8 (Cq(CO₂Et)₂), 78.2 (OCH(Ar)), 62.4 (CO₂CH₂CH₃), 62.2 (CO₂CH₂CH₃), 36.7 (CH₂), 14.00 (CO₂CH₂CH₃), 13.98 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₅H₁₈CIO₅⁺ [M+H]⁺: 313.0837, Found: 313.0833.


Reaction performed on a large scale (6.5 mmol bromide **5d**) afforded an isolated yield of oxetane **6d** (1.58 g, 77%).

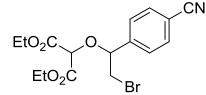
(±)-1,3-Diethyl 2-[2-bromo-1-(4-bromophenyl)ethoxy]propanedioate (5e)


A mixture of diazo malonate **1** (838 mg, 4.5 mmol), alcohol **4e** (839 mg, 3.0 mmol) and dirhodium(II) tetraacetate (6.2 mg, 0.014 mmol) in benzene (30 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (30 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **5e** as a colourless oil (890 mg, 68%); R_f = 0.34 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1593, 1487, 1446, 1407, 1370, 1298, 1227, 1203, 1120, 1072, 1028, 1010, 825, 725, 622, 552; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.50 (m, 2 H, 2 x Ar-H), 7.29–7.25 (m, 2 H, 2 x Ar-H), 4.71 (dd, *J* = 6.9, 5.9 Hz, 1 H, OCH(Ar)), 4.39 (s, 1 H, CH(CO₂Et)₂), 4.35–4.23 (m, 2 H, CO₂CH₂CH₃), 4.22–4.11 (m, 2 H, CO₂CH₂CH₃), 3.71 (dd, *J* = 10.6, 6.9 Hz, 1 H, CHHBr), 3.49 (dd, *J* = 10.6, 5.9 Hz, 1 H, CHHBr), 1.31 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.3 (CO₂), 165.7 (CO₂), 136.4 (Ar-Cq⁻CH(O)), 131.9 (2 x Ar-CH), 129.0 (2 x Ar-CH), 123.2 (Ar-Cq⁻Br), 81.7 (OCH(Ar)), 77.2 ((EtO₂C)₂CHO), 62.13 (CO₂CH₂CH₃), 62.06 (CO₂CH₂CH₃), 34.7 (CH₂Br), 14.1 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); 13C NMR (101 MHz, OD₁) (2 + 53.9627, Found: 453.9644.

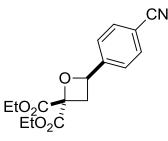
(±)-2,2-Diethyl 4-(4-bromophenyl)oxetane-2,2-dicarboxylate (6e)


DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 49 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **5e** (440 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **6e** as a colourless oil (299 mg, 83%); R_f= 0.34 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1595, 1489, 1446, 1369, 1264, 1229, 1128, 1064, 1011, 962, 882, 821, 773, 691, 537, 530; ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.49 (m, 2 H, 2 x Ar-H), 7.38–7.33 (m, 2 H, 2 x Ar-H), 5.74 (dd, *J* = 7.6, 7.6 Hz, 1 H, OCH(Ar)), 4.40–4.29 (m, 4 H, 2 x CO₂CH₂CH₃), 3.40 (dd, *J* = 12.0, 7.6 Hz, 1 H, C*H*H), 3.04 (dd, *J* = 12.0, 7.6 Hz, 1 H, CH*H*), 1.34 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.31 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.8 (CO₂), 168.3 (CO₂), 140.0 (Ar-Cq-CH(O)), 131.7 (2 x Ar-CH), 127.5 (2 x Ar-CH), 122.5 (Ar-Cq-Br), 80.8 ((Cq(CO₂Et)₂), 78.2 (OCH(Ar)), 62.4 (CO₂CH₂CH₃), 62.3 (CO₂CH₂CH₃), 34.0 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₅H₁₈BrO₅⁺ [M+H]⁺: 357.0332, Found: 357.0342.

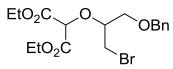
(±)-1,3-Diethyl 2-[2-bromo-1-(3-methoxyphenyl)ethoxy]propanedioate (5f)


A mixture of diazo malonate **1** (558 mg, 3.0 mmol), alcohol **4f** (462 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.6 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **5f** as a colourless oil (566 mg, 73%); R_f = 0.43 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2938, 2839, 1738 (C=O), 1601, 1587, 1489, 1466, 1370, 1257, 1115, 1027, 860, 788, 703, 671, 571; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.25 (m, 1 H, Ar-H), 6.97–6.91 (m, 2 H, 2 x Ar-H), 6.91–6.86 (m, 1 H, Ar-H), 4.72 (dd, *J* = 7.4, 5.2 Hz, 1 H, OCH(Ar)), 4.42 (s, 1 H, CH(CO₂Et)₂), 4.34–4.24 (m, 2 H, CO₂CH₂CH₃), 4.22–4.12 (m, 2 H, CO₂CH₂CH₃), 3.81 (s, 3 H, OCH₃), 3.71 (dd, *J* = 10.6, 7.4 Hz, 1 H, CH/HBr), 3.52 (dd, *J* = 10.6, 5.2 Hz, 1 H, CH/HBr), 1.31 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.22 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.5 (CO₂), 165.9 (CO₂), 159.9 (Ar-Cq-OMe), 138.9 (Ar-Cq-CH(O), 129.8 (Ar-CH), 119.6 (Ar-CH), 114.8 (Ar-CH), 112.4 (Ar-CH), 82.4 (OCH(Ar)), 77.2 ((EtO₂C)₂CHO), 62.0 (CO₂CH₂CH₃), 61.9 (CO₂CH₂CH₃), 55.3 (OCH₃), 35.0 (CH₂Br), 14.1 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₁BrNaO₆⁺ [M+Na]⁺: 411.0419, Found: 411.0428.

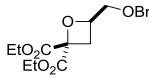
(±)-2,2-Diethyl 4-(3-methoxyphenyl)oxetane-2,2-dicarboxylate (6f)


DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide 5f (390 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated ag. NH₄CI (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane 6f as a colourless oil (273 mg. 88%); R₁= 0.26 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2938, 2837, 1739 (C=O), 1604, 1587, 1488, 1466, 1369, 1259, 1126, 1063, 1043, 1013, 977, 850, 785, 695; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.25 (m, 1 H, Ar-H), 7.11–7.07 (m, 1H, Ar-H), 7.00 (d, J = 7.6 Hz, 1 H, Ar-H), 6.87 (dd, J = 8.2, 2.1 Hz, 1 H, Ar-H), 5.77 (t, J = 7.5 Hz, 1 H, OCH(Ar)), 4.40–4.29 (m, 4 H, 2 x CO₂CH₂CH₃), 3.83 (s, 3 H, OCH₃), 3.40 (dd, J = 11.9, 7.7 Hz, 1 H, CHH), 3.08 (dd, J = 11.9, 7.5 Hz, 1 H, CHH), 1.35 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.32 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.0 (CO₂), 168.4 (CO₂), 159.8 (Ar-C_a-OMe), 142.6 (Ar-C_a-CH(O)), 129.6 (Ar-CH), 117.7 (Ar-CH), 114.2 (Ar-CH), 110.9 (Ar-CH), 80.9 (C_a(CO₂Et)₂), 78.7 (OCH(Ar)), 62.3 (CO₂CH₂CH₃), 62.1 (CO₂CH₂CH₃), 55.2 (OCH₃), 36.7 (CH₂), 14.01 (CO₂CH₂CH₃), 13.99 (CO₂CH₂CH₃); HRMS (ESI-TOF) m/z Calcd for C₁₆H₂₀O₆Na⁺ [M+Na]⁺: 331.1158, Found: 331.1161.

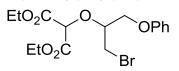
(±)-1,3-Diethyl 2-[2-bromo-1-(4-cyanophenyl)ethoxy]propanedioate (5g)


A mixture of diazo malonate **1** (565 mg, 3.0 mmol), alcohol **4g** (452 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.5 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **5g** as a colourless oil (541 mg, 71%); R_f = 0.38 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2906, 2230 (C=N), 1738 (C=O), 1610, 1505, 1466, 1446, 1370, 1280, 1230, 1205, 1180, 1116, 1021, 838, 642, 567; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2 H, 2 x Ar-H), 7.53 (d, *J* = 8.4 Hz, 2 H, 2 x Ar-H), 4.81 (t, *J* = 6.2 Hz, 1 H, OCH(Ar)), 4.43 (s, 1 H, CH(CO₂Et)₂), 4.37–4.24 (m, 2 H, CO₂CH₂CH₃), 4.23–4.13 (m, 2 H, CO₂CH₂CH₃), 3.71 (dd, *J* = 10.6, 6.6 Hz, 1 H, CHHBr), 3.52 (dd, *J* = 10.6, 5.8 Hz, 1 H, CHHBr), 1.30 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.23 (t, *J* = 7.1 Hz, 3 H, C CO₂H₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (CO₂), 165.1 (CO₂), 142.9 (Ar-Cq⁻CH(O)), 132.5 (2 x Ar-CH), 128.0 (2 x Ar-CH), 118.3 (C=N), 112.9 (Ar-Cq⁻CN), 81.3 (OCH(Ar)), 77.6 ((EtO₂C)₂CHO), 62.25 (CO₂CH₂CH₃), 62.19 (CO₂CH₂CH₃), 3.43 (CH₂Br), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (CI) *m/z* Calcd for C₁₆H₂₂BrN₂O₆⁺ [M+NH₄]⁺: 401.0712, Found: 401.0707.

(±)-2,2-Diethyl 4-(4-cyanophenyl)oxetane-2,2-dicarboxylate (6g)


DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide 5g (387 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 6 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (30% EtOAc in hexanes) afforded oxetane **6g** as a colourless oil which crystallised to a white crystalline solid upon storage at -20 °C (251 mg, 82%); $R_f = 0.39$ (40% EtOAc in hexanes); mp = 34–36 °C; IR (film) / cm⁻¹ 2983, 2229 (C=N), 1739 (C=O), 1611, 1506, 1447, 1369, 1263, 1175, 1128, 1061, 1013, 977, 835, 694, 564; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.3 Hz, 2 H, 2 x Ar-H), 7.57 (d, J = 8.3 Hz, 2H, 2 x Ar-H), 5.82 (t, J = 7.6 Hz, 1 H, OCH(Ar)), 4.40–4.26 (m, 4 H, 2 x $CO_2CH_2CH_3$), 3.47 (dd, J = 12.0, 7.9 Hz, 1 H, CHH), 2.99 (dd, J = 12.0, 7.2 Hz, 1 H, CH*H*), 1.34 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.30 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.4 (CO₂), 168.0 (CO₂), 146.2 (Ar-C_a-CH(O)), 132.4 (2 x Ar-CH), 126.0 (2 x Ar-CH), 118.5 (C≡N), 112.1 (Ar-C₀-CN), 81.0 (C_{0} (CO₂Et)₂), 77.3 (OCH(Ar)), 62.5 (CO₂CH₂CH₃), 62.3 (CO₂CH₂CH₃), 36.4 (CH₂), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₆H₁₈NO₅⁺ [M+H]⁺: 304.1185, Found: 304.1188.

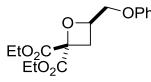
(±)-1,3-Diethyl 2-{[1-(benzyloxy)-3-bromopropan-2-yl]oxy}propanedioate (8a)


A mixture of diazo malonate **1** (279 mg, 1.5 mmol), alcohol **7a** (242 mg, 1.0 mmol) and dirhodium(II) tetraacetate (2.2 mg, 0.005 mmol) in benzene (10 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (10 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 10 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **8a** as a colourless oil (268 g, 67%); R_f = 0.29 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2937, 1761 (C=O), 1740 (C=O), 1454, 1369, 1228, 1178, 1115, 1026, 860, 738, 698, 671, 598; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.27 (m, 5 H, 5 x Ph-H), 4.85 (s, 1 H, CH(CO₂Et)₂), 4.54 (s, 2 H, OCH₂Ph) 4.28–4.19 (m, 4 H, 2 x CO₂CH₂CH₃), 3.98–3.93 (m, 1 H, BnOCH₂CH(O)), 3.75 (dd, *J* = 10.2, 4.9 Hz, 1 H, BnOCH₄H), 3.72 (dd, *J* = 10.2, 5.6 Hz, 1 H, BnOCH₄H), 3.57 (dd, *J* = 11.3, 5.4 Hz, 1 H, CH₄HBr), 3.55 (dd, *J* = 11.3, 5.8 Hz, 1 H, CH₄Br), 1.32–1.24 (m, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.4 (2 x CO₂), 137.6 (Ph-C_q), 128.3 (2 x Ph-CH), 127.7 (Ph-CH), 127.6 (2 x Ph-CH), 79.5 ((BnOCH₂)CH(O)), 79.0 ((EtO₂C)₂CHO), 73.4 (OCH₂Ph), 70.9 (BnOCH₂), 62.0 (CO₂CH₂CH₃), 61.9 (CO₂CH₂CH₃), 31.2 (CH₂Br), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₇H₂₃BrNaO₆⁺ [M+Na]⁺: 425.0570, Found: 425.0576.

(±)-2,2-Diethyl 4-[(benzyloxy)methyl]oxetane-2,2-dicarboxylate (9a)

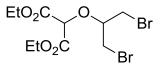
DMF (12.4 mL) was added to a flask containing sodium hydride (60% w/v, 19 mg, 0.48 mmol) which had been cooled to 0 °C. Bromide 8a (152 mg, 0.38 mmol) in DMF (2.8 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated ag. NH₄CI (15 mL) was added followed by EtOAc (15 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 15 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (30% EtOAc in hexanes) afforded oxetane **9a** as a colourless oil (108 mg, 89%); $R_f = 0.28$ (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2982, 2934, 1741 (C=O), 1452, 1368, 1258, 1138, 1092, 1076, 1026, 877, 856, 795, 737, 698, 607, 585; ¹H NMR (400 MHz, CDCl₃) & 7.36–7.26 (m, 5 H, 5 x Ph-H), 4.96–4.91 (m, 1 H, OCH(CH₂OBn)), 4.64 (d, J = 12.1 Hz, 1 H, OC*H*HPh), 4.59 (d, J = 12.1 Hz, 1 H, OCH*H*Ph), 4.30 (q, J = 7.1 Hz, 2 H, CO₂CH₂CH₃), 4.26–4.18 (m, 2 H, CO₂CH₂CH₃), 3.69 (dd, J = 11.5, 3.5 Hz, 1 H, BnOCHH), 3.64 (dd, J = 11.5, 4.3 Hz, 1 H, BnOCHH), 3.07 (dd, J = 11.9, 6.9 Hz, 1 H, CHH), 3.03 (dd, J = 11.9, 7.7 Hz, 1 H, CHH), 1.31 (t, J = 7.1 Hz, 3 H, $CO_2CH_2CH_3$, 1.25 (t, J = 7.1 Hz, 3 H, $CO_2CH_2CH_3$); ¹³C NMR (101 MHz, $CDCI_3$) δ 168.9 (CO_2), 168.5 (CO_2), 138.0 (Ph-C_a), 128.3 (2 x Ph-CH), 127.6 (3 x Ph-CH), 81.5 (C_a(CO₂Et)₂), 77.3 (OCH(CH₂OBn)), 73.5 (OCH₂Ph), 71.8 (CH₂OBn), 62.2 (CO₂CH₂CH₃), 61.9 (CO₂CH₂CH₃), 30.1 (CH₂), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₇H₂₂O₆Na⁺ [M+Na]⁺: 345.1314, Found: 345.1324.

(±)-1,3-Diethyl 2-[(1-bromo-3-phenoxypropan-2-yl)oxy]propanedioate (8b)

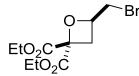


A mixture of diazo malonate **1** (838 mg, 4.5 mmol), alcohol **7b** (694 mg, 3.0 mmol) and dirhodium(II) tetraacetate (7.1 mg, 0.016 mmol) in benzene (30 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (30 mL) was added and the layers were separated. The aqueous layer was extracted with $CHCl_3$ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and

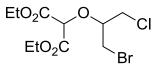
O. A. Davis and J. A. Bull


concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **8b** as a colourless oil (1.08 g, 92%); R_f = 0.31 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1600, 1588, 1497, 1456, 1370, 1292, 1240, 1174, 1130, 1027, 860, 814, 755, 692, 600; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 2 H, 2 x Ph-H), 7.00–6.96 (m, 1 H, Ph-H), 6.92–6.89 (m, 2 H, 2 x Ph-H), 4.93 (s, 1 H, CH(CO₂Et)₂), 4.33–4.14 (m, 7 H, 2 x CO₂CH₂CH₃ and PhOCH₂ and PhOCH₂C*H*(O)), 3.68–3.66 (m, 2 H, CH₂Br), 1.32–1.23 (m, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.4 (CO₂), 166.3 (CO₂), 158.0 (Ph-C_q), 129.5 (2 x Ph-CH), 121.3 (Ph-CH), 114.4 (2 x Ph-CH), 79.3 ((EtO₂C)₂CHO), 78.9 (PhOCH₂CH(O)), 68.6 (PhOCH₂), 62.2 (CO₂CH₂CH₃), 62.1 (CO₂CH₂CH₃), 30.9 (CH₂Br), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₁BrNaO₆⁺ [M+Na]⁺: 411.0414, Found: 411.0416.

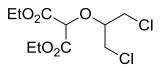
(±)-2,2-Diethyl 4-(phenoxymethyl)oxetane-2,2-dicarboxylate (9b)


DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 49 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide 8b (390 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄CI (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **9b** as a colourless oil (201 mg, 65%); $R_f = 0.25$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 2934, 1741 (C=O), 1599, 1587, 1496, 1448, 1369, 1289, 1246, 1134, 1077, 1028, 1016, 889, 856, 754, 692; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.25 (m, 2 H, 2 x Ph-H), 7.00–6.94 (m, 1 H, Ph-H), 6.94–6.89 (m, 2 H, 2 x Ph-H), 5.11 (dddd, J = 7.9, 6.6, 4.2, 3.6 Hz, 1 H, OCH(CH₂OPh)), 4.38–4.23 (m, 4 H, 2 x CO₂CH₂CH₃), 4.20 (dd, J = 10.9, 3.6 Hz, 1 H, PhOC*H*H), 4.12 (dd, J = 10.9, 4.2 Hz, 1 H, PhOCH*H*), 3.20 (dd, J = 12.0, 6.6 Hz, 1 H, CHH), 3.14 (dd, J = 12.0, 7.9 Hz, 1 H, CHH), 1.33 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.29 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.8 (CO₂), 168.4 (CO₂), 158.5 (Ph-C_q), 129.4 (2 x Ph-CH), 121.1 (Ph-CH), 114.6 (2 x Ph-CH), 81.7 (C_a(CO₂Et)₂), 76.2 (OCH(CH₂OPh)), 69.4 (CH₂OPh), 62.3 (CO₂CH₂CH₃), 62.1 (CO₂CH₂CH₃), 30.1 (CH₂), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₀NaO₆⁺ [M+Na]⁺: 331.1152, Found: 331.1145.

(±)-1,3-Diethyl 2-[(1,3-dibromopropan-2-yl)oxy]propanedioate (8c)

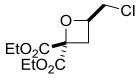

A mixture of diazo malonate **1** (559 mg, 3.0 mmol), alcohol **7c** (434 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.5 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 3 d. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **8c** as a colourless oil (380 mg, 51%); R_f = 0.38 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1421, 1370, 1232, 1179, 1126, 1026, 857, 668, 604, 553, 546; ¹H NMR (400 MHz, CDCl₃) δ 4.75 (s, 1 H, CH(CO₂Et)₂), 4.35–4.23 (m, 4 H, 2 x CO₂CH₂CH₃), 3.99–3.93 (m, 1 H, CH(CH₂Br)₂), 3.68 (dd, *J* = 10.9, 4.9 Hz, 2 H, 2 x CHHBr), 3.66 (dd, *J* = 10.9, 5.8 Hz, 2 H, 2 x CHHBr), 1.31 (t, *J* = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (2 x CO₂), 79.4 (OCH(CH₂Br)₂), 79.0 ((EtO₂C)₂CHO), 62.3 (2 x CO₂CH₂CH₃), 32.0 (2 x CH₂Br), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/z Calcd for C₁₂H₁₉Br₂NNaO₅ [M+Na+MeCN]⁺: 437.9522, Found: 437.9534.

(±)-2,2-Diethyl 4-(bromomethyl)oxetane-2,2-dicarboxylate (9c)


DMF (16.3 mL) was added to a flask containing sodium hydride (60% w/v, 27 mg, 0.7 mmol) which had been cooled to 0 °C. Bromide **8c** (189 mg, 0.5 mmol) in DMF (3.7 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (20 mL) was added followed by EtOAc (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **9c** as a colourless oil (120 mg, 81%); R_f = 0.25 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1446, 1369, 1260, 1130, 1094, 1057, 969, 856, 799, 758, 647; ¹H NMR (400 MHz, CDCl₃) δ 4.93–4.87 (m, 1 H, OC*H*(CH₂Br)), 4.31 (q, *J* = 7.1 Hz, 2 H, CO₂C*H*₂CH₃), 4.30 (q, *J* = 7.1 Hz, 2 H, CO₂C*H*₂CH₃), 3.61 (dd, *J* = 10.3, 5.6 Hz, 1 H, C*H*HBr), 3.55 (dd, *J* = 10.3, 7.6 Hz, 1 H, CH*H*Br), 3.15 (dd, *J* = 12.4, 7.6 Hz, 1 H, C*H*(H), 2.89 (dd, *J* = 12.4, 6.4 Hz, 1 H, CH*H*), 1.310 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂C*H*₃), 1.307 (t, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), δ 168.4 (CO₂), 168.2 (CO₂), 80.6 (C_q(CO₂Et)₂), 76.1 (OCH(CH₂Br)), 62.4 (2 x CO₂CH₂CH₃), 34.3 (CH₂Br), 33.0 (CH₂), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₀H₁₅BrO₅⁺ [M+H]⁺: 295.0176, Found: 295.0190.

(±)-1,3-Diethyl 2-[(1-bromo-3-chloropropan-2-yl)oxy]propanedioate (8d)

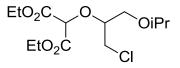
A mixture of diazo malonate **1** (839 mg, 4.5 mmol), alcohol **7d** (534 mg, 3.0 mmol) and dirhodium(II) tetraacetate (7.0 mg, 0.016 mmol) in benzene (30 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (30 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **8d** as a colourless oil (814 mg, 80%); R_f = 0.32 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1467, 1445, 1370, 1233, 1179, 1123, 1027, 858, 756, 670, 601; ¹H NMR (400 MHz, CDCl₃) δ 4.76 (s, 1 H, CH(CO₂Et)₂), 4.35–4.23 (m, 4 H, 2 x CO₂CH₂CH₃), 3.99–3.94 (m, 1 H, CH(CH₂Cl)), 3.82 (dd, *J* = 11.7, 5.0 Hz, 1 H, CHHCl), 3.80 (dd, *J* = 11.7, 5.7 Hz, 1 H, CHHCl) 3.68–3.60 (m, 2 H, CH₂Br), 1.31 (t, *J* = 7.1 Hz 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.03 (CO₂), 166.00 (CO₂), 79.8 (OCH(CH₂Cl)), 79.1 ((EtO₂C)₂CHO), 62.3 (2 x CO₂CH₂CH₃), 44.1 (CH₂Cl), 31.1 (CH₂Br), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/z Calcd for C₁₂H₁₉NO₅CIBrNa⁺ [M+CH₃CN+Na]⁺: 394.0033, Found: 394.0046.


(±)-1,3-Diethyl 2-[(1,3-dichloropropan-2-yl)oxy]propanedioate (8e)

A mixture of diazo malonate **1** (565 mg, 3.0 mmol), alcohol **7e** (258 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.8 mg, 0.011 mmol) in benzene (20 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **8e** as a colourless oil (488 mg, 86%); R_f = 0.33 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2984, 2942, 1739 (C=O), 1467, 1445, 1369, 1234, 1179, 1123, 1023, 870, 758, 697, 605; ¹H NMR (400 MHz, CDCl₃) δ 4.76 (s, 1 H, CH(CO₂Et)₂),

4.36–4.21 (m, 4 H, 2 x CO₂CH₂CH₃),4.00–3.92 (m, 1 H, OC*H*(CH₂Cl)₂), 3.81–3.77 (m, 4 H, 2 x CH₂Cl), 1.31 (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.0 (2 x CO₂), 80.1 (O*C*H(CH₂Cl)₂), 79.1 ((EtO₂C)₂CHO), 62.3 (2 x CO₂CH₂CH₃), 43.2 (2 x CH₂Cl), 14.0 (2 x CO₂CH₂CH₃); HRMS (CI) *m/z* Calcd for C₁₀H₂₀Cl₂NO₅⁺ [M+Na+MeCN]⁺: 304.0719, Found: 304.0726.

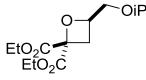
(±)-2,2-Diethyl 4-(chloromethyl)oxetane-2,2-dicarboxylate (9d)


Method A – From Bromide 8d:

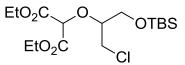
DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 49 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **8d** (332 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (30% EtOAc in hexanes) afforded oxetane **9c (Br)** as a colourless oil (19 mg, 7%) followed by oxetane **9d (Cl)** as a colourless oil (113 mg, 45%); R_f = 0.19 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2984, 1741 (C=O), 1447, 1370, 1258, 1133, 1098, 1061, 1048, 1013, 987, 856, 801, 731, 668, 553; ¹H NMR (400 MHz, CDCl₃) δ 5.11 (ddt, *J* = 7.6, 6.5, 5.6 Hz, 1 H, OC*H*(CH₂Cl)), 4.31 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 4.30 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 3.72 (d, *J* = 5.6 Hz, 2 H, CH₂Cl), 3.13 (dd, *J* = 12.4, 7.6 Hz, 1 H, CH₂H), 2.97 (dd, *J* = 12.4, 6.5 Hz, 1 H, CH₄H), 1.31 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.30 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.4 (CO₂), 168.1 (CO₂), 81.0 (C_q(CO₂Et)₂), 76.4 (OCH(CH₂Cl)), 62.3 (2 x CO₂CH₂CH₃), 46.2 (CH₂Cl), 31.7 (CH₂), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₀H₁₉CINO₅⁺ [M+NH₄]⁺: 268.0946, Found: 268.0954.

Method B – From Chloride 8e:

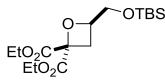
DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 49 mg, 1.2 mmol) which had been cooled to 0 °C. Chloride **8e** (287 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **9d** as a colourless oil (193 mg, 77%).


(±)-1,3-Diethyl 2-{[1-chloro-3-(propan-2-yloxy)propan-2-yl]oxy}propanedioate (8f)

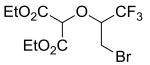
A mixture of diazo malonate **1** (555 mg, 3.0 mmol), alcohol **7f** (305 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.5 mg, 0.010 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded chloride **8f** as a colourless oil (600 mg, 97%); R_f = 0.56 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2976, 2939, 2874, 1742 (C=O), 1468, 1370, 1229, 1176, 1125, 1095, 1026, 956, 857, 825, 750, 694, 591; ¹H NMR (400 MHz, CDCl₃) δ 4.89 (s, 1 H, CH(CO₂Et)₂), 4.33–4.21 (m, 4 H, 2 x CO₂CH₂CH₃), 3.92–3.84 (m, 1 H, OCH(CH₂CI)),


3.70 (d, J = 5.5 Hz, 2 H, CH₂Cl), 3.67–3.55 (m, 3 H, OC*H*(CH₃)₂ and CH₂OⁱPr), 1.31 (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃), 1.14 (d, J = 6.1 Hz, 6 H, CH(CH₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (CO₂), 166.5 (CO₂), 79.9 (OCH(CH₂Cl)), 79.1 ((EtO₂C)₂CHO), 72.3 (OCH(CH₃)₂), 68.3 (CH₂OⁱPr), 61.91 (CO₂CH₂CH₃), 61.85 (CO₂CH₂CH₃), 43.7 (CH₂Cl), 21.9 (CH₃), 21.8 (CH₃), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₂₃ClO₆Na⁺ [M+Na]⁺: 333.1081, Found: 333.1085.

(±)-2,2-Diethyl 4-[(propan-2-yloxy)methyl]oxetane-2,2-dicarboxylate (9f)

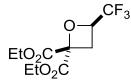

DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Chloride **8f** (311 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (25% EtOAc in hexanes) afforded oxetane **9f** as a colourless oil (205 mg, 75%); R_f= 0.28 (25% EtOAc in hexanes); IR (film) / cm⁻¹ 2975, 2934, 1743 (C=O), 1467, 1448, 1369, 1276, 1257, 1132, 1075, 1019, 918, 879, 857, 801, 757, 687; ¹H NMR (400 MHz, CDCl₃) δ 4.90–4.82 (m, 1 H, OC*H*(CH₂OⁱPr)), 4.33–4.23 (m, 4 H, 2 x CO₂C*H*₂CH₃), 3.69–3.62 (m, 1 H, OC*H*(CH₃)₂), 3.61–3.54 (m, 2 H, CH₂OⁱPr), 3.02 (dd, *J* = 11.9, 7.6 Hz, 1 H, C*H*H), 2.99 (dd, *J* = 11.9, 6.9 Hz, 1 H, CH*H*), 1.30 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.29 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.15 (d, *J* = 6.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.0 (CO₂), 168.6 (CO₂), 81.5 (Cq₂CO₂Et₂), 77.3 (OCH(CH₂OⁱPr)), 72.2 (OCH(CH₃)₂), 69.9 (CH₂OⁱPr), 62.1 (CO₂CH₂CH₃), 61.9 (CO₂CH₂CH₃), 3.02 (CH₂), 21.93 (CH₃), 21.89 (CH₃), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₂₂O₆Na⁺ [M+Na]⁺: 297.1314, Found: 297.1319.

(±)-1,3-Diethyl 2-({1-[(tert-butyldimethylsilyl)oxy]-3-chloropropan-2-yl}oxy)propanedioate (8g)

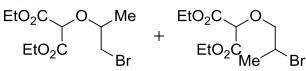

A mixture of diazo malonate **1** (582 mg, 3.2 mmol), alcohol **7g** (450 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.3 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (5% EtOAc in hexanes) afforded chloride **8g** as a colourless oil (500 mg, 65%); R_f = 0.50 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2956, 2931, 2858, 1764 (C=O), 1744 (C=O), 1472, 1447, 1370, 1253, 1231, 1180, 1125 (C-O), 1097 (C-O), 1029 (C-O), 939, 835, 777, 736 (C-CI), 668; ¹H NMR (400 MHz, CDCl₃) δ 4.87 (s, 1 H, CH(CO₂Et)₂), 4.35–4.20 (m, 4 H, 2 x CO₂CH₂CH₃), 3.89–3.76 (m, 3 H, OC*H*(CH₂CI) and CH₂OTBS), 3.75–3.66 (m, 2 H, CH₂CI), 1.31 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.30 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 0.89 (s, 9 H, C(CH₃)₃), 0.08 (s, 3 H, OSi(CH₃)(C'H₃)(fBu)), 0.07 (s, 3 H, OSi(CH₃)(C'H₃)(fBu)); ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (CO₂), 166.4 (CO₂), 80.9 (OCH(CH₂CI)), 79.1 ((EtO₂C)₂CHO), 63.2 (CH₂OTBS), 62.01 (CO₂CH₂CH₃), 61.97 (CO₂CH₂CH₃), 43.4 (CH₂CI), 25.8 (C(CH₃)₃), 18.2 (C_q(CH₃)₃), 14.0 (2 x CO₂CH₂CH₃), -5.5 (OSi(CH₃)(C'H₃)(fBu), -5.6 (OSi(CH₃)(C'H₃)(fBu); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₃₁CIO₆SiNa⁺ [M+Na]⁺: 405.1476, Found: 405.1475.

(±)-2,2-Diethyl 4-{[(tert-butyldimethylsilyl)oxy]methyl}oxetane-2,2-dicarboxylate (9g)

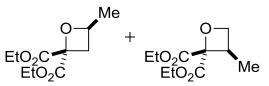
DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Chloride 8g (383 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 9 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (10% EtOAc in hexanes) afforded oxetane **9g** as a colourless oil (246 mg, 71%); $R_f = 0.40$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2954, 2931, 2858, 1745 (C=O), 1473, 1448, 1390, 1369, 1253, 1141, 1098, 1078, 1018, 939, 909, 878, 834, 777, 669; ¹H NMR (400 MHz, CDCl₃) δ 4.85–4.78 (m, 1 H, OC*H*(CH₂OTBS)), 4.32–4.24 (m, 4 H, 2 x CO₂CH₂CH₃), 3.80 (dd, J = 11.8, 3.6 Hz, 1 H, CHHOTBS), 3.69 (dd, J = 11.8, 3.9 Hz, 1 H, CHHOTBS), 3.08 (dd, J = 11.8, 6.9 Hz, 1 H, C*H*H), 2.91 (dd, J = 11.8, 6.9 Hz, 1 H, CH*H*), 1.29 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.28 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 0.89 (s, 9 H, C(CH₃)₃), 0.07 (s, 6 H, OSi(CH₃)₂(*t*Bu)); ¹³C NMR (101 MHz, CDCl₃) δ 169.1 (CO₂), 168.4 (CO₂), 81.3 (C_q(CO₂Et)₂), 78.2 (OCH(CH₂OTBS)), 64.9 (CH₂OTBS), 62.1 (CO₂CH₂CH₃), 61.8 (CO₂CH₂CH₃), 29.4 (CH₂), 25.8 (C(CH₃)₃), 18.4 (C_q(CH₃)₃), 13.98 (CO₂CH₂CH₃), 13.95 (CO₂CH₂CH₃), -5.4 $(OSi(CH_3)(C'H_3)(tBu), -5.5 (OSi(CH_3)(C'H_3)(tBu); HRMS (ESI-TOF) m/z Calcd for C_{16}H_{31}O_6Si^+ [M+H]^+$: 347.1890, Found: 347.1882.


(±)-1,3-Diethyl 2-[(3-bromo-1,1,1-trifluoropropan-2-yl)oxy]propanedioate (8h)

A solution of 3-bromo-1,1,1-trifluoropropan-2-one (0.62 mL, 6.0 mmol) in Et_2O (5 mL) was added dropwise to a mixture of LiAlH₄ (252 mg, 6.6 mmol) in Et_2O (5 mL) at rt over 6 min. The reaction mixture was stirred at rt for 90 min. Water (20 mL) was added followed by 1 M HCl (10 mL) and the mixture was extracted with Et_2O (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄), filtered through a short pad of silica and concentrated *in vacuo* to afford 3-bromo-1,1,1-trifluoropropan-2-ol which was used without further purification. *Note: Care must be taken when removing solvent as the product is also volatile.*


A mixture of diazo malonate **1** (1.67 g, 9.0 mmol), 3-bromo-1,1,1-trifluoropropan-2-ol (6.0 mmol) and dirhodium(II) tetraacetate (13.2 mg, 0.03 mmol) in benzene (60 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (60 mL) was added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 x 60 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (5%–10% EtOAc in hexanes) afforded bromide **8h** as a colourless oil (581 mg, 28% over 2 steps); R_f = 0.60 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2987, 1742 (C=O), 1467, 1448, 1391, 1371, 1274, 1247, 1168, 1126, 1024, 915, 859, 724, 648, 603, 557; ¹H NMR (400 MHz, CDCl₃) δ 4.78 (s, 1 H, CH(CO₂Et)₂), 4.33–4.23 (m, 5 H, OCH(CF₃) and 2 x CO₂CH₂CH₃), 3.59 (d, *J* = 5.9 Hz, 2 H, CH₂Br), 1.34–1.27 (m, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 165.3 (CO₂), 164.9 (CO₂), 123.2 (q, *J*_{CF} = 282 Hz, CF₃), 80.3 ((EtO₂C)₂CHO), 79.0 (q, *J*_{CF} = 31 Hz, OCH(CF₃)), 62.43 (CO₂CH₂CH₃), 62.35 (CO₂CH₂CH₃), 26.2 (CH₂Br), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –75.6; HRMS (ESI-TOF) *m*/*z* Calcd for C₁₀H₁₅BrO₅F₃⁺ [M+H]⁺: 351.0055, Found: 351.0060.

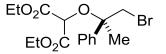
(±)-2,2-Diethyl 4-(trifluoromethyl)oxetane-2,2-dicarboxylate (9h)


DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 49 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **8h** (351 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded oxetane **9h** as a colourless oil (117 mg, 43%); $R_f = 0.38$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2988, 1746 (C=O), 1450, 1398, 1371, 1283, 1160, 1129, 1054, 1013, 911, 885, 856, 785, 762, 655; ¹H NMR (400 MHz, CDCl₃) δ 4.98–4.87 (m, 1 H, OCH(CF₃)), 4.36–4.28 (m, 4 H, 2 x CO₂CH₂CH₃), 3.22 (dd, *J* = 12.0, 7.6 Hz, 1 H, CHH), 3.18 (dd, *J* = 12.0, 6.9 Hz, 1 H, CHH), 1.31 (t, *J* = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.4 (CO₂), 166.8 (CO₂), 123.3 (q, *J*_{CF} = 280 Hz, CF₃), 82.1 (*C*_q(CO₂Et)₂), 73.0 (q, *J*_{CF} = 37 Hz, OCH(CF₃)), 62.8 (CO₂CH₂CH₃), 62.5 (CO₂CH₂CH₃), 28.2 (CH₂), 13.9 (CO₂CH₂CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ –81.7; HRMS (ESI-TOF) *m/z* Calcd for C₁₀H₁₄O₅F₃⁺ [M+H]⁺: 271.0793, Found: 271.0795.

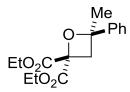
(±)-1,3-Diethyl 2-[(1-bromopropan-2-yl)oxy]propanedioate and (±)-1,3-Diethyl 2-(2bromopropoxy)propanedioate (8i)

A mixture of diazo malonate 1 (558 mg, 3.0 mmol), 1-bromo-2-propanol (180 µL, 2.0 mmol, technical grade, 4:1 mixture of regioisomers) and dirhodium(II) tetraacetate (4.5 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide 8i as a colourless oil (576 mg, 98%, 4:1 mixture of regioisomers); $R_f = 0.47$ (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1739 (C=O), 1447, 1370, 1230, 1178, 1119, 1064, 1023, 934, 859, 664, 598; Major Product (CH₂Br): ¹H NMR (400 MHz, CDCl₃) δ 4.64 (s, 1 H, CH(CO₂Et)₂), 4.33-4.19 (m, 4 H, 2 x $CO_2CH_2CH_3$), 3.91-3.81 (m, 1 H, OCH(Me)), 3.52 (dd, J = 10.5, 5.3 Hz, 1 H, CHHBr), 3.36 (dd, J = 10.5, 6.2 Hz, 1 H, CHHBr), 1.39 (d, J = 6.2 Hz, 3 H, CH₃), 1.30 (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.7 (CO₂), 166.4 (CO₂), 78.1 ((EtO₂C)₂CHO), 77.0 (OCH(Me)), 62.1 (2 x CO₂CH₂CH₃), 35.2 (CH₂Br), 19.0 (CH₃) 14.0 (2 x CO₂CH₂CH₃); Minor Product (CH(Me)Br): ¹H NMR (400 MHz, CDCl₃) δ 4.57 (s, 1 H, CH(CO₂Et)₂), 4.33–4.19 (m, 4 H, $\overline{2 \times CO_2 CH_2 CH_3}$, 3.91–3.81 (m, 1 H, OCHH), 3.76 (dd, J = 9.9, 7.4 Hz, 1 H, OCHH), 3.48–3.46 (m, 1 H, CH(Me)Br), 1.74 (d, J = 6.6 Hz, 3 H, CH₃), 1.30 (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) § 166.7 (CO₂), 166.4 (CO₂), 79.2 ((EtO₂C)₂CHO), 66.9 (OCH₂), 61.9 (2 x CO₂CH₂CH₃), 45.4 (CH(Me)Br), 22.5 (CH₃) 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₀H₁₇BrO₅Na⁺ [M+Na]⁺: 319.0157, Found: 319.0143.

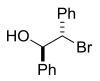
(±)-2,2-Diethyl 4-methyloxetane-2,2-dicarboxylate and (±)-2,2-Diethyl 3-methyloxetane-2,2-dicarboxylate (9i)


DMF (25 mL) was added to a flask containing sodium hydride (60% w/v, 33 mg, 0.8 mmol) which had been cooled to 0 °C. Bromide 8i (202 mg, 0.7 mmol) in DMF (5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 11 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (30 mL) was added followed by EtOAc (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated in vacuo. Purification by flash chromatography (10% EtOAc in hexanes) afforded oxetanes 9i as a colourless oil (120 mg, 82%, 5.4:1 mixture of regioisomers); $R_f = 0.31$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2981, 1741 (C=O), 1447, 1382, 1369, 1259, 1231, 1179, 1124, 1079, 1031, 963, 873, 858, 790, 758, 685; Major Product (4-Me): ¹H NMR (400 MHz, CDCl₃) δ 5.01–4.89 (m, 1 H, OCH(Me)), 4.35– 4.22 (m, 4 H, 2 x $CO_2CH_2CH_3$), 3.08 (dd, J = 11.7, 7.4 Hz, 1 H, CHH), 2.72 (dd, J = 11.7, 7.0 Hz, 1 H, CHH), 1.45 (d, J = 6.3 Hz, 3 H, CH₃), 1.29 (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.2 (CO_2) , 168.9 (CO_2) , 80.7 $(C_{\alpha}(CO_2Et)_2)$, 75.5 (OCH(Me)), 62.04 $(CO_2CH_2CH_3)$, 62.01 $(CO_2CH_2CH_3)$, 35.0 (CH₂), 23.2 (CH₃), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); <u>Minor Product (3-Me)</u>: ¹H NMR (400 MHz, CDCl₃) δ 4.69 (dd, 1 H, OCHH), 4.36–4.15 (m, 5 H, 2 x CO₂CH₂CH₃ and OCHH), 3.79–3.59 (m, 1 H, CH(Me)), 1.29 (t, J = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃), 1.20 (d, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.6 (CO₂), 166.6 (CO₂), 79.1 (C_q(CO₂Et)₂), 74.9 (OCH₂), 62.0 (CO₂CH₂CH₃), 61.8 (CO₂CH₂CH₃), 35.5 (CH(Me)), 14.6 (CO₂CH₂CH₃), 14.2 (CO₂CH₂CH₃), 14.0 (CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₂H₁₉NO₅Na⁺ [M+CH₃CN+Na]⁺: 280.1161, Found: 280.1175.

α-Methylstyrene (2.60 mL, 20 mmol) was added to a mixture of *N*-bromosuccinimide (2.60 g, 22 mmol) in water (20 mL). The reaction mixture was stirred at rt for 3 d. The reaction mixture was extracted with Et₂O (2 x 20 mL), the organic extracts were combined, washed with Na₂S₂O₃ (10 mL, 10% w/v), dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded alcohol **10a** as a colourless oil (2.88 g, 67%); R_f = 0.52 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 3448 (br O-H), 3062, 3028, 2980, 1493, 1447, 1418, 1375, 1327, 1270, 1230, 1180, 1067, 1027, 941, 914, 870, 846, 764, 698, 663, 587, 570; ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.45 (m, 2 H, 2 x Ph-H), 7.44–7.36 (m, 2 H, 2 x Ph-H), 7.36–7.28 (m, 1 H, Ph-H), 3.78 (d, *J* = 10.5 Hz, 1 H, C*H*HBr), 3.72 (d, *J* = 10.5 Hz, 1 H, CH*H*Br), 2.63 (br s, 1 H, OH), 1.70 (s, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 144.1 (Ph-C_q), 128.4 (2 x Ph-CH), 127.5 (Ph-CH), 124.8 (2 x Ph-CH), 73.1 (C_q(OH)), 46.2 (CH₂Br), 28.0 (CH₃).

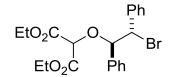

Observed data (¹H, ¹³C) was consistent with that previously reported.⁵

(±)-1,3-Diethyl 2-[(1-bromo-2-phenylpropan-2-yl)oxy]propanedioate (11a)


A mixture of diazo malonate **1** (556 mg, 3.0 mmol), alcohol **10a** (429 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.3 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 2 h. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **11a** as a colourless oil (529 mg, 71%); R_f = 0.40 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 2934, 2905, 1766 (C=O), 1741 (C=O), 1495, 1447, 1370, 1346, 1278, 1229, 1206, 1177, 1157, 1106, 1027, 920, 862, 846, 768, 701, 658, 620, 584, 527; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.41 (m, 2 H, 2 x Ph-H), 7.34–7.27 (m, 3 H, 3 x Ph-H), 4.26 (s, 1 H, CH(CO₂Et)₂), 4.24–4.15 (m, 2 H, CO₂CH₂CH₃), 4.15– 4.02 (m, 2 H, CO₂CH₂CH₃), 3.71 (d, *J* = 10.5 Hz, 1 H, C*H*HBr), 3.54 (d, *J* = 10.5 Hz, 1 H, CH*H*Br), 1.72 (s, 3 H, CH₃), 1.23 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.17 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 167.7 (CO₂), 166.5 (CO₂), 140.0 (Ph-C_q), 128.6 (Ph-CH), 128.4 (2 x Ph-CH), 126.9 (2 x Ph-CH), 81.5 (OC_q(Ph)(Me)), 74.1 ((EtO₂C)₂CHO), 61.8 (2 x CO₂CH₂CH₃), 41.8 (CH₂Br), 22.0 (CH₃), 13.9 (CO₂CH₂CH₃), 13.8 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₆H₂₁BrNaO₅⁺ [M+Na]⁺: 395.0470, Found: 395.0484.

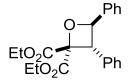
(±)-2,2-Diethyl 4-methyl-4-phenyloxetane-2,2-dicarboxylate (12a)

DMF (25 mL) was added to a flask containing sodium hydride (60% w/v, 36.5 mg, 0.91 mmol) which had been cooled to 0 °C. Bromide **11a** (280 mg, 0.75 mmol) in DMF (5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 24 h. Saturated aq. NH₄Cl (30 mL) was added followed by EtOAc (30 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **12a** as a colourless oil (123 mg, 56%); R_f = 0.34 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2981, 1741 (C=O), 1495, 1446, 1369, 1275, 1258, 1201, 1175, 1141, 1105, 1074, 1046, 1026, 970, 882, 854, 764, 700, 555; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.33 (m, 4 H, 4 x Ph-H), 7.29–7.24 (m, 1 H, Ph-H), 4.36 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 4.26–4.14 (m, 2 H, CO₂CH₂CH₃), 3.24 (d, *J* = 11.7 Hz, 1 H, CHH), 3.16 (d, *J* = 11.7 Hz, 1 H, CHH), 1.79 (s, 3 H, CH₃), 1.35 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.21 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 169.3 (CO₂), 168.7 (CO₂), 146.1 (Ph-C_q), 128.2 (2 x Ph-CH), 127.1 (Ph-CH), 123.6 (2 x Ph-CH), 83.8 (*C*_q(CO₂Et)₂), 78.5 (OC_q(Me)(Ph)), 62.3 (CO₂CH₂CH₃), 62.0 (CO₂CH₂CH₃), 41.4 (CH₂), 30.5 (CH₃), 14.0 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/z Calcd for C₁₆H₂₁O₅⁺ [M+H]⁺: 293.1389, Found: 293.1389.


(±)-*trans*-2-Bromo-1,2-diphenylethan-1-ol (10b)

N-Bromosuccinimide (781 mg, 6.6 mmol) was added to a solution of *trans*-stilbene (1.08 g, 6.0 mmol) in acetone (24 mL) and water (6 mL). The reaction mixture was stirred at rt for 3 d. Water (6 mL) was added and the aqueous mixture was extracted with CH_2CI_2 (3 x 30 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded alcohol **10b** as a white solid (1.06 g, 64%); $R_f = 0.36$ (20% EtOAc in hexanes); mp = 82-84 °C (lit.³³ mp = 83 °C); IR (film) / cm⁻¹ 3386 (br O-H), 3064, 3030, 1586, 1495, 1453, 1269, 1227, 1204, 1157, 1075, 1030, 994, 913, 859, 818, 758, 697, 638, 579; ¹H NMR (400 MHz, CDCI₃) δ 7.43–7.38 (m, 2 H, 2 x Ph-H), 7.37–7.28 (m, 8 H, 8 x Ph-H), 5.22 (d, *J* = 6.7 Hz, 1 H, C*H*(OH)), 5.12 (d, *J* = 6.7 Hz, 1 H, CHBr), 2.45 (br s, 1 H, OH); ¹³C NMR (101 MHz, CDCI₃) δ 139.7 (Ph-C_q), 137.6 (Ph-C_q), 128.9 (2 x Ph-CH), 128.7 (Ph-CH), 128.4 (2 x Ph-CH), 128.3 (Ph-CH), 128.2 (2 x Ph-CH), 127.0 (2 x Ph-CH), 78.1 (CH(OH)), 58.9 (CHBr).

Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.³⁴


(±)-*trans*-1,3-Diethyl 2-(2-bromo-1,2-diphenylethoxy)propanedioate (11b)

A mixture of diazo malonate **1** (554 mg, 3.0 mmol), alcohol **10b** (555 mg, 2.0 mmol) and dirhodium(II) tetraacetate (5.0 mg, 0.01 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with $CHCl_3$ (2 x 20 mL). The organic extracts were combined, dried (Na_2SO_4) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **11b** as a pale yellow

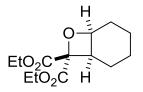
oil (606 mg, 69%); $R_f = 0.35$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 3032, 2983, 1758 (C=O), 1739 (C=O), 1495, 1455, 1370, 1285, 1232, 1178, 1156, 1113, 1027, 921, 858, 820, 763, 696, 600, 580; ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.41 (m, 2 H, 2 x Ph-H), 7.34–7.22 (m, 8 H, 8 x Ph-H), 5.15 (d, *J* = 6.6 Hz, 1 H, CH(Ph)Br), 5.04 (d, *J* = 6.6 Hz, 1 H, OCH(Ph)), 4.34 (s, 1 H, CH(CO₂Et)₂), 4.22–4.14 (m, 2 H, CO₂CH₂CH₃), 4.13–4.03 (m, 2 H, CO₂CH₂CH₃), 1.24 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.15 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.2 (CO₂), 165.8 (CO₂), 137.9 (Ph-C_q), 136.7 (Ph-C_q), 129.1 (2 x Ph-CH), 128.9 (Ph-CH), 128.3 (Ph-CH), 128.2 (4 x Ph-CH), 128.0 (2 x Ph-CH), 85.8 (OCH(Ph)), 77.5 ((EtO₂C)₂CHO), 61.8 (CO₂CH₂CH₃), 61.7 (CO₂CH₂CH₃), 56.2 (CH(Ph)Br), 14.0 (CO₂CH₂CH₃), 13.8 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₂₁H₂₃BrO₆ [M+H₂O]: 452.0834, Found: 452.0854.

(±)-*trans*-2,2-Diethyl 3,4-diphenyloxetane-2,2-dicarboxylate (12b)

DMF (16 mL) was added to a flask containing sodium hydride (60% w/v, 25 mg, 0.6 mmol) which had been cooled to 0 °C. Bromide **11b** (216 mg, 0.5 mmol) in DMF (4 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 48 h. Saturated aq. NH₄Cl (20 mL) was added followed by EtOAc (20 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded oxetane **12b** as a colourless oil (61 mg, 34%); R_f = 0.18 (10% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1739 (C=O), 1498, 1454, 1390, 1368, 1275, 1206, 1174, 1116, 1062, 1044, 953, 907, 853, 756, 697, 591, 535; ¹ H NMR (400 MHz, CDCl₃) δ 7.48–7.27 (m, 10 H, 10 x Ph-H), 6.21 (d, *J* = 8.2 Hz, 1 H, OCH(Ph)), 4.47–4.32 (m, 2 H, CO₂CH₂CH₃), 4.00–3.82 (m, 2 H, CO₂CH₂CH₃), 1.35 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 0.85 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 0.85 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.35 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 0.85 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 8.2.6 (OCH(Ph)), 62.3 (CO₂CH₂CH₃), 61.7 (CO₂CH₂CH₃), 54.1 (CH(Ph)), 14.0 (CO₂CH₂CH₃), 13.5 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/z Calcd for C₂₁H₂₃O₅⁺ [M+H]⁺: 355.1545, Found: 355.1561.

(±)-trans-2-Bromocyclohexan-1-ol (10c)

Cyclohexene (4.05 mL, 40 mmol) was added to a mixture of *N*-bromosuccinimide (4.95 g, 42 mmol) in water (40 mL). The mixture was stirred at rt for 21 h. After this time, the product was extracted with Et₂O (2 x 40 mL). The organic extracts were combined, washed with Na₂S₂O₃ (20 mL, 10% w/v), dried (Na₂SO₄) and concentrated *in vacuo* using a rotavap. Removal of remaining starting material and solvent by heating at 70 °C for 2 h afforded alcohol **10c** as a colourless oil (5.21 g, 73%); $R_f = 0.16$ (20% Et₂O in hexanes); IR (film) / cm⁻¹ 3393 (br O-H), 2934, 2860, 1449, 1360, 1253, 1229, 1185, 1121, 1068, 1034, 1007, 955, 862, 841, 791, 687, 555; ¹H NMR (400 MHz, CDCl₃) δ 3.94–3.88 (m, 1 H, C*H*(OH)), 3.64–3.58 (m, 1 H, CHBr), 2.51 (br s, 1 H, OH), 2.39–2.33 (m, 1 H, Cy-CH), 2.18–2.12 (m, 1 H, Cy-CH), 1.90–1.79 (m, 2 H, 2 x Cy-CH), 1.73–1.68 (m, 1 H, Cy-CH), 1.44–1.24 (m, 3 H, 3 x Cy-CH); ¹³C NMR (101 MHz, CDCl₃) δ 75.3 (CH(OH)), 61.9 (CHBr), 36.2 (Cy-CH₂), 33.5 (Cy-CH₂), 26.7 (Cy-CH₂), 24.1 (Cy-CH₂).


Observed data (IR, ¹H, ¹³C) was consistent with that previously reported.³⁵

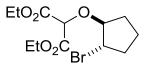
(±)-trans-1,3-Diethyl 2-[(2-bromocyclohexyl)oxy]propanedioate (11c)

A mixture of diazo malonate **1** (558 mg, 3.0 mmol), alcohol **10c** (360 mg, 2.0 mmol) and dirhodium(II) tetraacetate (5.0 mg, 0.011 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% Et₂O in hexanes) afforded bromide **11c** as a colourless oil (552 g, 81%); R_f = 0.38 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2939, 2864, 1764 (C=O), 1740 (C=O), 1448, 1369, 1226, 1188, 1135, 1104, 1026, 951, 858, 800, 671, 600, 585, 528; ¹H NMR (400 MHz, CDCl₃) δ 4.78 (s, 1 H, CH(CO₂Et)₂), 4.34–4.20 (m 4 H, 2 x CO₂CH₂CH₃), 4.13–4.06 (m, 1 H, CHBr), 3.57–3.52 (m, 1 H, CH(O)), 2.36–2.30 (m, 1 H, Cy-CH), 2.23–2.17 (m, 1 H, Cy-CH), 1.85–1.73 (m, 2 H, 2 x Cy-CH), 1.72–1.65 (m, 1 H, Cy-CH), 1.58–1.49 (m, 1 H, Cy-CH), 1.39–1.27 (m, 8 H, 2 x CO₂CH₂CH₃ and 2 x Cy-CH); ¹³C NMR (101 MHz, CDCl₃) δ 167.2 (CO₂), 166.3 (CO₂), 83.6 (CH(O)), 79.2 ((EtO₂C)₂CHO), 61.9 (2 x CO₂CH₂CH₃), 54.7 (CHBr), 35.3 (Cy-CH₂), 31.1 (Cy-CH₂), 24.9 (Cy-CH₂), 23.1 (Cy-CH₂), 14.03 (CO₂CH₂CH₃), 14.01 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₂₁BrNaO₅⁺ [M+Na]⁺: 359.0465, Found: 359.0465.

(±)-*cis*-8,8-Diethyl 7-oxabicyclo[4.2.0]octane-8,8-dicarboxylate (12c)

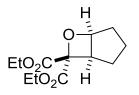
DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **11c** (337 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 10 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **12c** as a colourless oil (202 mg, 79%); R_f= 0.25 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2939, 2871, 1740 (C=O), 1449, 1368, 1267, 1210, 1174, 1136, 1083, 1049, 1024, 947, 857, 770, 667; ¹H NMR (400 MHz, CDCl₃) δ 5.00–4.96 (m, 1 H, OCH), 4.34–4.22 (m, 4 H, 2 x CO₂CH₂CH₃), 3.44 (dt, J = 8.0, 6.9 Hz, 1 H, CH), 1.98–1.88 (m, 1 H, Cy-CH), 1.84–1.75 (m, 1 H, Cy-CH), 1.74–1.57 (m, 4 H, 4 x Cy-CH), 1.46–1.36 (m, 1 H, Cy-CH), 1.32–1.20 (m, 7 H, 2 x CO₂CH₂CH₃ and Cy-CH); ¹³C NMR (101 MHz, CDCl₃) δ 168.7 (CO₂), 167.9 (CO₂), 86.3 (C_q (CO₂Et)₂), 76.8 (OCH), 62.1 (CO₂CH₂CH₃), 61.6 (CO₂CH₂CH₃), 38.3 (CH), 27.7 (Cy-CH₂), 21.9 (Cy-CH₂), 19.9 (Cy-CH₂), 18.4 (Cy-CH₂), 14.2 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₃H₂₁O₅⁺ [M+H]⁺: 257.1389, Found: 257.1393.

(±)-trans-2-Bromocyclopentan-1-ol (10d)³⁶



Cyclopentene (3.53 mL, 40 mmol) was added to a mixture of *N*-bromosuccinimide (4.96 g, 42 mmol) in water (40 mL). The mixture was stirred at rt for 21 h. After this time, the product was extracted with Et_2O (3 x 40 mL). The organic extracts were combined, washed with $Na_2S_2O_3$ (30 mL, 10% w/v), dried (Na_2SO_4) and concentrated *in vacuo* using a rotavap. Removal of remaining starting material and solvent by heating at 70 °C for 2 h afforded alcohol **10d** as a colourless oil (4.48 g, 68%); $R_f = 0.55$ (40% EtOAc in hexanes);

IR (film) / cm⁻¹ 3341 (br O-H), 2971, 2877, 1436, 1335, 1302, 1197, 1130, 1101, 1070, 1033, 983, 896, 842, 605, 550; ¹H NMR (400 MHz, CDCl₃) δ 4.40–4.33 (m, 1 H, C*H*(OH)), 4.11–4.02 (m, 1 H, CHBr), 2.43–2.31 (m, 1 H, C*H*H), 2.24–2.09 (m, 2 H, CH*H* and OH), 2.07–1.95 (m, 1 H, CH*H*), 1.93–1.75 (m, 2 H, 2 x C*H*H), 1.65–1.63 (m, 1 H, CH*H*); ¹³C NMR (101 MHz, CDCl₃) δ 80.5 (CH(OH)), 57.0 (CHBr), 33.7 (CH₂), 31.1 (CH₂), 21.0 (CH₂).

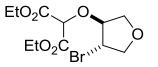

Observed data (IR, ¹H) was consistent with that previously reported.^{37,38}

(±)-trans-1,3-Diethyl 2-[(2-bromocyclopentyl)oxy]propanedioate (11d)

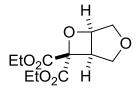
A mixture of diazo malonate **1** (588 mg, 3.2 mmol), alcohol **10d** (330 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.4 mg, 0.010 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (3 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded bromide **11d** as a colourless oil (486 mg, 75%); $R_f = 0.36$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2981, 2876, 1763 (C=O), 1740 (C=O), 1466, 1446, 1369, 1229, 1178, 1117, 1070, 1026, 972, 859, 710, 604; ¹H NMR (400 MHz, CDCl₃) δ 4.61 (s, 1 H, CH(CO₂Et)₂), 4.34–4.22 (m 6 H, 2 x CO₂CH₂CH₃ and CHBr and CH(O)), 2.44–2.31 (m, 1 H, C*H*H), 2.28–2.15 (m, 1 H, C*H*H), 2.07–1.96 (m, 1 H, C*H*H), 1.92–1.77 (m, 3 H, 3 x CH*H*), 1.31 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.30 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.6 (CO₂), 166.5 (CO₂), 89.4 (CH(O)), 78.2 ((EtO₂C)₂CHO), 62.10 (CO₂CH₂CH₃), 62.05 (CO₂CH₂CH₃), 53.6 (CHBr), 34.7 (CH₂), 29.9 (CH₂), 21.6 (CH₂), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₂H₁₉BrNaO₅⁺ [M+Na]⁺: 345.0314, Found: 345.0331.

(±)-cis-7,7-Diethyl 6-oxabicyclo[3.2.0]heptane-7,7-dicarboxylate (12d)

DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **11d** (324 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 9 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded oxetane **12d** as a colourless oil (188 mg, 77%); R_f= 0.28 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2961, 2877, 1741 (C=O), 1449, 1369, 1295, 1272, 1236, 1185, 1189, 1110, 1069, 1021, 954, 918, 877, 772, 685; ¹H NMR (400 MHz, CDCl₃) δ 5.31–5.25 (m, 1 H, OCH), 4.35–4.22 (m, 4 H, 2 x CO₂CH₂CH₃), 3.65–3.57 (m, 1 H, CH), 2.12–1.94 (m, 3 H, 3 x C*H*H), 1.91–1.79 (m, 1 H, CH*H*), 1.66–1.50 (m, 1 H, CH*H*), 1.43–1.33 (m, 1 H, CH*H*), 1.30 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.29 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.9 (CO₂), 167.3 (CO₂), 85.5 (OCH), 85.0 (*C*_q(CO₂Et)₂), 62.2 (CO₂CH₂CH₃), 61.5 (CO₂CH₂CH₃), 45.1 (CH), 33.8 (CH₂), 27.5 (CH₂), 24.2 (CH₂), 14.2 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (FTICR) *m*/z Calcd for C₁₂H₁₉O₅⁺ [M+H]⁺: 243.1227, Found: 243.1234.


(±)-trans-4-Bromooxolan-3-ol (10e)³⁹

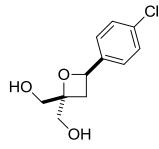
2,5-Dihydrofuran (3.0 mL, 40 mmol) was added to a mixture of *N*-bromosuccinimide (4.95 g, 42 mmol) in water (40 mL). The mixture was stirred at rt for 24 h. After this time, the product was extracted with Et₂O (3 x 40 mL). The organic extracts were combined, washed with Na₂S₂O₃ (50 mL, 10% w/v), dried (Na₂SO₄) and concentrated *in vacuo* using a rotavap. Removal of remaining starting material and solvent by heating at 70 °C for 1 h afforded alcohol **10e** as a yellow oil (3.48 g, 52%); IR (film) / cm⁻¹ 3387 (br O-H), 2949, 2872, 1467, 1415, 1364, 1315, 1266, 1208, 1055, 956, 890, 784, 725, 634; ¹H NMR (400 MHz, CDCl₃) δ 4.64–4.55 (m, 1 H, C*H*(OH)), 4.43 (dd, *J* = 10.6, 4.7 Hz, 1 H, OC*H*H), 4.27 (dd, *J* = 10.0, 4.3 Hz, 1 H, OC'*H*H), 4.23–4.18 (m, 1 H, CHBr), 4.09 (dd, *J* = 10.6, 2.2 Hz, 1 H, OCH*H*), 3.86–3.78 (m, 1 H, OC'H*H*), 2.14–2.03 (m, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 78.6 (CH(OH)), 74.2 (OCH₂), 73.2 (OC'H₂) 51.4 (CHBr).


Observed data (¹H, ¹³C) was consistent with that previously reported.³⁹

(±)-trans-1,3-Diethyl 2-[(4-bromooxolan-3-yl)oxy]propanedioate (11e)

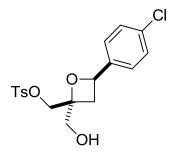
A mixture of diazo malonate **1** (560 mg, 3.0 mmol), alcohol **10d** (335 mg, 2.0 mmol) and dirhodium(II) tetraacetate (4.7 mg, 0.011 mmol) in benzene (20 mL) was heated at 80 °C for 90 min. The reaction mixture was allowed to cool to rt. Water (20 mL) was added and the layers were separated. The aqueous layer was extracted with CHCl₃ (2 x 20 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (20% EtOAc in hexanes) afforded bromide **11e** as a colourless oil (491 mg, 75%); $R_f = 0.26$ (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2984, 1738 (C=O), 1467, 1370, 1232, 1179, 1123, 1093, 1024, 924, 903, 855, 832, 731, 635; ¹H NMR (400 MHz, CDCl₃) δ 4.64 (s, 1 H, CH(CO₂Et)₂), 4.48–4.44 (m, 1 H, CH(O)), 4.41–4.37 (m, 1 H, CHBr), 4.36–4.26 (m, 6 H, 2 x CO₂CH₂CH₃ and OC/H and OC'HH), 4.05 (dd, *J* = 10.6, 2.0 Hz, 1 H, OCH*H*), 3.96 (dd, *J* = 10.4, 1.8 Hz, 1 H, OC'H*H*), 1.31 (t, *J* = 7.1 Hz, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 166.1 (CO₂), 166.0 (CO₂), 87.3 (CH(O)), 78.1 ((EtO₂C)₂CHO), 74.4 (OCH₂), 71.8 (OC'H₂), 62.33 (CO₂CH₂CH₃), 62.32 (CO₂CH₂CH₃), 48.8 (CHBr), 14.0 (2 x CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₈BrO₆⁺ [M+H]⁺: 325.0287, Found: 325.0295.

(±)-*cis*-7,7-Diethyl 3,6-dioxabicyclo[3.2.0]heptane-7,7-dicarboxylate (12e)



DMF (32.5 mL) was added to a flask containing sodium hydride (60% w/v, 48 mg, 1.2 mmol) which had been cooled to 0 °C. Bromide **11e** (326 mg, 1.0 mmol) in DMF (7.5 mL) was added dropwise to the stirred suspension of sodium hydride in DMF at 0 °C over 8 min. The reaction mixture was stirred at 25 °C for 16 h. Saturated aq. NH₄Cl (40 mL) was added followed by EtOAc (40 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 40 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (40% EtOAc in hexanes) afforded oxetane **12e** as a colourless oil (206 mg, 92%); R_f = 0.29 (50% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1740 (C=O), 1467, 1447, 1369, 1270, 1228, 1175, 1124, 1079, 1061, 1040, 1016, 915, 846, 769, 719, 678; ¹H NMR (400

MHz, CDCl₃) δ 5.31 (dd, J = 5.7, 2.5 Hz, 1 H, OCH), 4.37–4.20 (m, 6 H, 2 x CO₂CH₂CH₃ and OC*H*H and OC'*H*H), 3.94–3.87 (m, 1 H, CH), 3.46 (dd, J = 10.9, 4.9 Hz, 1 H, OCH*H*), 3.35 (dd, J = 11.5, 2.5 Hz, OC'H*H*), 1.35–1.28 (m, 6 H, 2 x CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.1 (CO₂), 166.8 (CO₂), 84.1 (C_q (CO₂Et)₂), 82.6 (OCH), 73.4 (OC'H₂), 68.2 (OCH₂), 62.5 (CO₂CH₂CH₃), 62.0 (CO₂CH₂CH₃), 45.9 (CH), 14.1 (CO₂CH₂CH₃), 13.9 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₁H₁₆O₆Na⁺ [M+Na]⁺: 267.0845, Found: 267.0851.

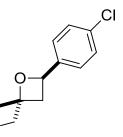

Functionalization of Oxetanes 6d and 9c

(±)-[4-(4-Chlorophenyl)-2-(hydroxymethyl)oxetan-2-yl]methanol (13)

Sodium borohydride (37 mg, 0.97 mmol) was added in one portion to a mixture of oxetane **6d** (100 mg, 0.32 mmol) and LiCl (40 mg, 0.95 mmol) in THF (0.6 mL) and MeOH (1.2 mL) at 0 °C. The reaction mixture was stirred at 0 °C for a further 10 min and allowed to warm to rt and stirred for 17 h. Saturated aq. Rochelle salt (4 mL) was added and the resulting mixture was stirred for 20 min and the aqueous mixture was extracted with EtOAc (6 x 10 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (2% MeOH in EtOAc) afforded oxetane **13** as a white crystalline solid (67 mg, 91%); $R_f = 0.30$ (EtOAc); mp = 125-126 °C; IR (film) / cm⁻¹ 3348 (br O-H), 2917, 1412, 1389, 1269, 1229, 1089, 1048, 967, 869, 823, 718; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 4 H, 4 x Ar-H), 5.67–5.60 (m, 1 H, OCH(Ar)), 3.91–3.80 (m, 2 H, CH₂OH), 3.70 (dd, J = 12.3, 5.5 Hz, 1 H, CHHOH), 3.64 (dd, J = 12.3, 7.1 Hz, 1 H, CHHOH), 2.85 (dd, J = 11.2, 8.1 Hz, 1 H, CHH), 2.61 (dd, J = 11.2, 7.4 Hz, 1 H, CHH), 2.57–2.44 (m, 1 H, OH), 2.28–2.14 (m, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 140.9 (Ar-Cq-CH(O)), 133.7 (Ar-Cq-Cl), 128.8 (2 x Ar-CH), 126.6 (2 x Ar-CH), 84.4 (Cq(CH₂OH)₂), 76.1 (OCH(Ar)), 65.9 (CH₂OH), 32.0 (CH₂). HRMS (APCI) *m*/z Calcd for C₁₁H₁₇CINO₃⁺ [M+NH₄]⁺: 246.0889, Found: 246.0891.

(±)-[4-(4-chlorophenyl)-2-(hydroxymethyl)oxetan-2-yl]methyl 4-methylbenzene-1-sulfonate (14)

Major


n-Butyllithium (2.11 M in hexanes, 0.11 mL, 0.23 mmol) was added dropwise to a stirring solution of oxetane **13** (50 mg, 0.22 mmol) in THF (0.7 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h. A solution of 4-toluenesulfonyl chloride (44 mg, 0.23 mmol) in THF (0.5 mL) was added dropwise over 2 min. The reaction mixture was stirred at 30 °C for 22 h. Water (5 mL) was added and the resulting mixture was extracted with EtOAc (6 x 10 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (50% EtOAc in hexanes) afforded minor oxetane **14a** as a pale yellow oil followed by major oxetane **14b** as a white crystalline solid (55 mg, 65%, d.r. 3.8:1).

<u>Minor Product 14a:</u> $R_f = 0.48$ (50% EtOAc in hexanes); IR (film) / cm⁻¹ 3428 (br O-H), 1598, 1493, 1449, 1359, 1295, 1190, 1175, 1094, 1046, 977, 877, 823, 667, 556; ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.82 (m, 2 H, 2 x Ts-H), 7.41–7.37 (m, 2 H, 2 x Ts-H), 7.36–7.33 (m, 2 H, 2 x Ar-H), 7.33–7.28 (m, 2 H, Ar-H), 5.61 (t, J = 7.7 Hz, 1 H, OCH(Ar)), 4.32 (d, J = 10.5 Hz, 1 H, CHHOTs), 4.23 (d, J = 10.5 Hz, 1 H, CHHOTs), 3.67 (d, J = 12.3 Hz, 1 H, CHHOH), 3.59 (d, J = 12.3 Hz, 1 H CHHOH), 2.90 (dd, J = 11.5, 7.9 Hz, 1 H, CHH), 2.60 (dd, J = 11.5, 7.6 Hz, 1 H, CHH), 2.47 (s, 3 H, Ts-CH₃), 1.83 (br s, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (Ts-C_q-SO₂), 140.4 (Ar-C_q-CH(O)), 133.8 (Ar-C_q-Cl), 132.5 (Ts-C_q-Me), 130.0 (2 x Ts-CH),

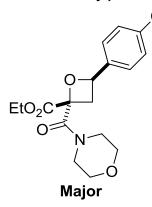
128.8 (2 x Ar-CH), 128.0 (2 x Ts-CH), 126.6 (2 x Ar-CH), 81.7 (C_q (CH₂OH)(CH₂OTs)), 76.2 (OCH(Ar)), 70.9 (CH₂OTs), 65.4 (CH₂OH), 32.4 (CH₂), 21.7 (Ts-CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₂₀H₂₂CINO₅SNa⁺ [M+CH₃CN+Na]⁺: 446.0805, Found: 446.0827.

<u>Major Product 14b:</u> $R_f = 0.22$ (50% EtOAc in hexanes); mp = 103-105 °C; IR (film) / cm⁻¹ 3382 (br O-H), 2925, 1597, 1490, 1452, 1402, 1365, 1294, 1232, 1189, 1177, 1082, 1014, 979, 959, 941, 871, 822, 810, 795, 770, 693, 663, 545; ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.73 (m, 2 H, 2 x Ts-H), 7.38–7.31 (m, 2 H, 2 x Ts-H), 7.30–7.26 (m, 2 H, 2 x Ar-H), 7.25–7.21 (m, 2 H, Ar-H), 5.67 (t, *J* = 7.7 Hz, 1 H, OCH(Ar)), 4.14 (d, *J* = 10.8 Hz, 1 H, C*H*HOTs), 4.11 (d, *J* = 10.8 Hz, 1 H, CH*H*OTs), 3.86 (dd, *J* = 12.2, 6.0 Hz, 1 H, C*H*HOH), 3.77 (dd, *J* = 12.2, 5.6 Hz, 1 H CH*H*OH), 2.88 (dd, *J* = 11.6, 8.2 Hz, 1 H, C*H*H), 2.49 (dd, *J* = 11.6, 7.2 Hz, 1 H, CH*H*), 2.47 (s, 3 H, Ts-CH₃), 2.32–2.24 (m, 1 H, OH); ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (Ts-Cq-SO₂), 140.5 (Ar-Cq-CH(O)), 133.7 (Ar-Cq-Cl), 132.4 (Ts-Cq-Me), 129.9 (2 x Ts-CH), 128.6 (2 x Ar-CH), 128.0 (2 x Ts-CH), 126.5 (2 x Ar-CH), 81.5 (*C*q(CH₂OH)(CH₂OTs)), 76.3 (OCH(Ar)), 70.7 (CH₂OTs), 64.9 (CH₂OH), 32.9 (CH₂), 21.7 (Ts-CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₂₀H₂₂CINO₅SNa⁺ [M+CH₃CN+Na]⁺: 446.0805, Found: 446.0819.

(±)-2-(4-Chlorophenyl)-1,6-dioxaspiro[3.3]heptane (15)

Sodium hydride (60% w/v, 5.2 mg, 0.13 mmol) was added to a stirring solution of oxetane **14** (41 mg, 0.11 mmol) in DMF (4.3 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 10 min then at 25 °C for 20 h. Saturated aq. NH₄Cl (5 mL) was added followed by EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (40% EtOAc in hexanes) afforded oxetane **15** as a colourless oil (19 mg, 85%); $R_f = 0.33$ (40% EtOAc in hexanes); IR (film) / cm⁻¹ 2937, 2865, 1598, 1492, 1447, 1441, 1339, 1298, 1246, 1164, 1126, 1089, 1015, 971, 878, 820, 765; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.32 (m, 2 H, 2 x Ar-H), 7.29–7.23 (m, 2 H, 2 x Ar-H), 5.53 (t, *J* = 7.1 Hz, 1 H, OCH(Ar)), 5.00 (dd, *J* = 7.7, 1.0 Hz, 1 H, OCHH), 4.97 (dd, *J* = 7.9, 0.9 Hz, 1 H, OC'HH), 4.86 (d, *J* = 12.0, 6.4 Hz, 1 H, CHH); ¹³C NMR (101 MHz, CDCl₃) δ 140.9 (Ar-C_q-CH(O)), 133.7 (Ar-C_q-Cl), 128.8 (2 x Ar-CH), 126.3 (2 x Ar-CH), 85.0 (OC'H₂), 84.8 (OCH₂), 83.0 (C_q), 76.3 (OCH(Ar)), 39.5 (CH₂). HRMS (CI) *m/z* Calcd for C₁₁H₁₂ClO₂⁺ [M+H]⁺: 211.0526, Found: 211.0517.

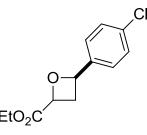
(±)-Ethyl 2-(benzylcarbamoyl)-4-(4-chlorophenyl)oxetane-2-carboxylate (17)



A microwave vial (0.5–2.0 mL volume) was charged with oxetane **6d** (51 mg, 0.16 mmol). The reaction vial was flushed with argon, sealed with a cap and then further flushed with argon. Anhydrous ethanol (0.8 mL)

was added followed by 1N NaOH (176 μ L, 0.18 mmol). The stirred mixture was stirred in an oil bath at 30 °C for 5 d. The reaction mixture was concentrated *in vacuo* to afford (±)-4-(4-chlorophenyl)-2-(ethoxycarbonyl)oxetane-2-carboxylate sodium salt **16** as a white solid (d.r. 3.1:1) which was used without further purification; <u>Major Product:</u> ¹H NMR (400 MHz, DMSO-*d*₆) 7.45–7.39 (m, 2 H, 2 x Ar-H), 7.39–7.35 (m, 2 H, 2 x Ar-H), 5.52 (t, *J* = 7.4 Hz, 1 H, OCH(Ar)), 4.12–4.05 (m, 2 H, CO₂CH₂CH₃), 3.07 (dd, *J* = 11.1, 7.9 Hz, 1 H, C*H*H), 2.62 (dd, *J* = 11.1, 7.0 Hz, 1 H, CHH), 1.17 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); <u>Minor Product:</u> ¹H NMR (400 MHz, DMSO-*d*₆) 7.73–7.68 (m, 2 H, 2 x Ar-H), 7.45–7.39 (m, 2 H, 2 x Ar-H), 5.41 (t, *J* = 7.6 Hz, 1 H, OCH(Ar)), 4.12–4.05 (m, 2 H, CO₂CH₂CH₃), 3.10 (dd, *J* = 11.3, 7.8 Hz, 1 H, CHH), 2.69 (dd, *J* = 11.3, 7.6 Hz, 1 H, CHH), 1.20 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃).

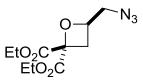
HATU (70 mg, 0.18 mmol) was added to a flask containing (±)-4-(4-chlorophenyl)-2-(ethoxycarbonyl)oxetane-2-carboxylate sodium salt 16 (0.16 mmol) in DMF (2.5 mL). The reaction mixture was stirred at 30 °C for 3 h. Benzyl amine (28 µL, 0.25 mmol) was added in one portion and the reaction mixture was stirred at 40 °C for 24 h. The reaction mixture was concentrated in vacuo. Purification by flash chromatography (30% EtOAc in hexanes) afforded oxetane **17** as a pale yellow oil (29 mg, 48% over 2 steps, d.r. 2.9:1); $R_f = 0.49$ (50% EtOAc in hexanes); IR (film) / cm⁻¹ 3337 (N-H), 2981, 2934, 1741 (C=O ester), 1669 (C=O amide), 1600, 1525, 1493, 1454, 1366, 1275, 1226, 1157, 1135, 1090, 1069, 1014, 951, 919, 855, 823, 729, 698, 599; Major Product: ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.41 (m, 1 H, NH), 7.47–7.18 (m, 9 H, 4 x Ar-H and 5 x Ph-H), 5.61 (t, J = 7.7 Hz, 1 H, OCH(Ar)), 4.68 (dd, J = 14.9, 6.5 Hz, 1 H, CONHC*H*HPh), 4.53 (dd, *J* = 14.9, 5.6 Hz, 1 H, CONHCH*H*Ph), 4.39–4.28 (m, 2 H, CO₂CH₂CH₃), 3.34 (dd, J = 12.3, 7.6 Hz, 1 H, CHH), 3.23 (dd, J = 12.3, 7.9 Hz, 1 H, CHH), 1.33 (t, J = 7.1 Hz, 3 H, CHH) $CO_2CH_2CH_3$; ¹³C NMR (101 MHz, CDCl₃) δ 169.1 (C=O), 168.2 (C=O), 138.9 (Ar-C₀-CH(O)), 137.51 (Ph-C_a), 134.6 (Ar-C_a-Cl), 128.9 (2 x Ph-CH), 128.8 (2 x Ar-CH), 127.7 (Ph-CH), 127.6 (2 x Ph-CH), 127.3 (2 x Ar-CH), 81.3 (C_a(CO₂Et)(CONHBn)), 78.31 (OCH(Ar)), 62.5 (CO₂CH₂CH₃), 43.2 (CONHCH₂Ph), 36.5 (CH₂), 14.0 (CO₂CH₂CH₃); Minor Product: ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.18 (m, 9 H, 4 x Ar-H and 5 x Ph-H), 7.13–7.05 (m, 1 H, NH), 5.74 (t, J = 7.6 Hz, 1 H, OCH(Ar)), 4.62 (dd, J = 14.9, 6.8 Hz, 1 H, CONHC*H*HPh), 4.44 (dd, J = 14.9, 5.6 Hz, 1 H, CONHCH*H*Ph), 4.39–4.28 (m, 2 H, CO₂CH₂CH₃), 3.68 (dd, J = 12.3, 7.9 Hz, 1 H, CHH), 2.97 (dd, J = 12.3, 7.3 Hz, 1 H, CHH), 1.36 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 171.3 (C=O), 168.7 (C=O), 138.7 (Ar-C₀-CH(O)), 137.46 (Ph-C₀), 134.6 (Ar-C_a-Cl), 128.9 (2 x Ph-CH), 128.8 (2 x Ar-CH), 127.7 (Ph-CH), 127.6 (2 x Ph-CH), 127.4 (2 x Ar-CH), 81.4 (C₀(CO₂Et)(CONHBn)), 78.27 (OCH(Ar)), 62.6 (CO₂CH₂CH₃), 43.1 (CONHCH₂Ph), 35.8 (CH₂), 14.00 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₂₀H₂₁CINO₄⁺ [M+H]⁺: 374.1159, Found: 374.1174.


(±)-Ethyl 4-(4-chlorophenyl)-2-(morpholine-4-carbonyl)oxetane-2-carboxylate (18)

A microwave vial (0.5–2.0 mL volume) was charged with oxetane **6d** (50 mg, 0.16 mmol). The reaction vial was flushed with argon, sealed with a cap and then further flushed with argon. Anhydrous ethanol (0.8 mL) was added followed by 1N NaOH (176 μ L, 0.18 mmol). The stirred mixture was stirred in an oil bath at 30 °C for 4 d 12 h. The reaction mixture was concentrated *in vacuo* to afford (±)-4-(4-chlorophenyl)-2-(ethoxycarbonyl)oxetane-2-carboxylate sodium salt **16** as a white solid which was used without further purification.

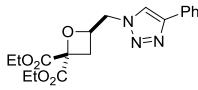
HATU (71 mg, 0.19 mmol) was added to a flask containing (±)-4-(4-chlorophenyl)-2-(ethoxycarbonyl)oxetane-2-carboxylate sodium salt 16 (0.16 mmol) in DMF (2.5 mL). The reaction mixture was stirred at 30 °C for 3 h. Morpholine (22 µL, 0.25 mmol) was added in one portion and the reaction mixture was stirred at 40 °C for 24 h. The reaction mixture was concentrated in vacuo. Purification by flash chromatography (50% EtOAc in hexanes) afforded oxetane **18** as a pale yellow oil (23 mg, 40% over 2 steps, d.r. 2.5:1); R_f = 0.31 (50% EtOAc in hexanes); IR (film) / cm⁻¹ 2976, 2909, 2855, 1745 (C=O ester), 1656 (C=O amide), 1493, 1440, 1367, 1262, 1159, 1115, 1091, 1066, 1028, 966, 828, 598; Major Product: ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.47 (m, 2 H, 2 x Ar-H), 7.41–7.34 (m, 2 H, 2 x Ar-H), 5.65 (t, J = 7.6 Hz, 1 H, OCH(Ar)), 4.42–4.24 (m, 2 H, CO₂CH₂CH₃), 3.88 (dd, J = 11.9, 7.8 Hz, 1 H, CHH), 3.84–3.47 (m, 7 H, 2 x OCH₂ and NCH₂ and NCHH), 3.43-3.29 (m, 1 H, NCHH), 2.82 (dd, J = 11.9, 7.5 Hz, 1 H, CHH), 1.32 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.0 (C=O), 166.4 (C=O), 139.5 (Ar-C_a-CH(O)), 134.4 (Ar-C_a-Cl), 128.85 (2 x Ar-CH), 127.5 (2 x Ar-CH), 82.3 (C_a(CO₂Et)(CON(CH₂)₂)), 78.2 (OCH(Ar)), 66.8 (OCH₂), 66.6 (OCH₂), 62.4 (CO₂CH₂CH₃), 46.2 (NCH₂), 43.1 (NCH₂), 38.0 (CH₂), 14.2 (CO₂CH₂CH₃); Minor Product: ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.34 (m, 2 H, 2 x Ar-H), 7.33–7.28 (m, 2 H, 2 x Ar-H), 5.71 (t, J = 7.7 Hz, 1 H, OCH(Ar)), 4.42–4.24 (m, 2 H, CO₂CH₂CH₃), 3.84–3.47 (m, 8 H, 2 x OCH₂ and NCH₂ and NCHH and CHH), 3.43–3.29 (m, 1 H, NCHH), 3.15 (dd, J = 12.2, 7.7 Hz, 1 H, CH*H*), 1.36 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.0 (C=O), 166.4 (C=O), $(Ar-C_{0}-CH(O))$, 134.6 $(Ar-C_{0}-CI)$, 128.89 (2 x Ar-CH), 127.5 (2 x Ar-CH), 82.3 139.3 (C₀(CO₂Et)(CON(CH₂)₂)), 77.9 (OCH(Ar)), 66.9 (OCH₂), 66.7 (OCH₂), 62.5 (CO₂CH₂CH₃), 46.0 (NCH₂), 43.1 (NCH₂), 37.4 (CH₂), 14.3 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m/z* Calcd for C₁₇H₂₁CINO₅⁺ [M+H]⁺: 354.1108, Found: 354.1103.

(±)-Ethyl 4-(4-chlorophenyl)oxetane-2-carboxylate (19)

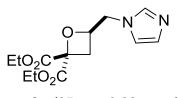

A microwave vial (0.5–2.0 mL volume) was charged with oxetane **6d** (50 mg, 0.16 mmol) and LiCl (7.7 mg, 0.18 mmol). The reaction vial was flushed with argon, sealed with a cap and then further flushed with argon. DMSO (0.56 mL) was then added. The stirred mixture was heated in an oil bath at 150 °C for 16 h and then cooled to rt, poured onto H_2O (20 mL) and extracted with EtOAc (6 x 5 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (10% EtOAc in hexanes) afforded minor oxetane **19a** (*trans*) as a colourless oil, followed by major oxetane **19b** (*cis*) as a colourless oil (27 mg, 68%, 43:57 trans:cis).

<u>Minor Product 19a (trans)</u>: R_f = 0.31 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2979, 1746 (C=O), 1598, 1492, 1374, 1281, 1200, 1091, 1064, 996, 824; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (s, 4 H, 4 x Ar-H), 5.86 (dd, *J* = 8.0, 7.0 Hz, 1 H, OCH(Ar)), 5.11 (dd, *J* = 9.5, 5.7 Hz, 1 H, OCH(CO₂Et)), 4.33 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 3.09 (ddd, *J* = 11.6, 8.0, 5.7 Hz, 1 H, CHH), 2.91 (ddd, *J* = 11.6, 9.5, 7.0 Hz, 1 H, CHH), 1.36 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 172.5 (CO₂), 140.7 (Ar-C_q-CH(O)), 133.9 (Ar-C_q-Cl), 128.8 (2 x Ar-CH), 126.6 (2 x Ar-CH), 80.5 (OCH(Ar)), 74.7 (OCH(CO₂Et)), 61.4 (CO₂CH₂CH₃), 34.0 (CH₂), 14.2 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₂H₁₄ClO₃⁺ [M+H]⁺: 241.0631, Found: 241.0634.

<u>Major Product 19b (*cis***)</u>:** R_f= 0.26 (20% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 1736 (C=O), 1599, 1493, 1448, 1414, 1376, 1280, 1200, 1090, 1044, 1015, 992, 964, 824, 752; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.47 (m, 2 H, 2 x Ar-H), 7.37–7.35 (m, 2 H, 2 x Ar-H), 5.73 (t, *J* = 7.5 Hz, 1 H, OCH(Ar)), 5.21 (t, *J* = 8.2 Hz, 1 H, OCH(CO₂Et)), 4.35–4.23 (m, 2 H, CO₂CH₂CH₃), 3.28 (ddd, *J* = 11.5, 8.2, 7.5 Hz, 1 H, CHH), 2.72–2.65 (m, 1 H, CHH), 1.33 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (126 MHz, CDCl₃) δ 171.7 (CO₂), 140.5 (Ar-C_q-CH(O)), 134.1 (Ar-C_q-Cl), 128.7 (2 x Ar-CH), 127.3 (2 x Ar-CH), 79.3 (OCH(Ar)), 73.4

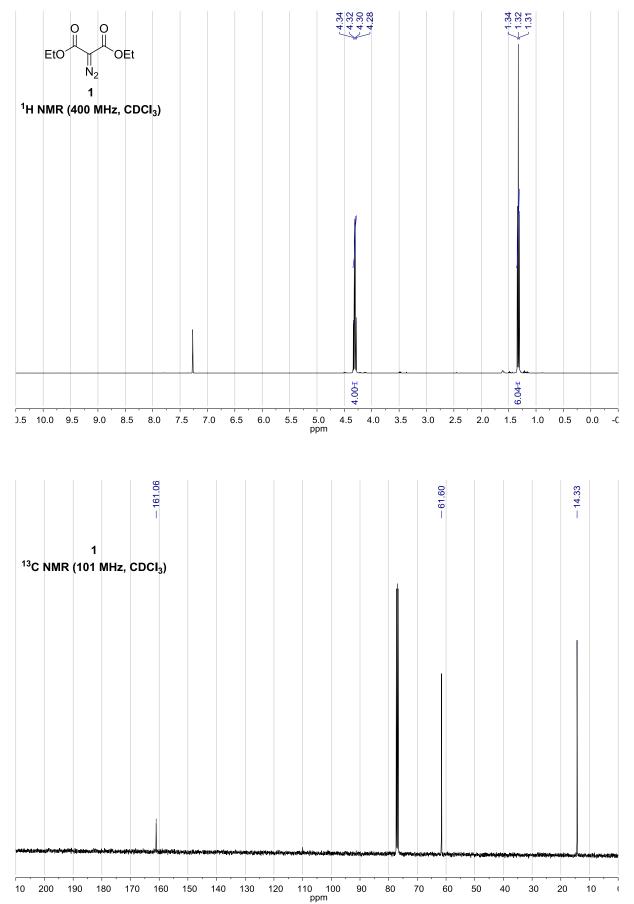

 $(OCH(CO_2Et))$, 61.3 $(CO_2CH_2CH_3)$, 34.6 (CH_2) , 14.2 $(CO_2CH_2CH_3)$; HRMS (ESI-TOF) *m/z* Calcd for $C_{12}H_{14}CIO_3^+$ [M+H]⁺: 241.0631, Found: 241.0616.

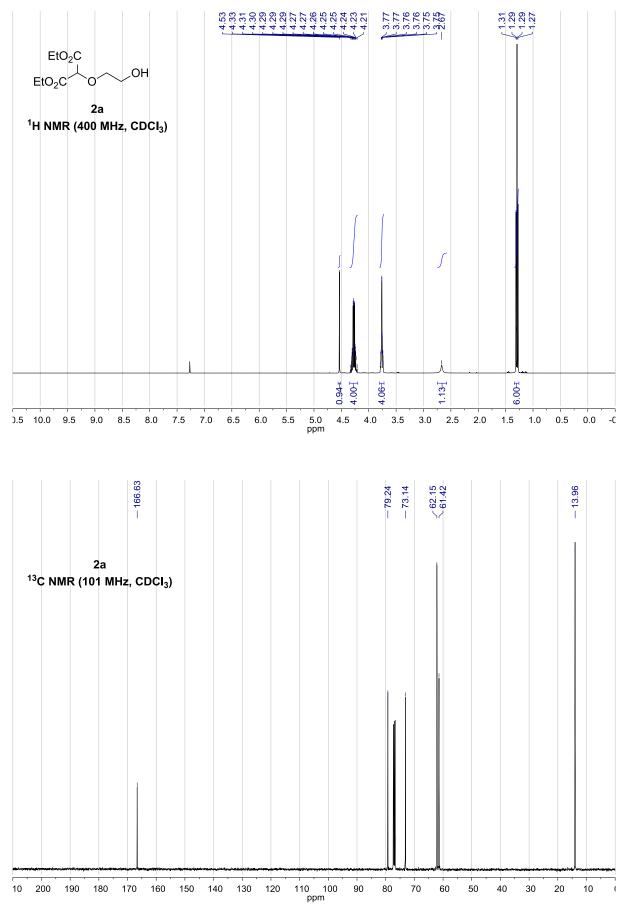
(±)-2,2-Diethyl 4-(azidomethyl)oxetane-2,2-dicarboxylate (20)

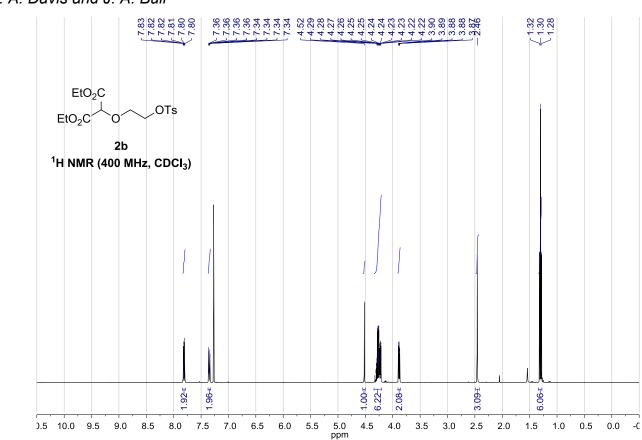

A microwave vial was charged with oxetane **9c** (80 mg, 0.27 mmol) and sodium azide (26 mg, 0.40 mmol). The reaction vial was flushed with argon, sealed with a cap and then further flushed with argon. Anhydrous DMF (5.42 mL) was added to the sealed vial. The stirred mixture was heated in an oil bath at 60 °C for 20 h and then cooled to rt and concentrated *in vacuo*. Water (10 mL) was added and the aqueous mixture was extracted with EtOAc (6 x 10 mL). The organic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purification by flash chromatography (30% EtOAc in hexanes) afforded oxetane **20** as a pale yellow oil (65 mg, 92%); R_f = 0.37 (30% EtOAc in hexanes); IR (film) / cm⁻¹ 2983, 2934, 2098 (N=N=N), 1741 (C=O),1447, 1369, 1258, 1136, 1111, 1076, 1050, 1012, 919, 892, 856, 787, 756, 663, 557; ¹H NMR (400 MHz, CDCl₃) δ 4.98–4.89 (m, 1 H, OC*H*(CH₂N₃)) 4.35–4.27 (m, 4 H, 2 x CO₂C*H*₂CH₃), 3.57 (dd, *J* = 13.6, 3.7 Hz, 1 H, *CH*HN₃), 3.40 (dd, *J* = 13.6, 4.4 Hz, 1 H, CH*H*N₃), 3.04 (d, *J* = 7.2 Hz, 2 H, CH₂), 1.314 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.306 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 62.3 (CO₂CH₂CH₃), 54.6 (CH₂N₃), 3.0.4 (CH₂), 14.0 (2 x CO₂CH₂CH₃); TeMRS (ESI-TOF) *m*/*z* Calcd for C₁₀H₁₆N₃O₅⁺ [M+H]⁺: 258.1090, Found: 258.1090.

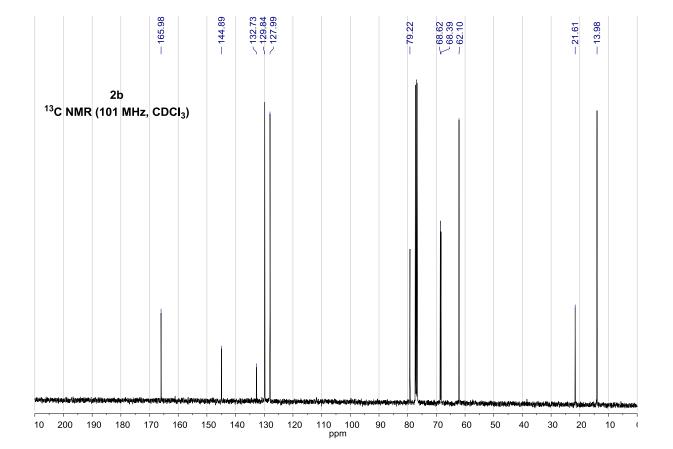
(±)-2,2-Diethyl 4-[(4-phenyl-1H-1,2,3-triazol-1-yl)methyl]oxetane-2,2-dicarboxylate (21)

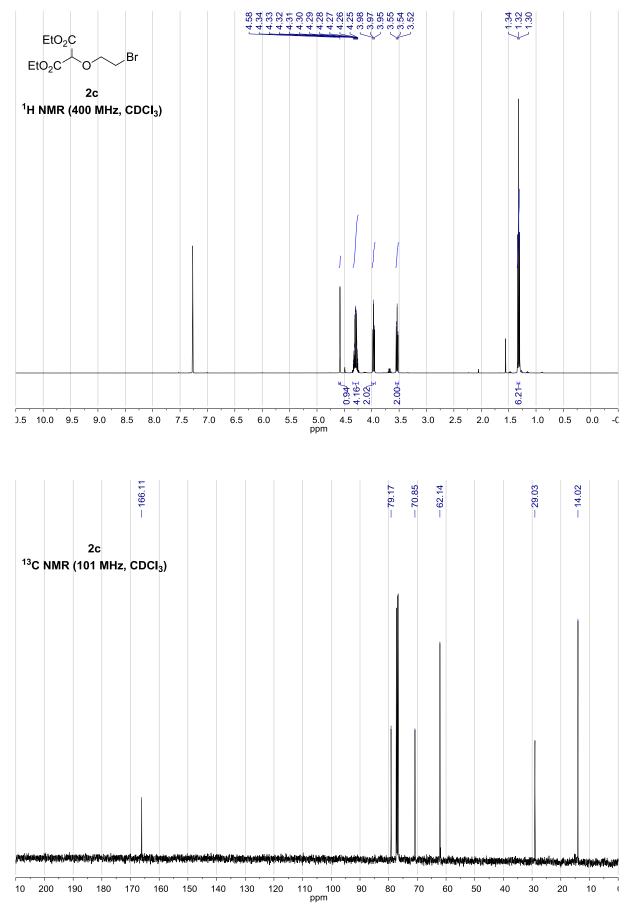
Copper(II) sulfate pentahydrate (6.1 mg, 0.024 mmol) and sodium ascorbate (14.6 mg, 0.074 mmol) were added to a solution of oxetane 20 (63 mg, 0.24 mmol) and phenylacetylene (32 mL, 0.29 mmol) in CH₂Cl₂ (2.4 mL) and water (2.4 mL). The resulting mixture was vigourously stirred in the dark at rt for 3 h. The reaction mixture was diluted with water (10 mL) and extracted with CH₂Cl₂ (4 x 10 mL). The orgnaic extracts were combined, dried (Na₂SO₄) and concentrated *in vacuo*. Purificiation by flash chromatography (40%) EtOAc in hexanes) afforded oxetane 21 as a crystalline white solid (55 mg, 63%); $R_f = 0.33$ (60% EtOAc in hexanes); mp = 88–90 °C; IR (film) / cm⁻¹ 2984, 1741 (C=O), 1611, 1465, 1443, 1391, 1369, 1284, 1262, 1232, 1135, 1069, 1041, 1000, 918, 856, 810, 766, 696, 564; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1 H, NCH=C(Ph)), 7.91-7.83 (m, 2 H, 2 x Ph-H), 7.47-7.40 (m, 2 H, 2 x Ph-H), 7.37-7.31 (m, 1 H, Ph-H), 5.24–5.14 (m, 1 H, OCH(CH₂N)), 4.75 (dd, J = 14.9, 5.1 Hz, 1 H, OCH(CHN)), 4.67 (dd, J = 14.9, 3.3 Hz, 1 H, OCH(CH*H*N)), 4.35–4.26 (m, 2 H, CO₂CH₂CH₃), 4.15–4.01 (m, 2 H, CO₂CH₂CH₃), 3.16 (dd, J = 12.4, 7.7 Hz, 1 H, CHH), 2.81 (dd, J = 12.4, 6.9 Hz, 1 H, CHH), 1.30 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.16 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.1 (CO₂), 167.8 (CO₂), 148.0 (NCH=C₀(Ph)), 130.4 (Ph-C₀), 128.9 (2 x Ph-CH), 128.1 (Ph-CH), 125.7 (2 x Ph-CH), 121.6 (NCH=C(Ph), 81.1 (C₀(CO₂Et)₂), 76.0 (OCH(CH₂N)), 62.6 (CO₂CH₂CH₃), 62.4 (CO₂CH₂CH₃), 53.7 (OCH(CH₂N)), 30.4 (CH₂), 14.0 (CO₂CH₂CH₃), 13.8 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/*z* Calcd for C₁₈H₂₂N₃O₅⁺ [M+H]⁺: 360.1559, Found: 360.1569.

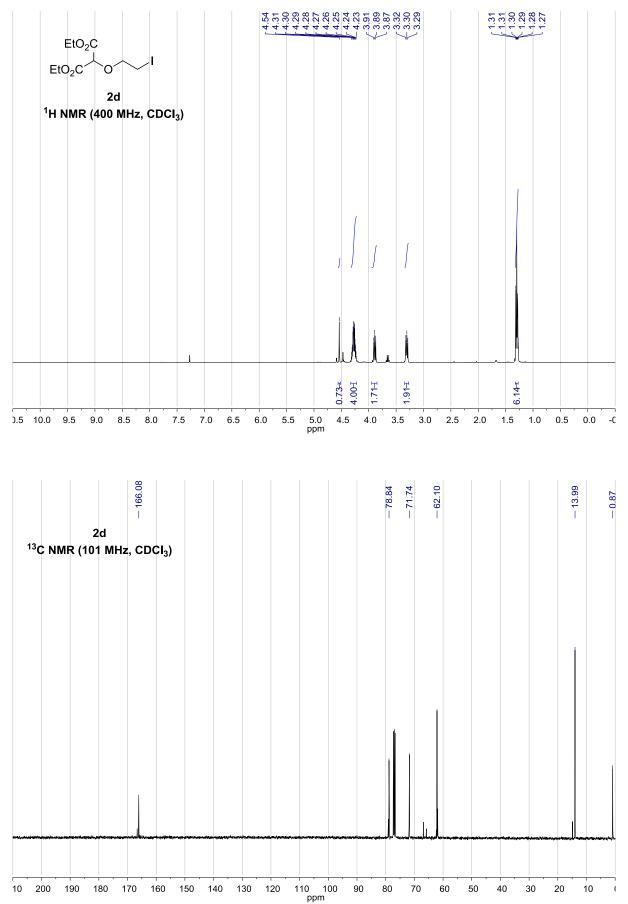

(±)-2,2-Diethyl 4-(1H-imidazol-1-ylmethyl)oxetane-2,2-dicarboxylate (22)

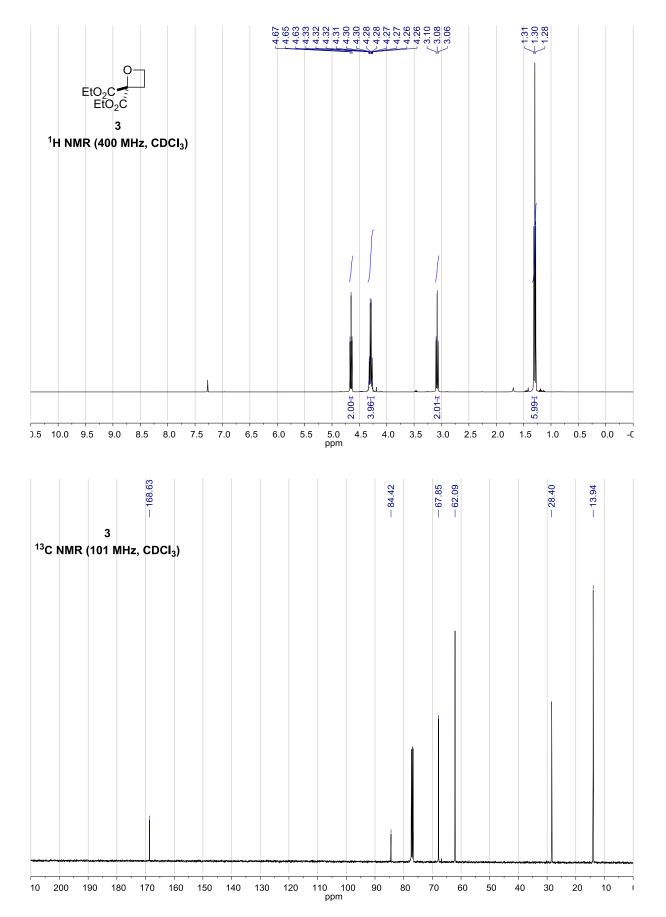


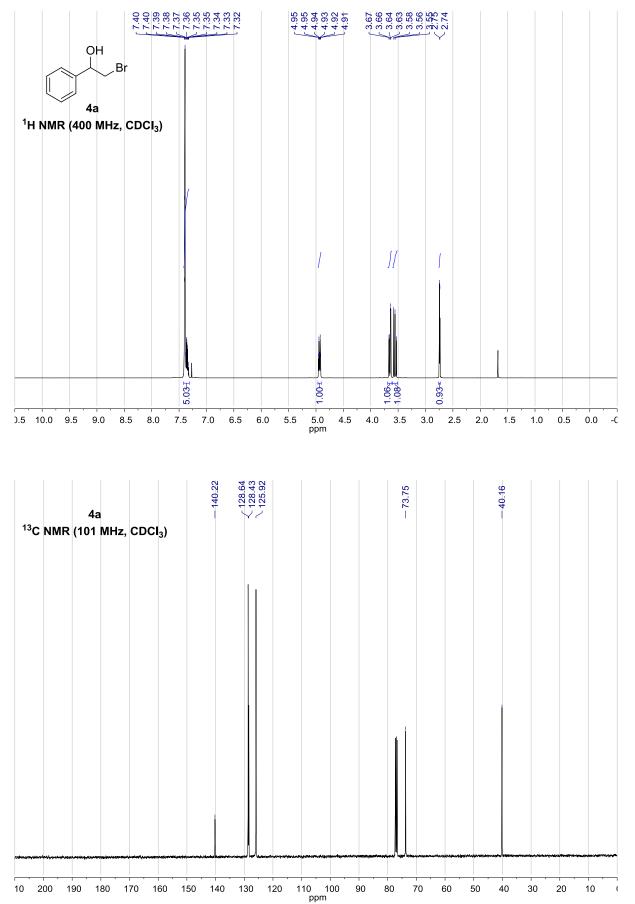

A microwave vial was charged with oxetane **9c** (65 mg, 0.22 mmol), imidazole (23 mg, 0.34 mmol), K₂CO₃ (37 mg, 0.27 mmol) and Nal (40 mg, 0.27 mmol). The reaction vial was flushed with argon, sealed with a cap and then further flushed with argon. Anhydrous DMF (0.87 mL) was added to the sealed vial. The stirred mixture was heated in an oil bath at 80 °C for 64 h and then cooled to rt and concentrated *in vacuo*. Purification by flash chromatography (3% MeOH in CH₂Cl₂) afforded oxetane **22** as a pale yellow oil (38 mg, 62%); R_f = 0.21 (5% MeOH in CH₂Cl₂); IR (film) / cm⁻¹ 2984, 2938, 1742 (C=O), 1508, 1447, 1370, 1286, 1235, 1140, 1108, 1076, 1050, 1004, 915, 856, 744, 663, 622; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (br s, 1 H, N-CH=N), 7.09 (br s, 1 H, *H*C=CH), 7.02 (br s, 1 H, HC=C*H*), 5.06–4.98 (m, 1 H, OC*H*(CH₂N)), 4.39–4.14 (m, 6 H, 2 x CO₂CH₂CH₃ and OCH(CH₂N)), 3.06 (dd, *J* = 12.2, 7.6 Hz, 1 H, CHH), 2.76 (dd, *J* = 12.2, 6.9 Hz, 1 H, CHH), 1.31 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.30 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 168.4 (CO₂), 167.8 (CO₂), 81.0 (C_q (CO₂Et)₂), 76.3 (OCH(CH₂N)), 62.53 (CO₂CH₂CH₃), 62.46 (CO₂CH₂CH₃), 51.5 (OCH(CH₂N)), 30.5 (CH₂), 13.99 (CO₂CH₂CH₃), 13.96 (CO₂CH₂CH₃); HRMS (ESI-TOF) *m*/z Calcd for C₁₃H₁₉N₂O₅⁺ [M+H]⁺: 283.1294, Found: 283.1304.


Note: The resonance from the imidazole carbons in the ¹³C NMR were very broad due to quadrupole coupling to ¹⁴N nuclei, and thus extremely difficult to observe. In this case, the carbon resonances are not reported. The methylene CH₂ resonance α - to the imidazole was also very broad due to quadrupole coupling to ¹⁴N nuclei. However, a clear correlation could be observed between the ¹³C and ¹H atoms in the HSQC spectra (vide infra).

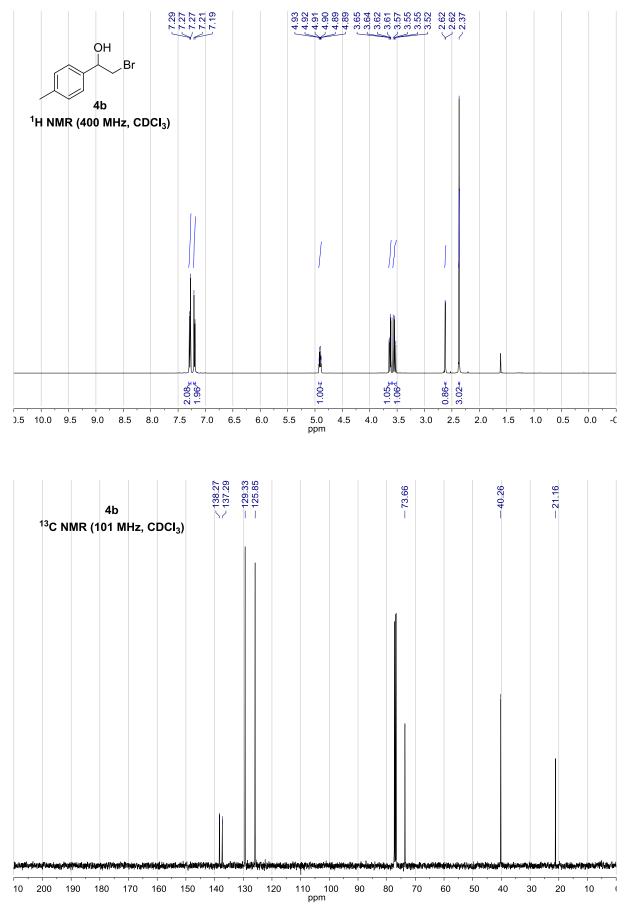

¹H and ¹³C NMR spectra of selected compounds

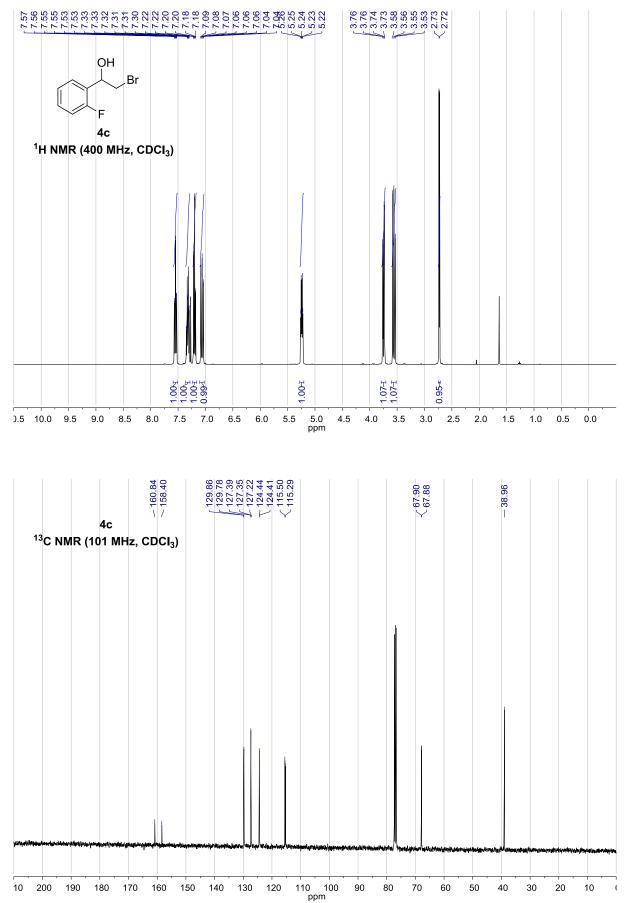




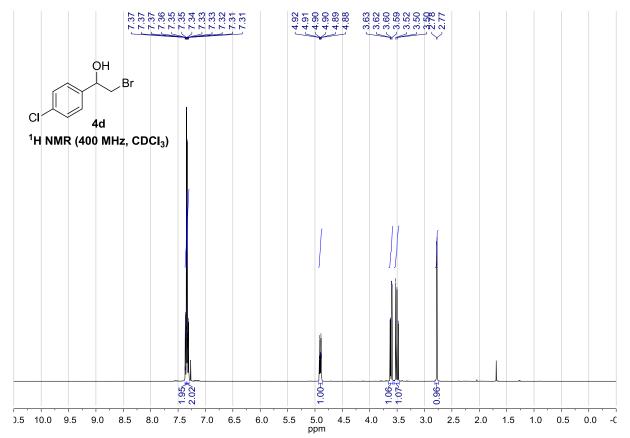


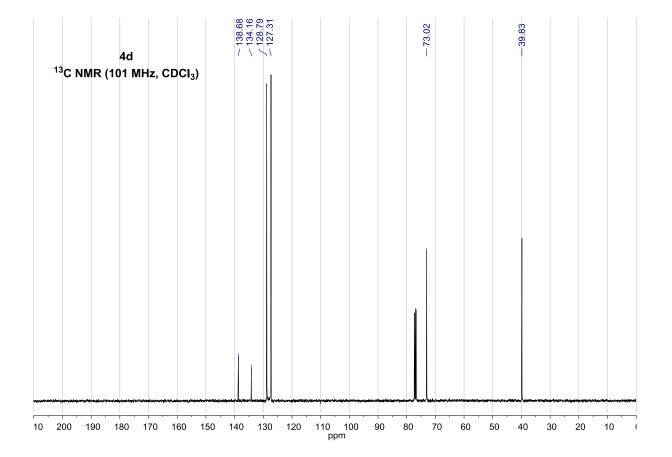
O. A. Davis and J. A. Bull



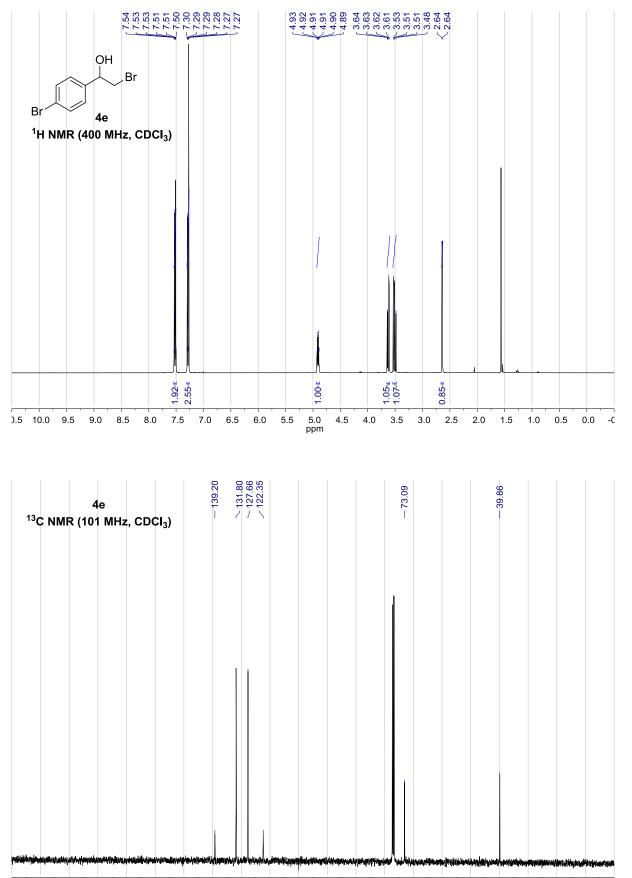


O. A. Davis and J. A. Bull




O. A. Davis and J. A. Bull

O. A. Davis and J. A. Bull


10 200 190

180

170 160 150

140 130

120

110 100 ppm

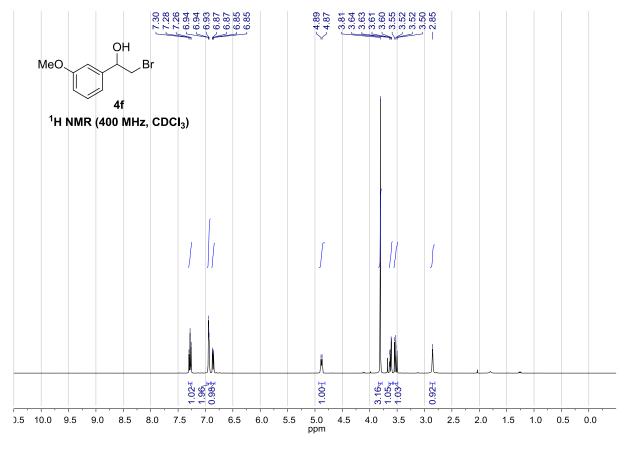
80

90

70

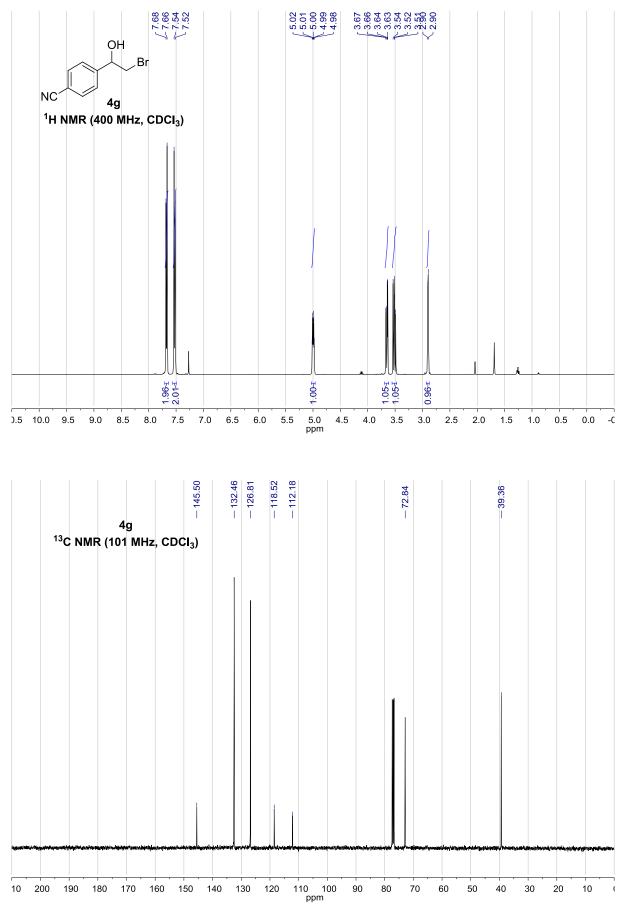
60

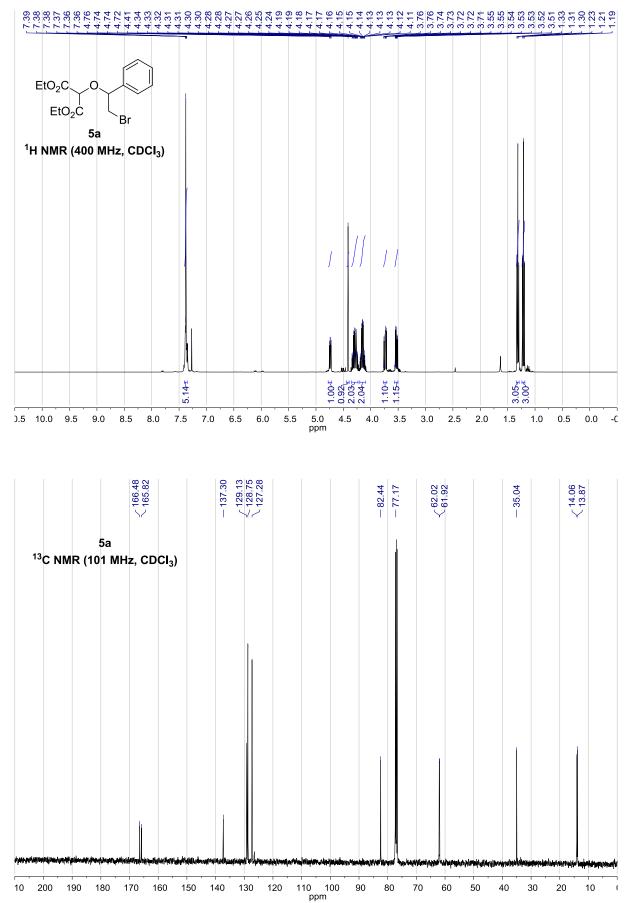
50

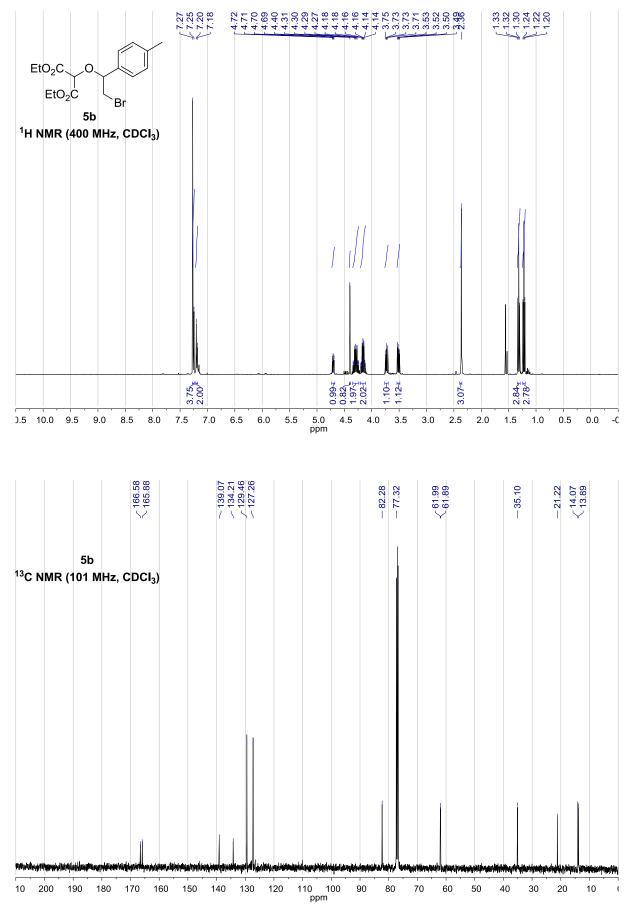

40

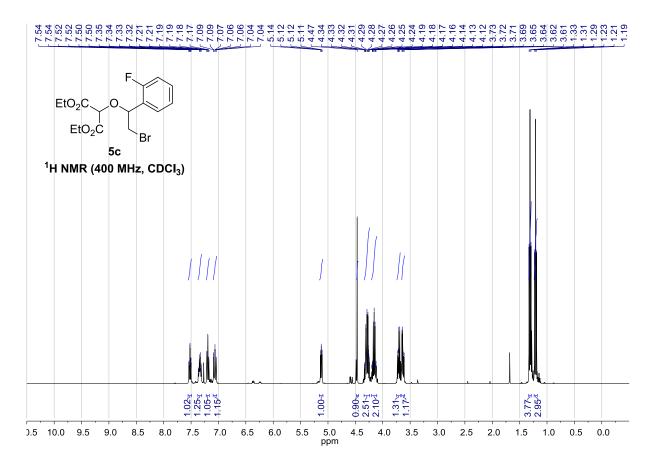
30

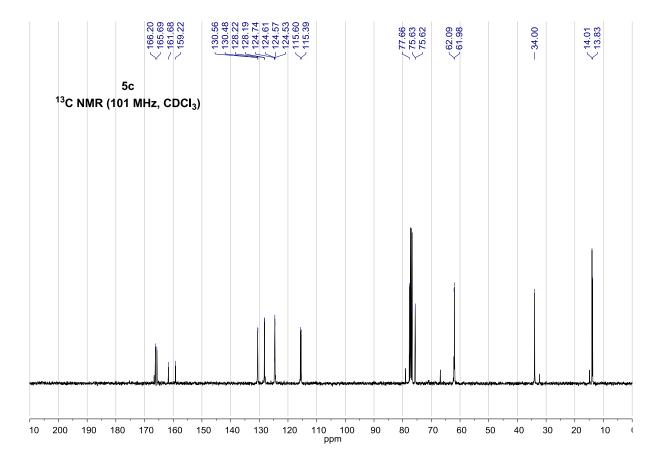
20

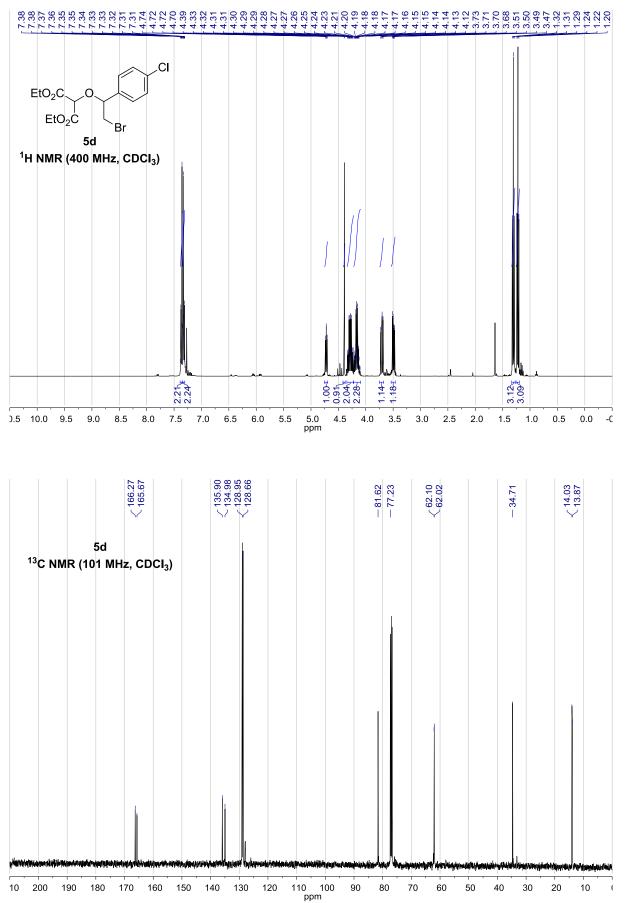

10

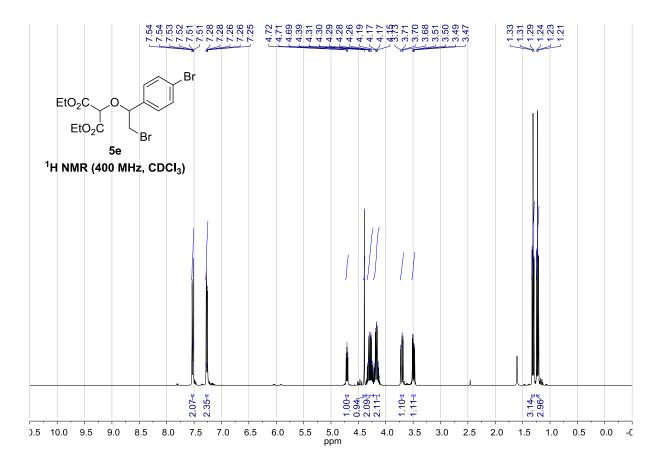

(

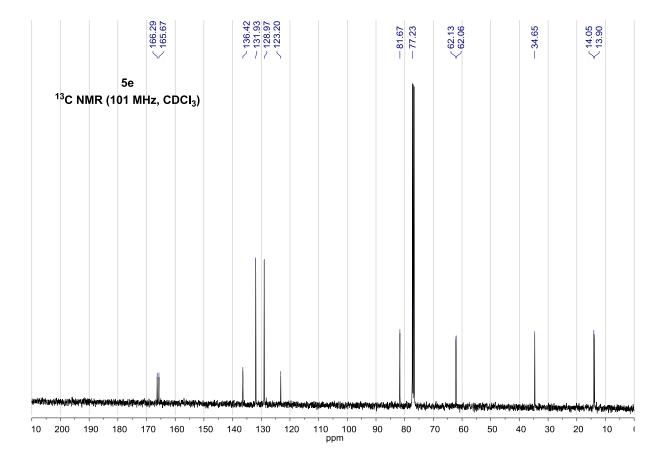


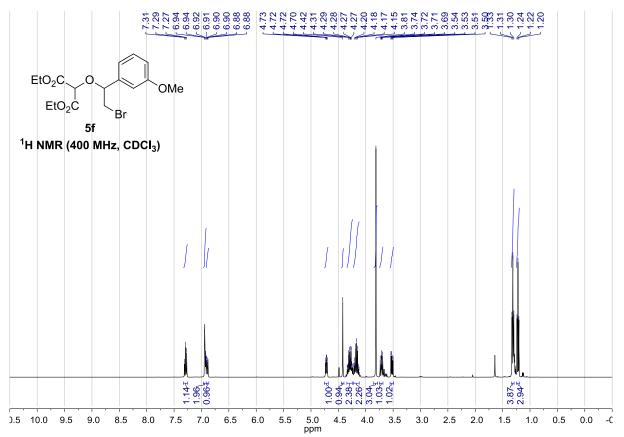

O. A. Davis and J. A. Bull

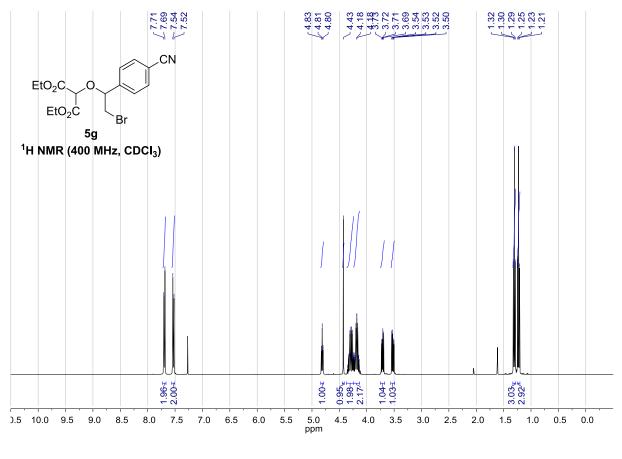


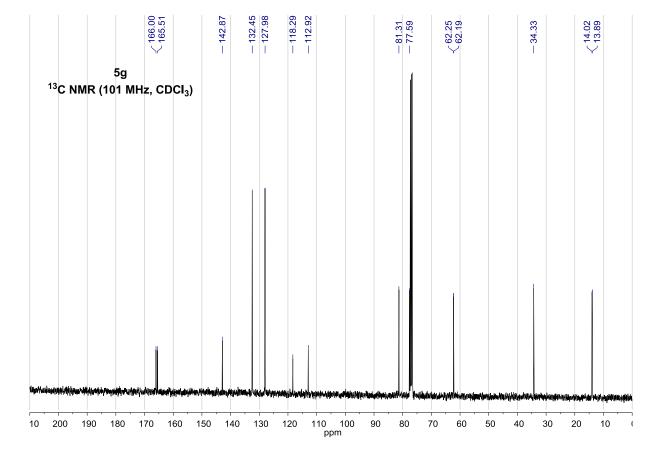


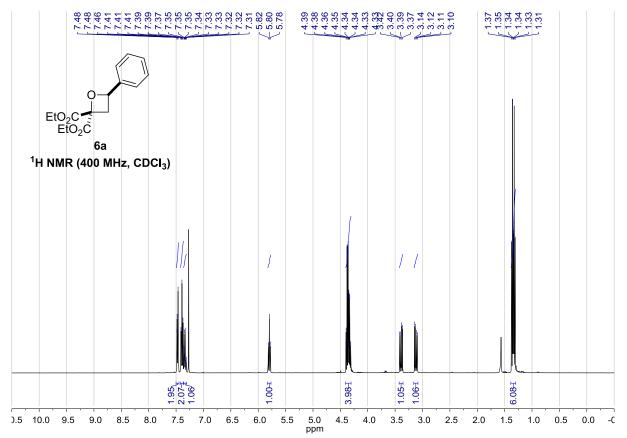

O. A. Davis and J. A. Bull

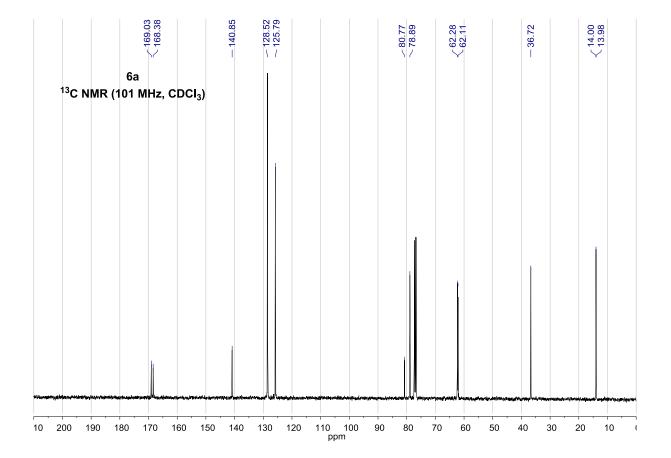


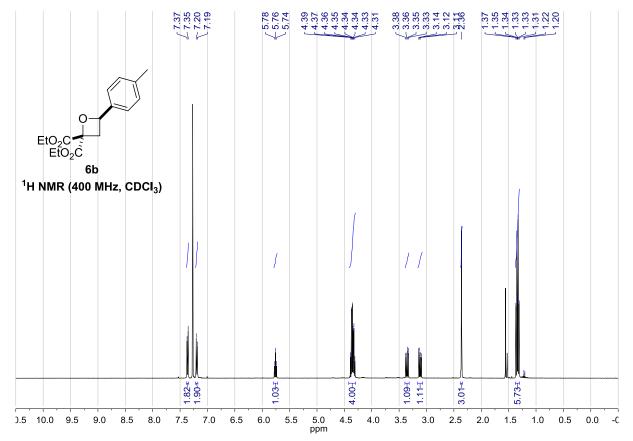


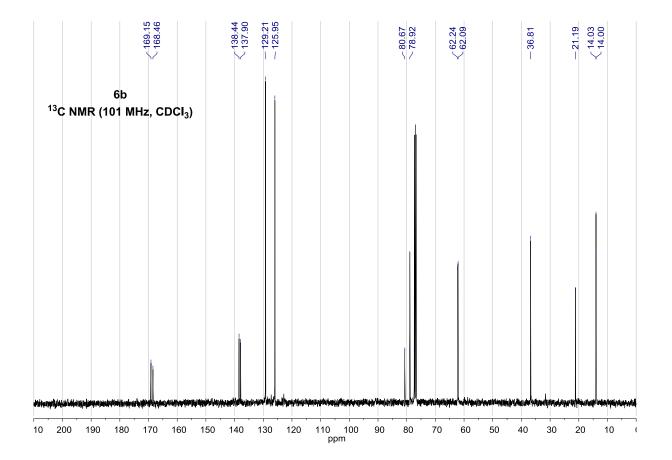


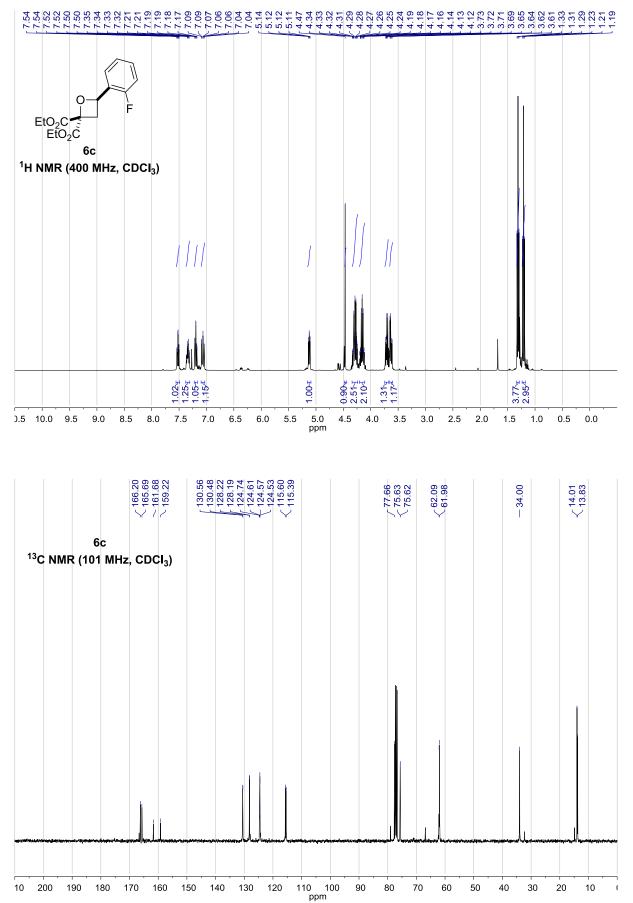

O. A. Davis and J. A. Bull

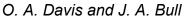


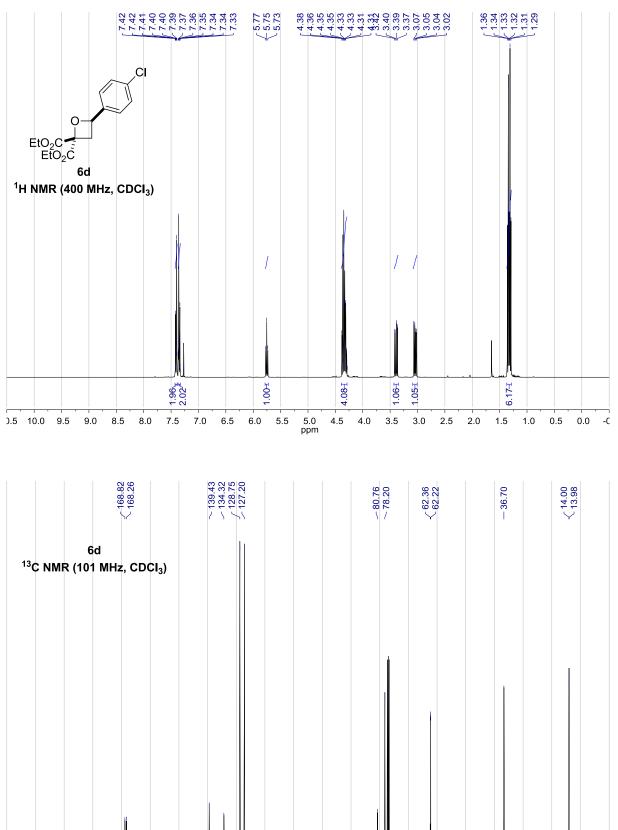



O. A. Davis and J. A. Bull

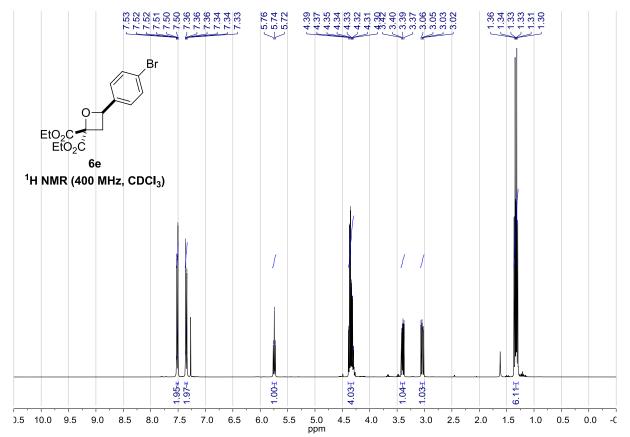


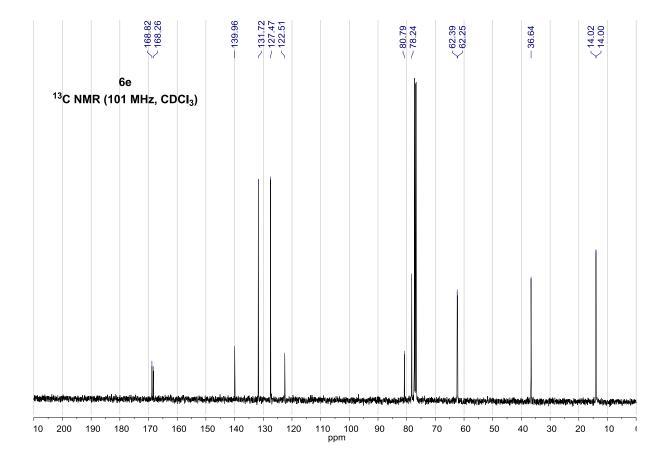


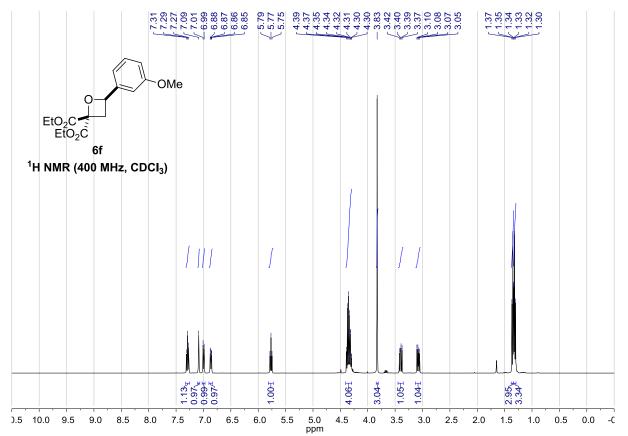


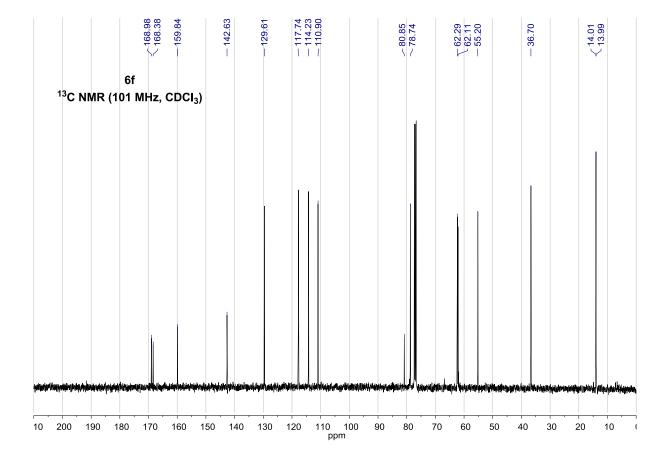


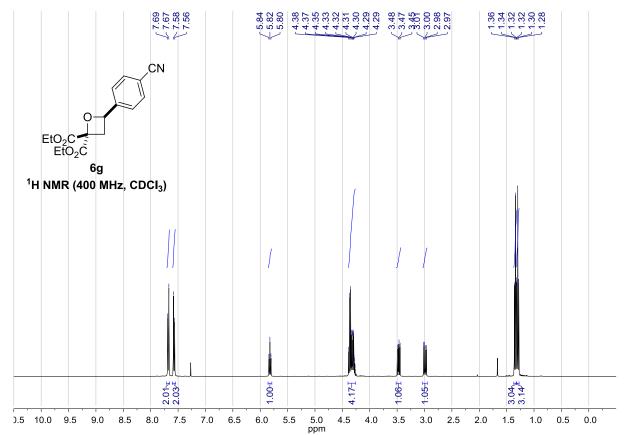
10 200 190

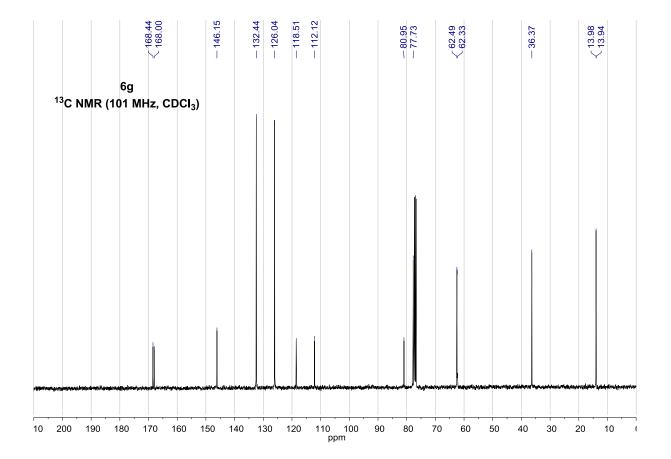

170 160 150

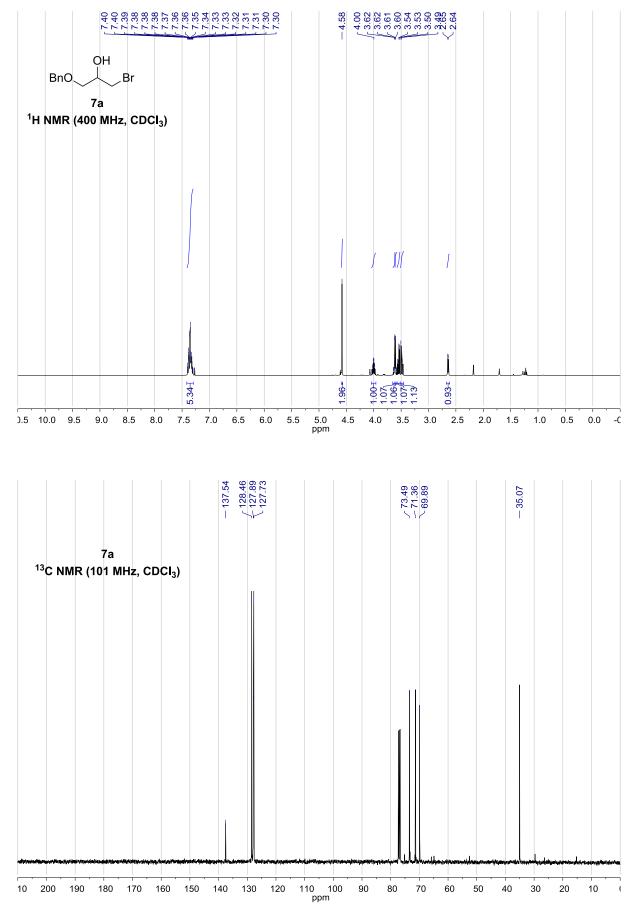

140 130

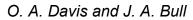


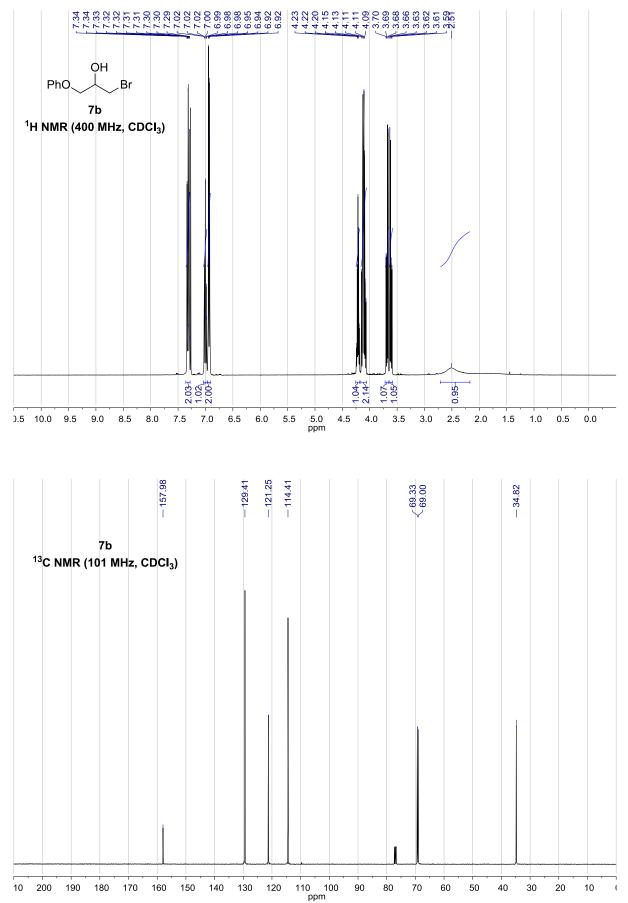

110 100 ppm

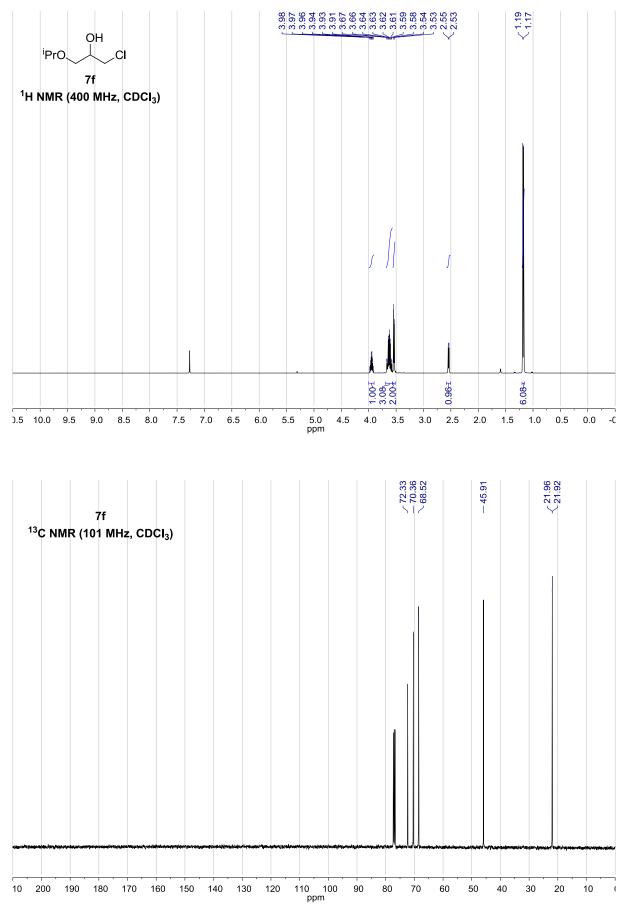

(

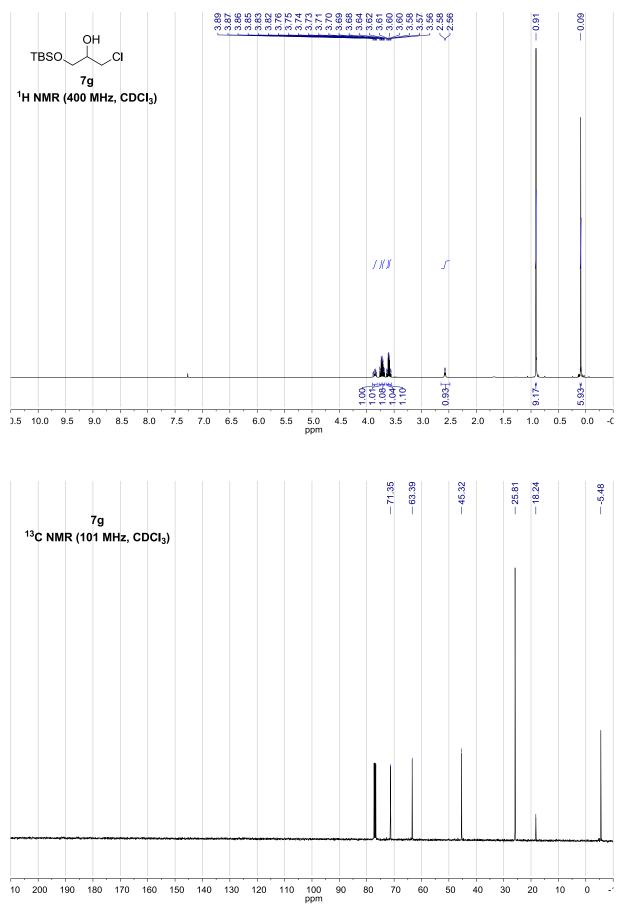


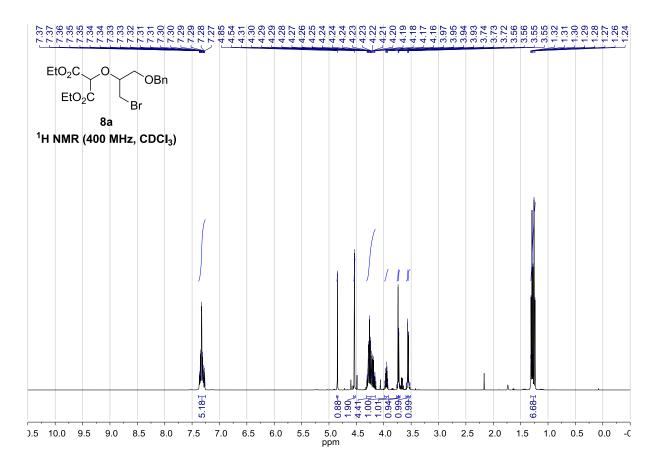


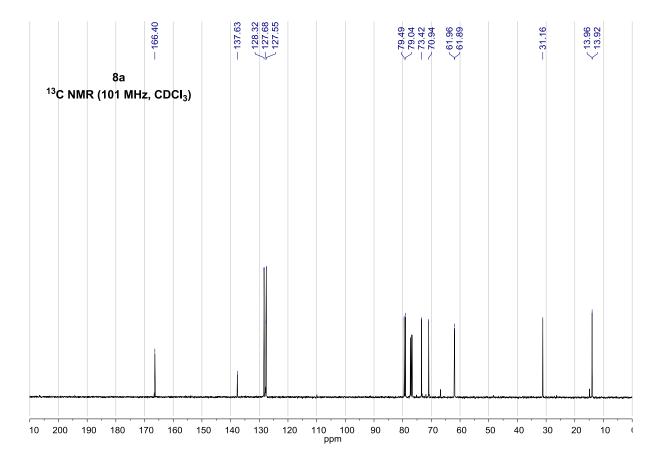


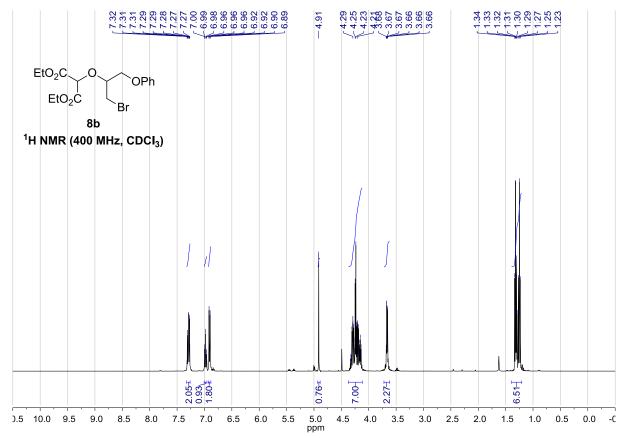


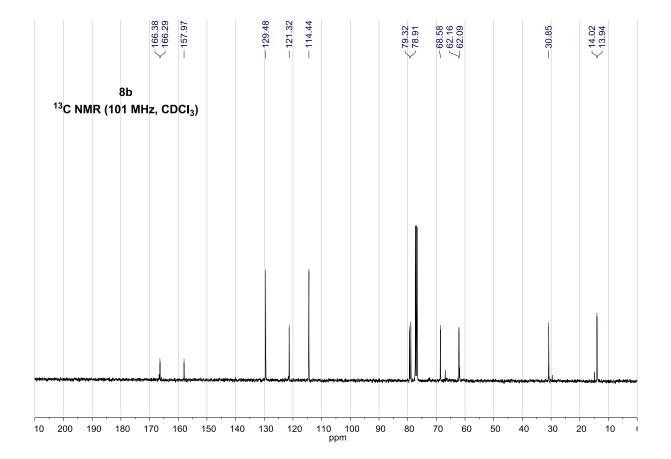


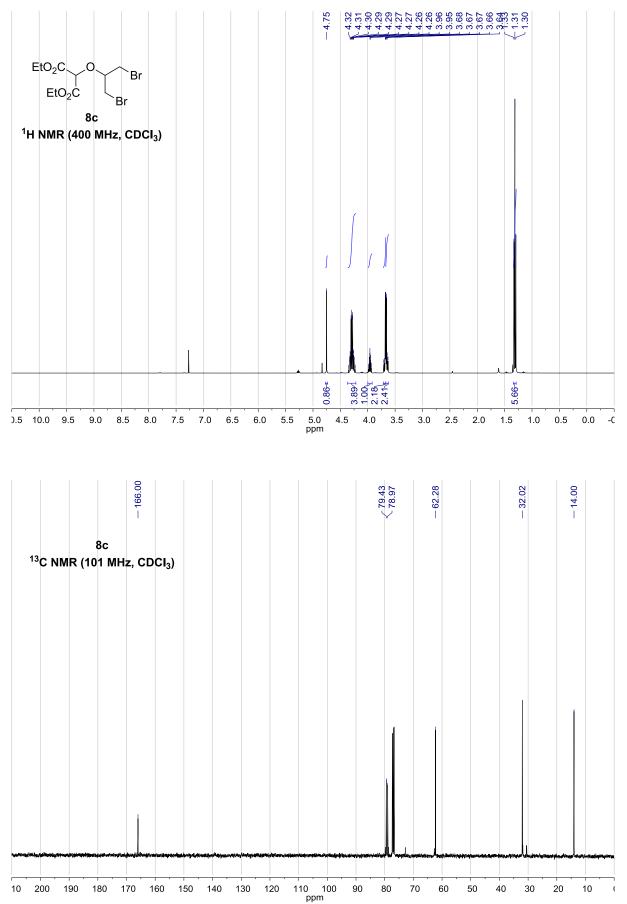


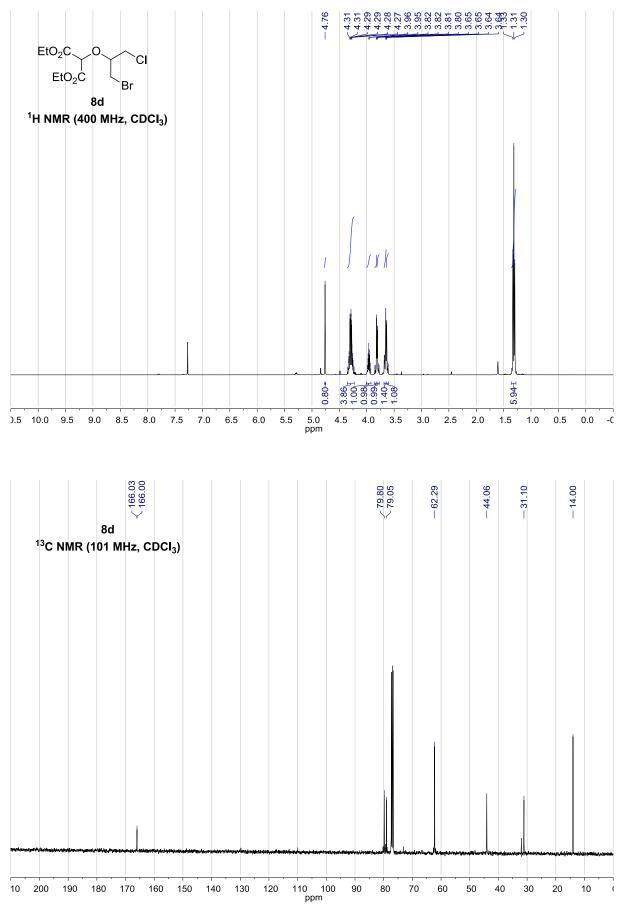


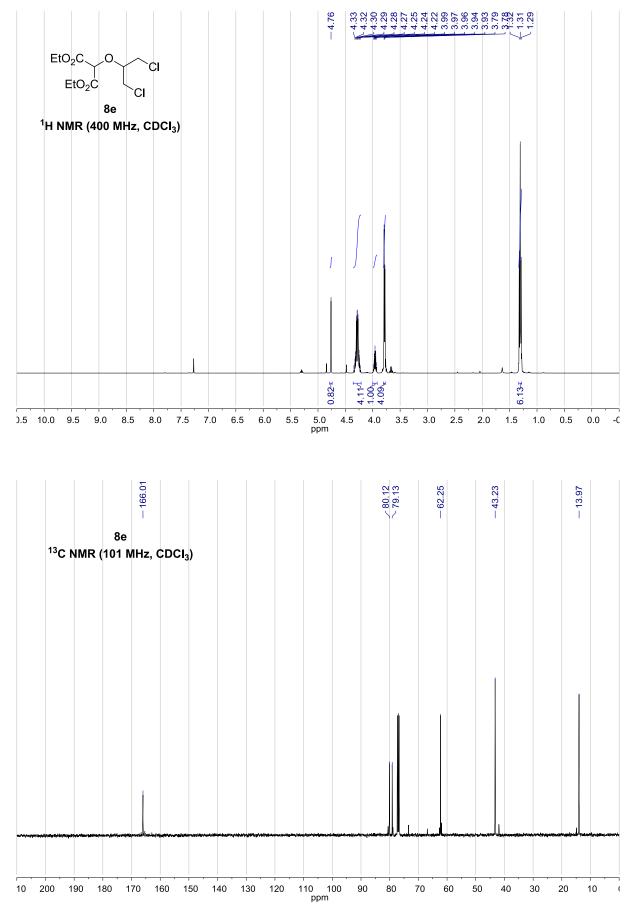

O. A. Davis and J. A. Bull

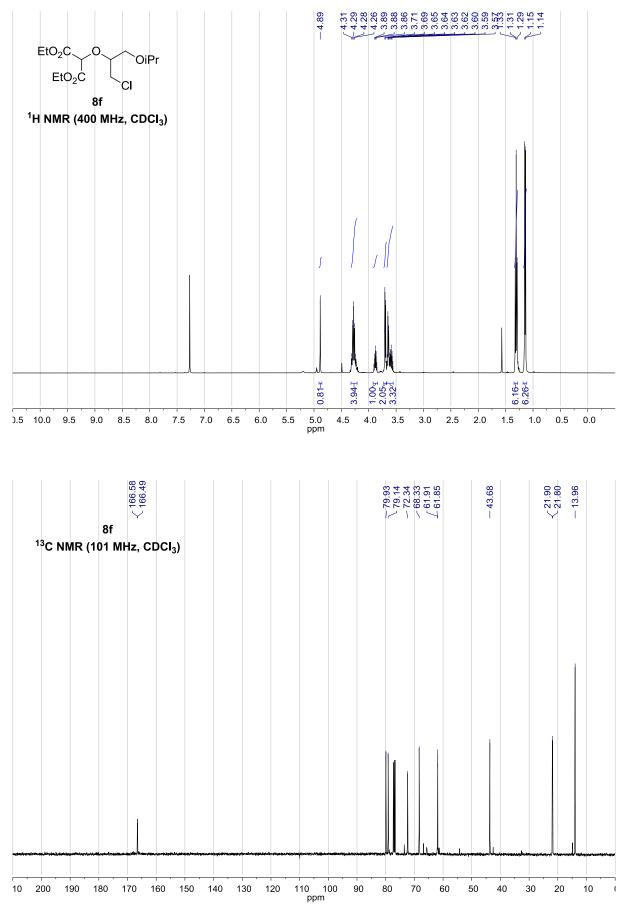


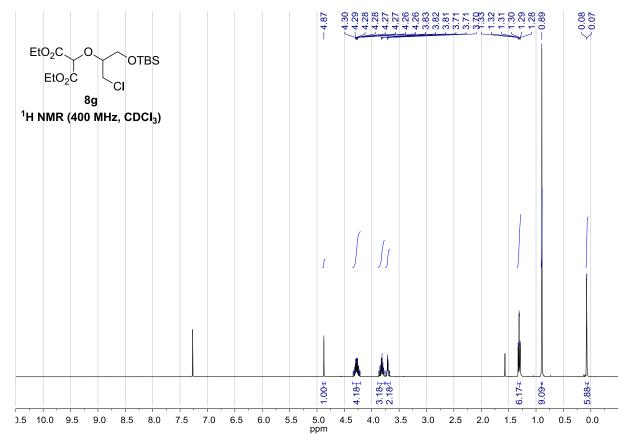

O. A. Davis and J. A. Bull

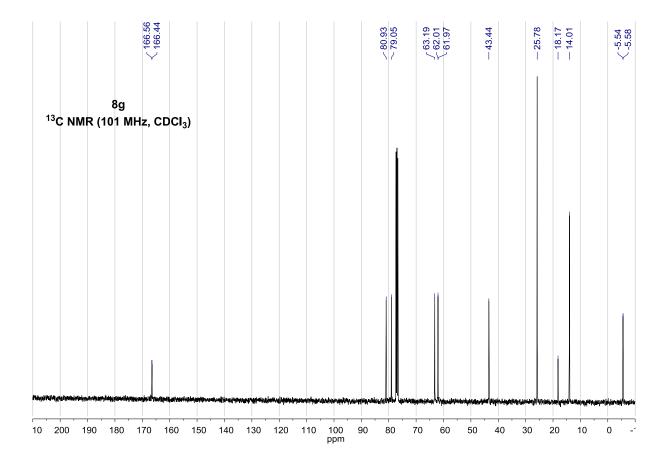


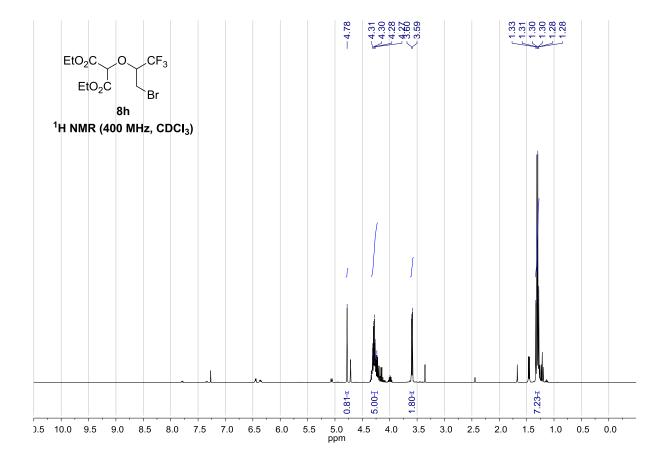


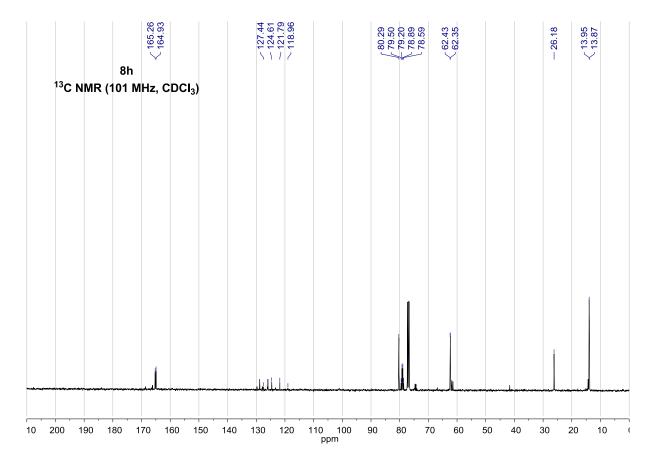


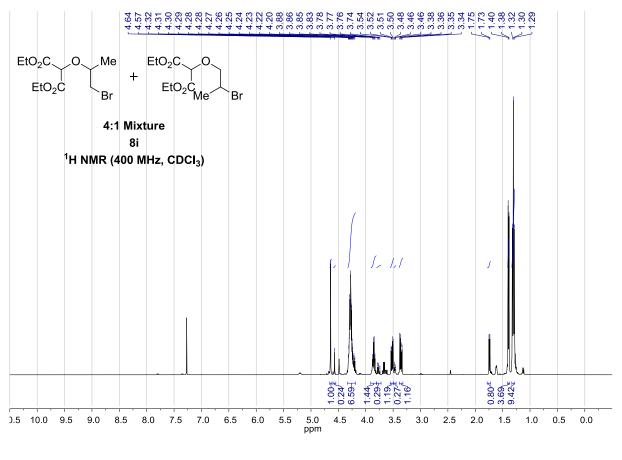


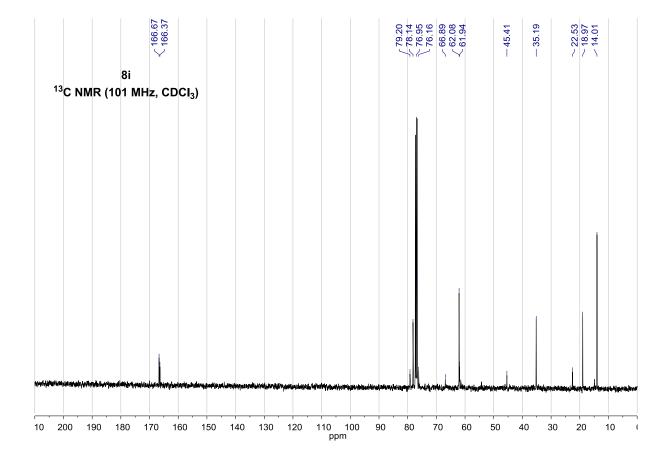


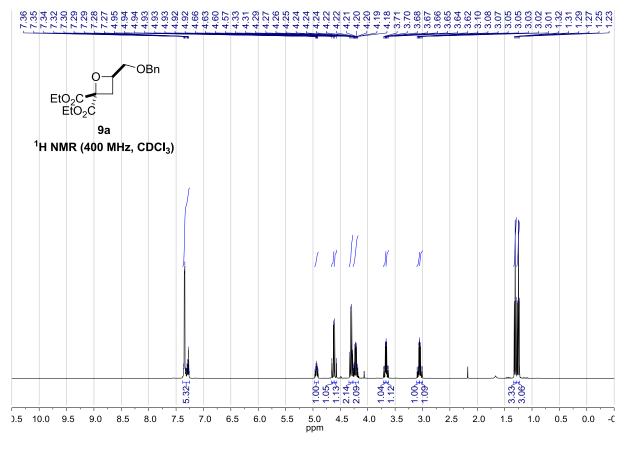


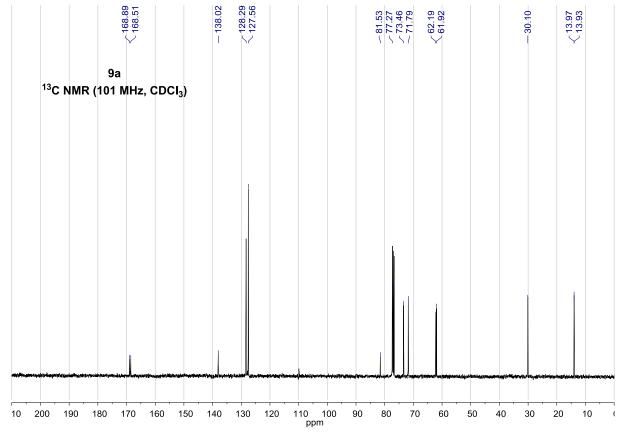


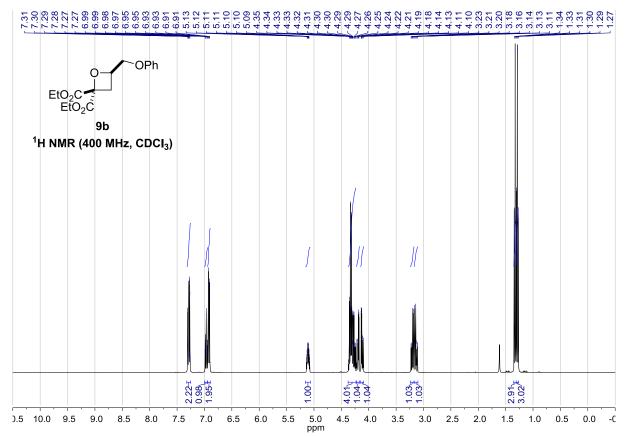


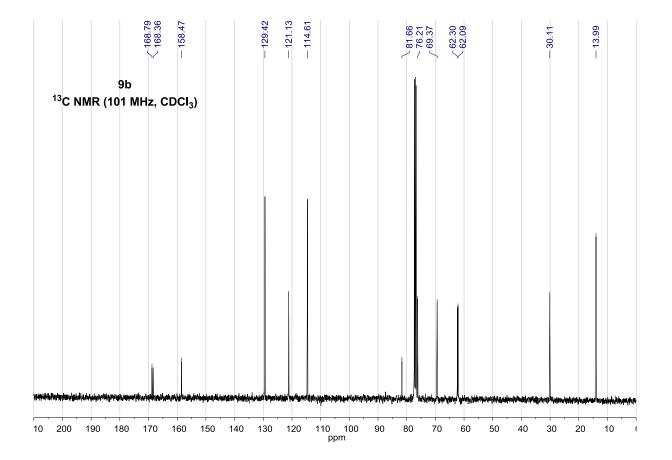


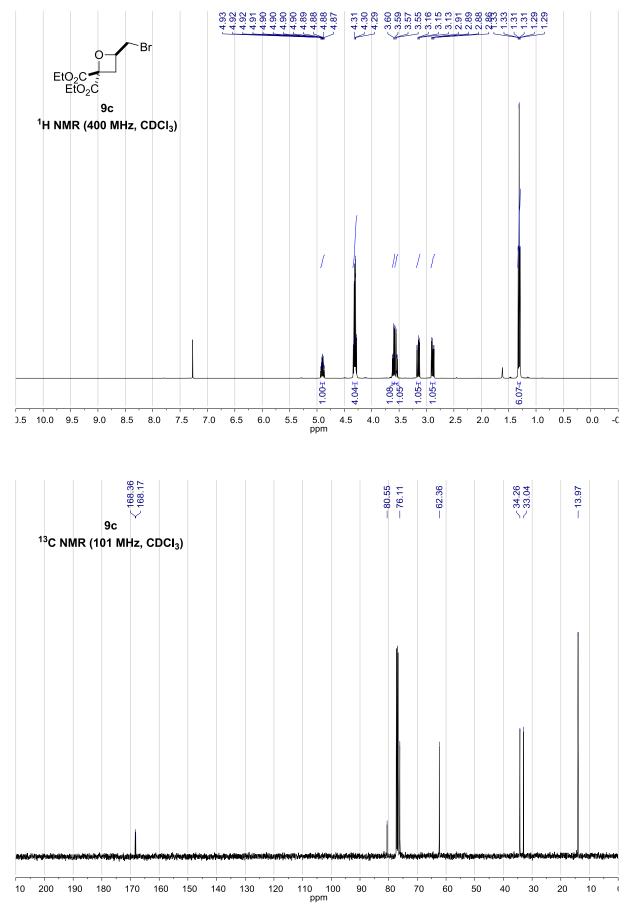


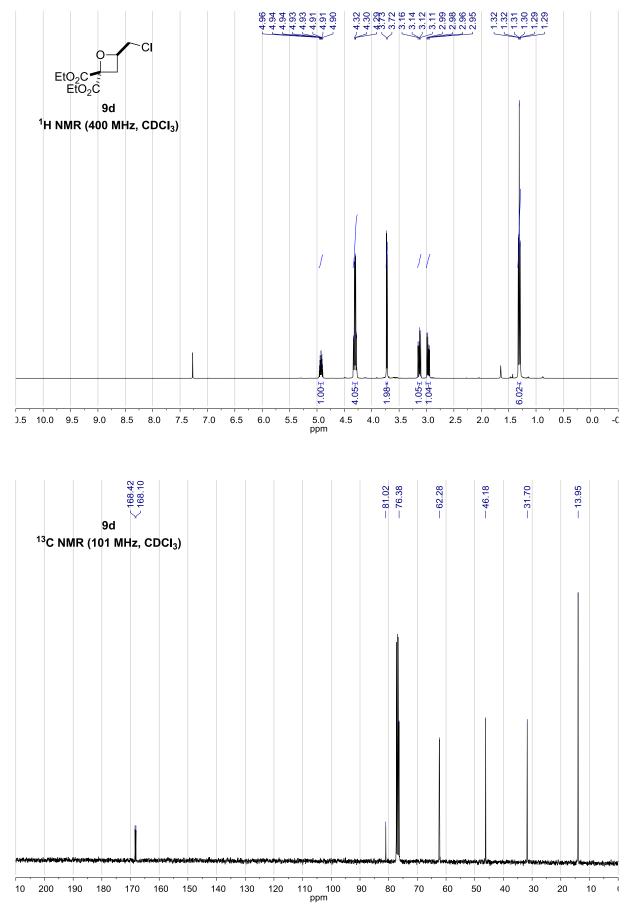


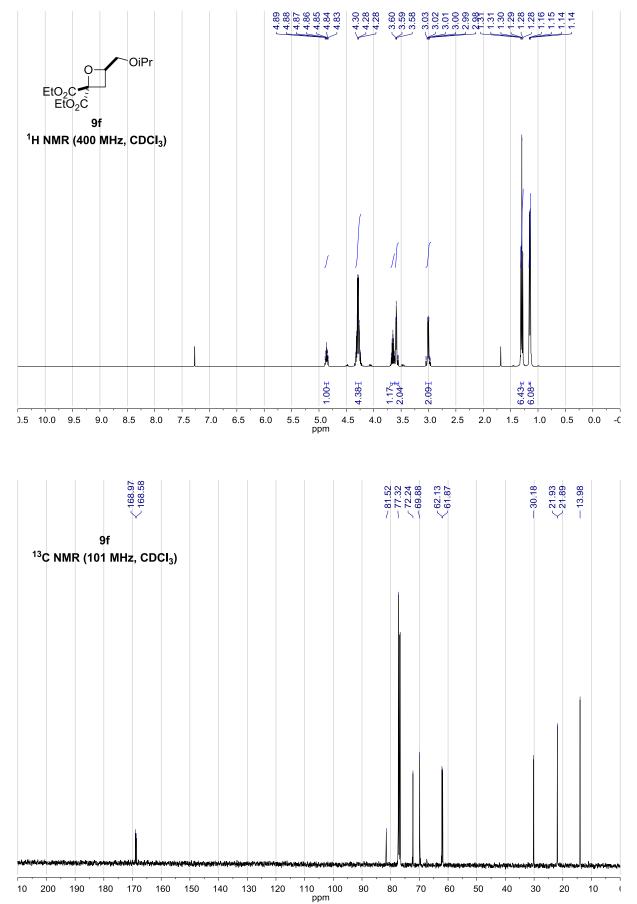


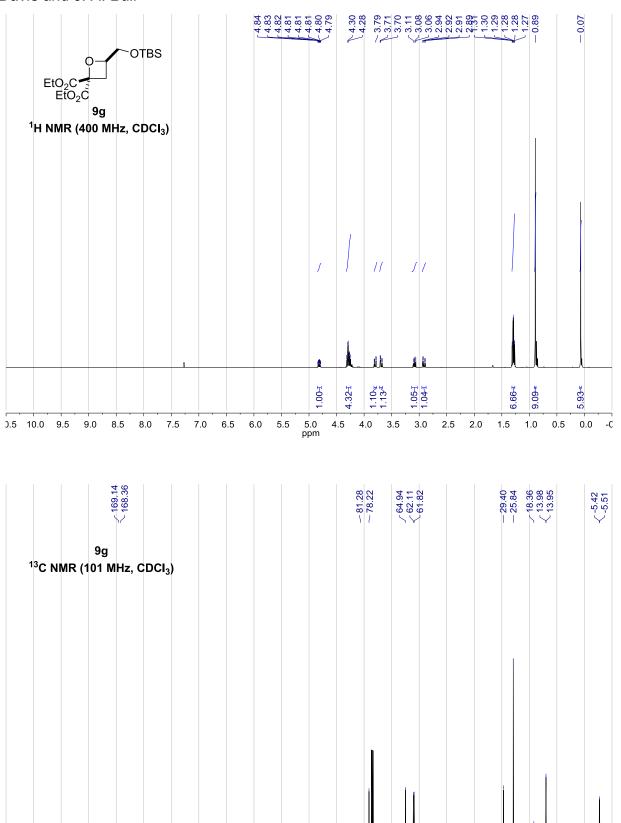

O. A. Davis and J. A. Bull











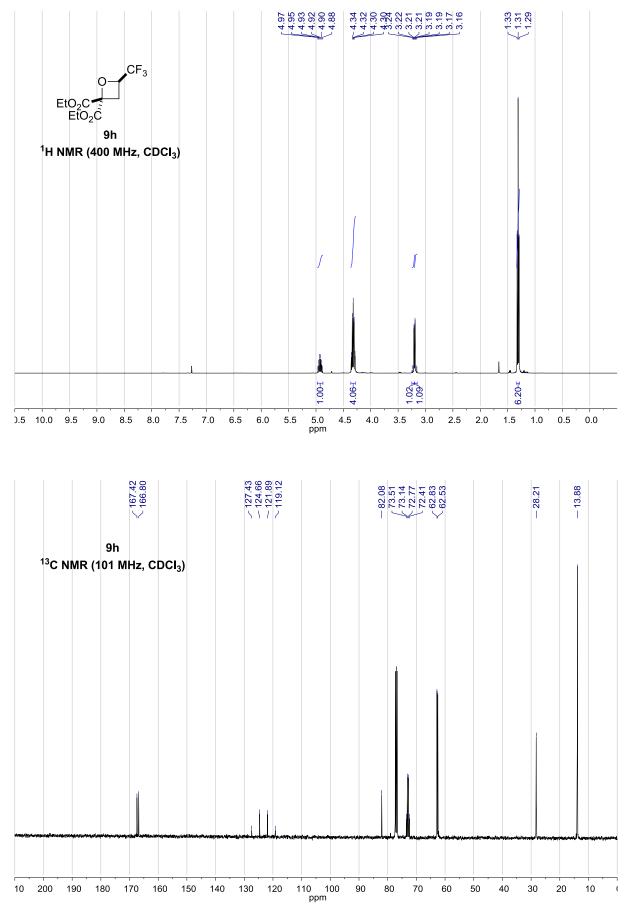
100 ppm

90

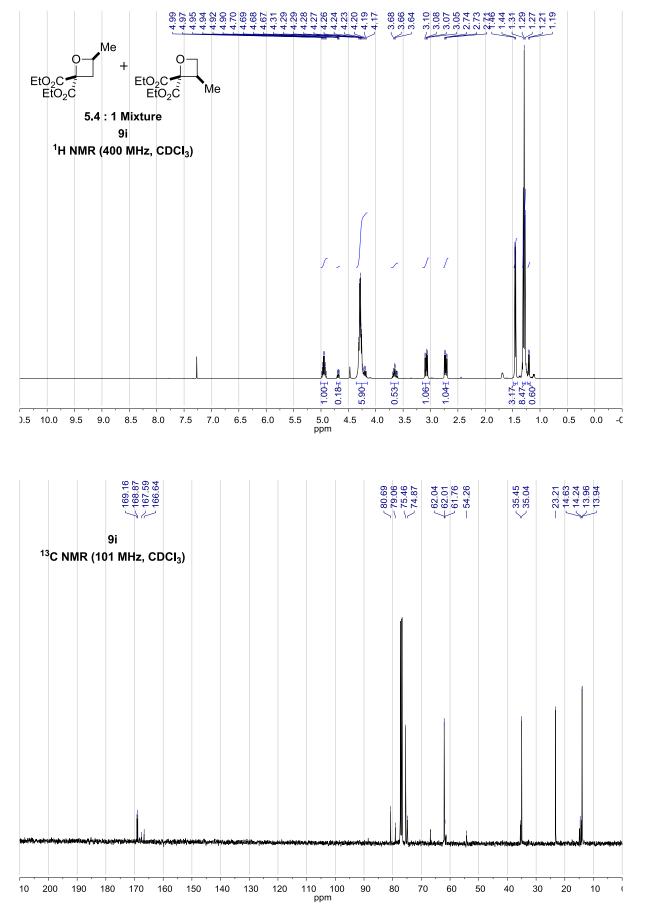
80 70

60 50

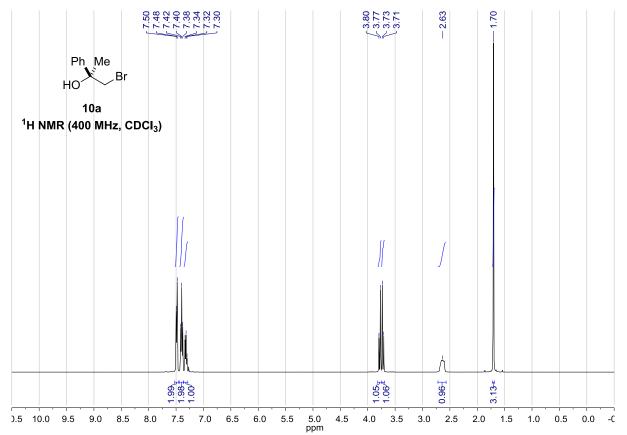
40

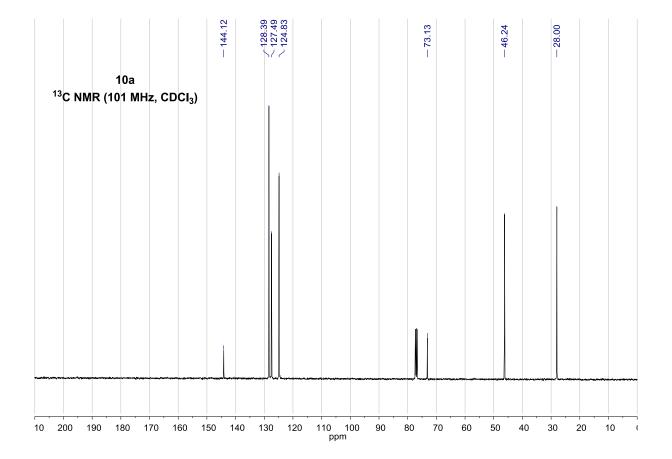

30

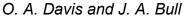
20

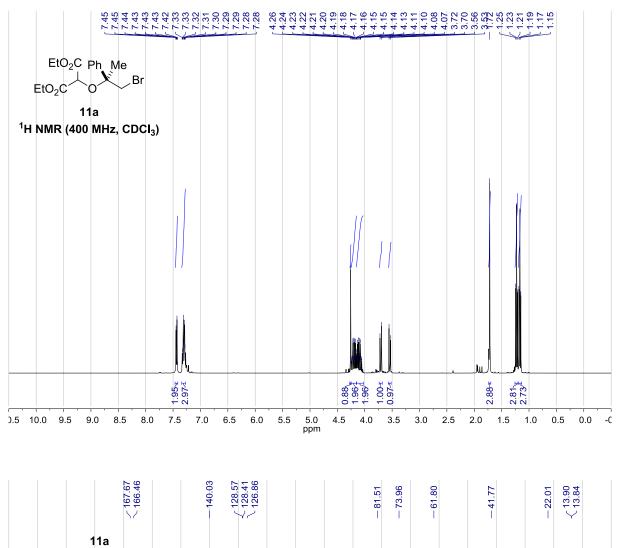

10

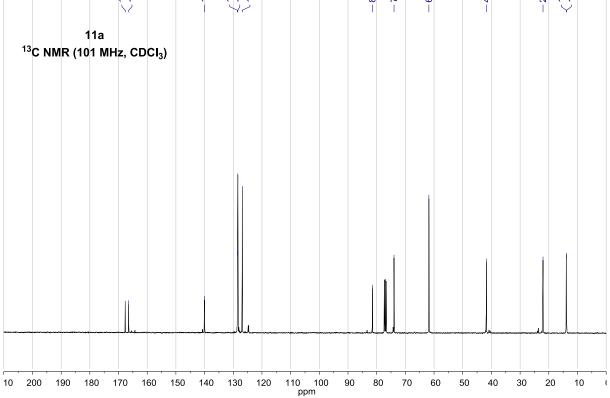
0 - '

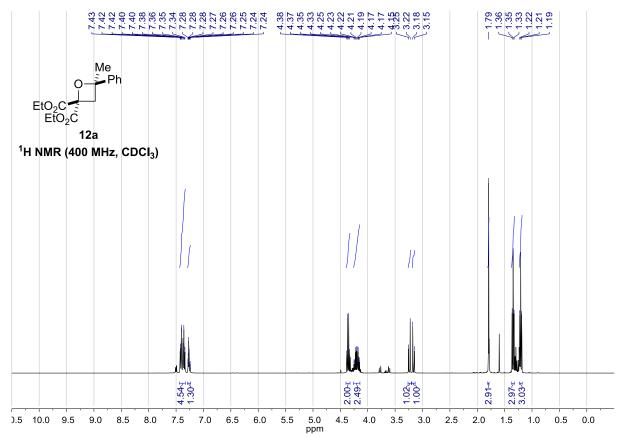

10 200 190 180 170 160 150 140 130 120 110

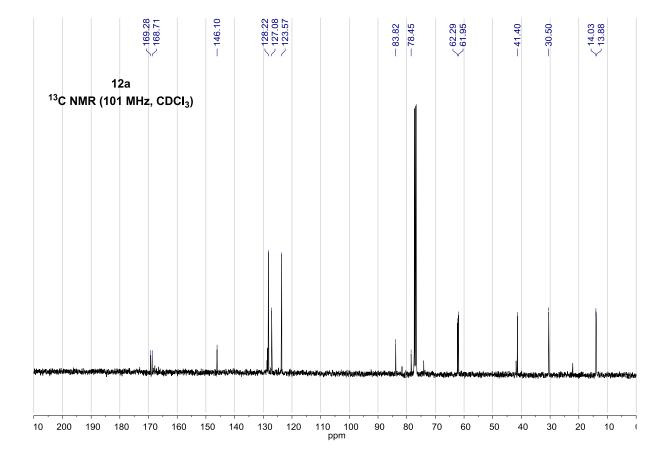


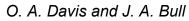

O. A. Davis and J. A. Bull

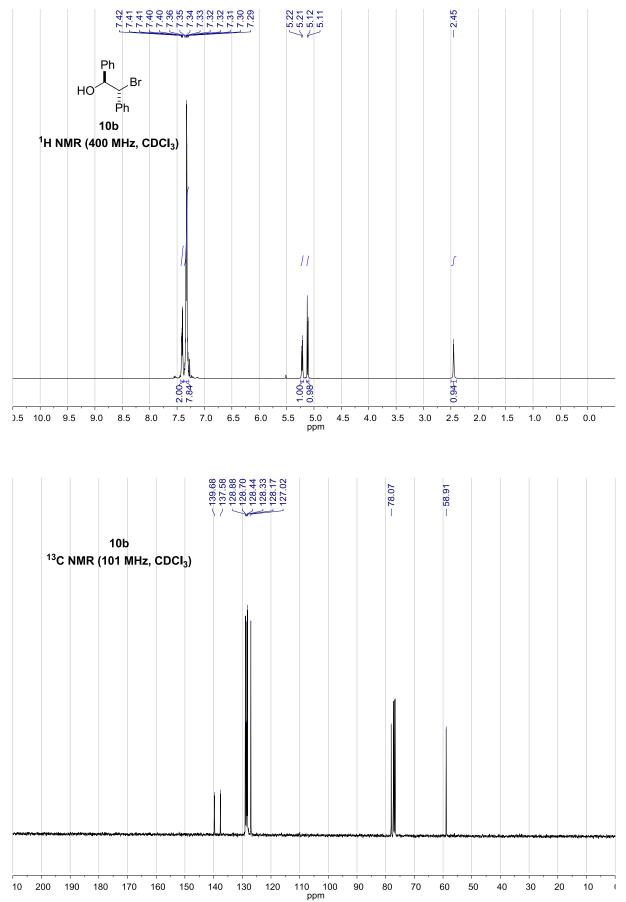


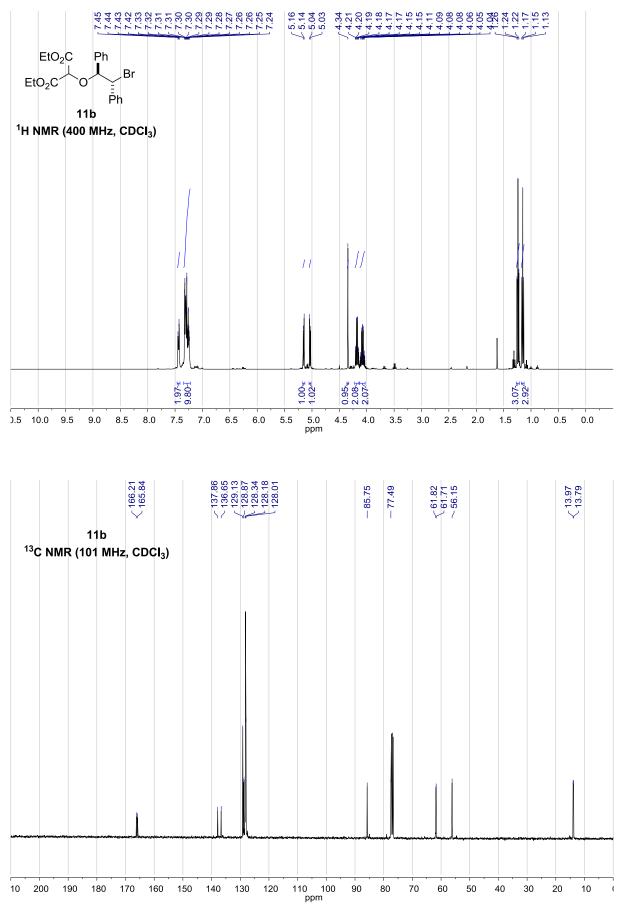

O. A. Davis and J. A. Bull

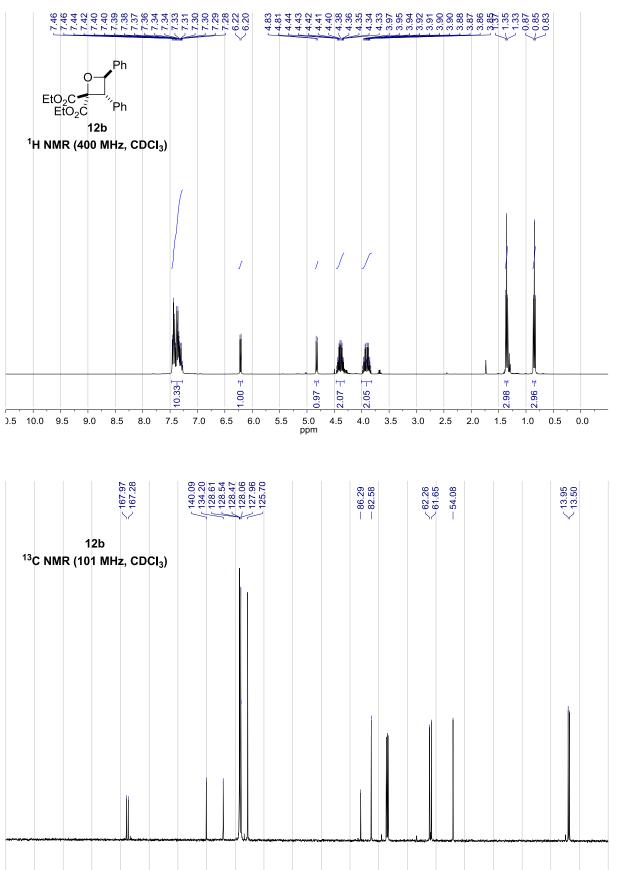


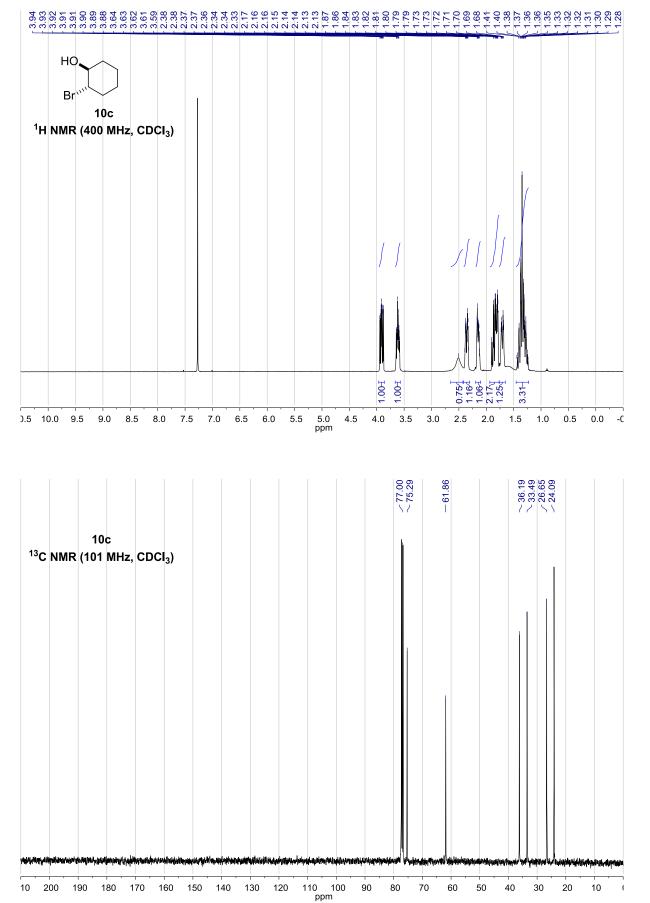


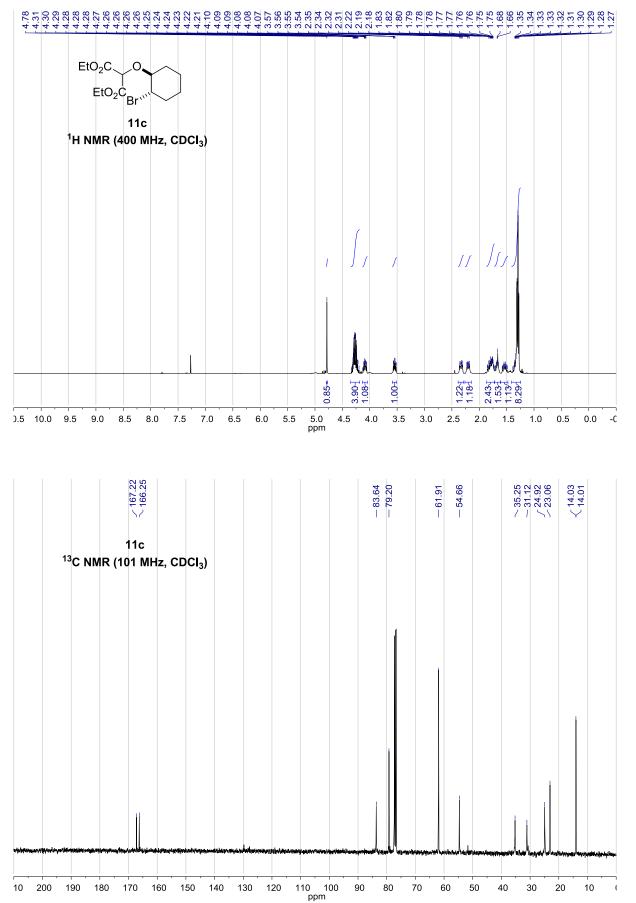


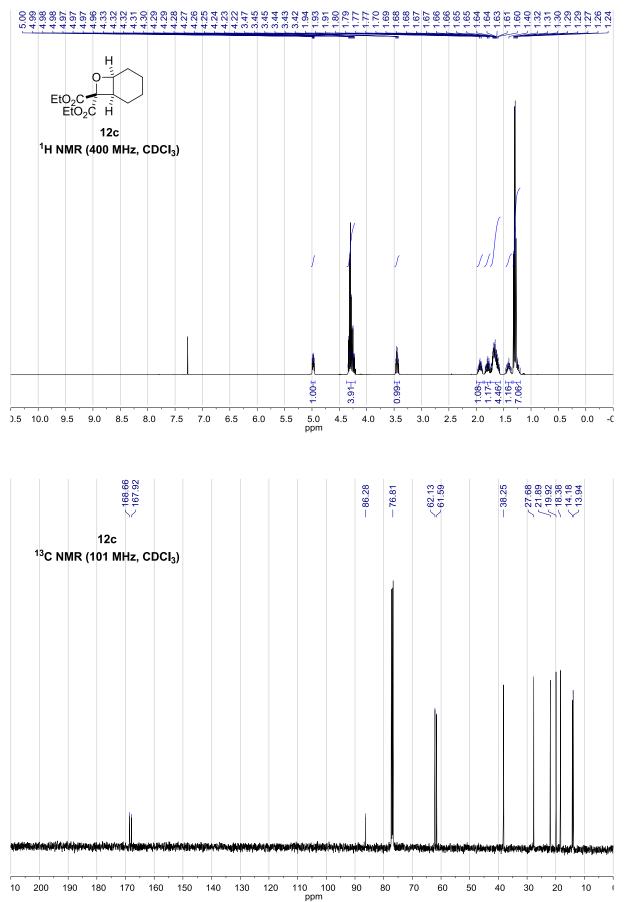


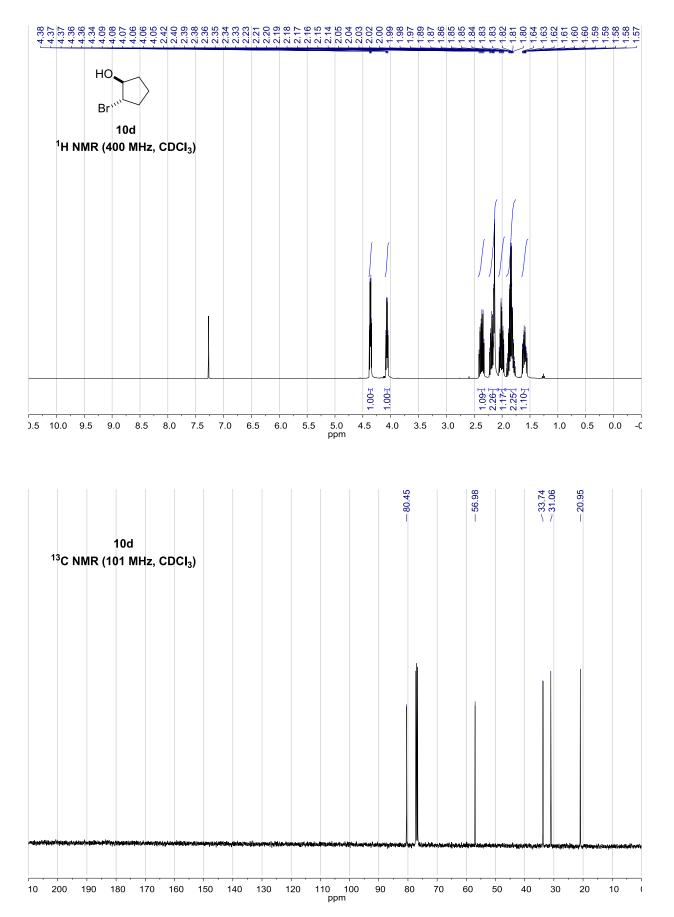


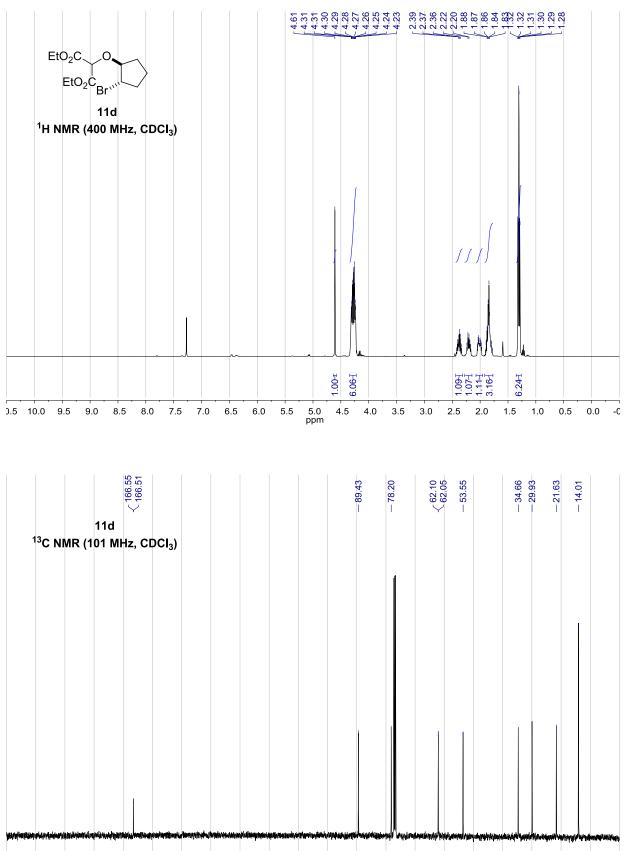


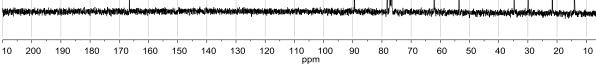


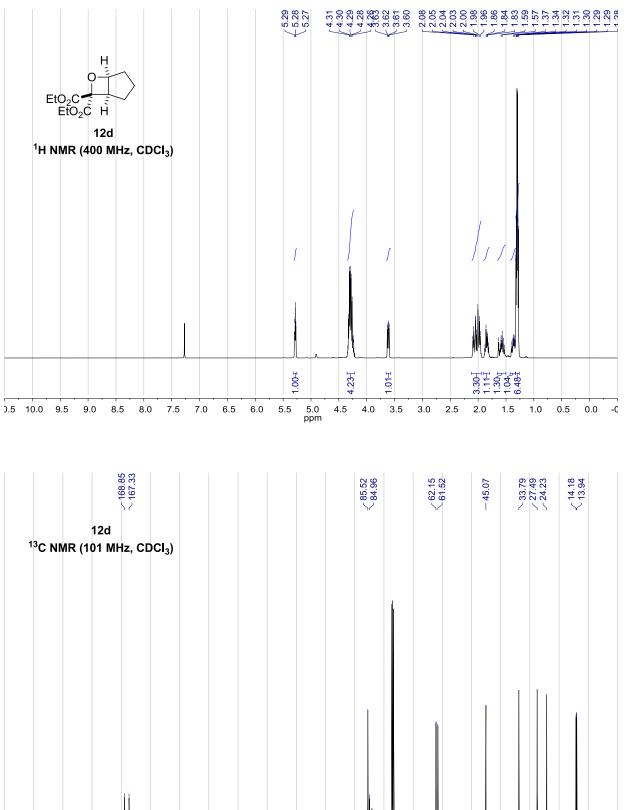

10 200

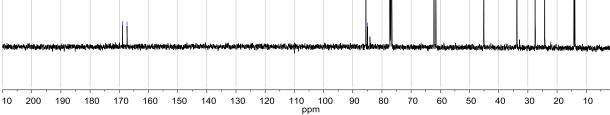


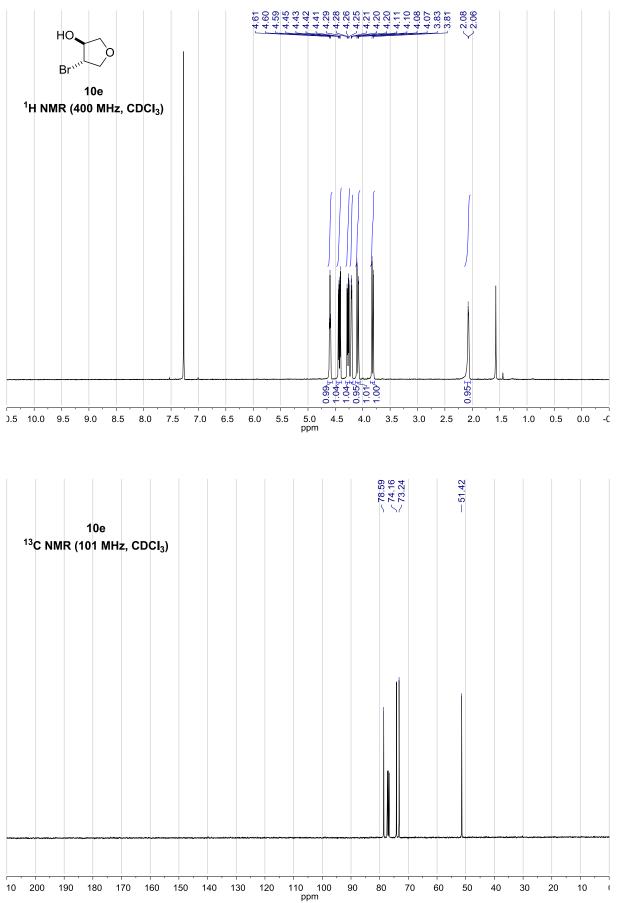

110 100 ppm

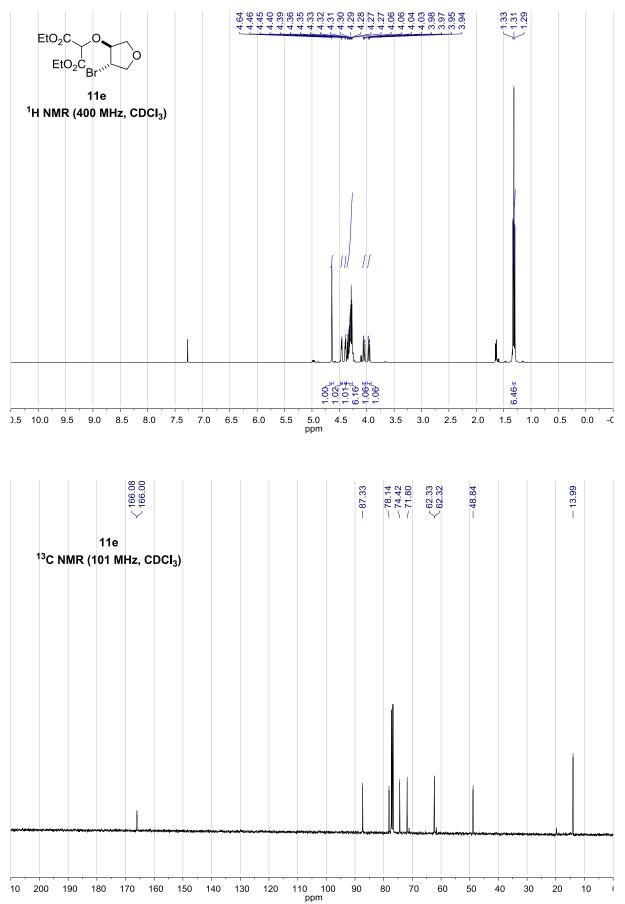

10 (

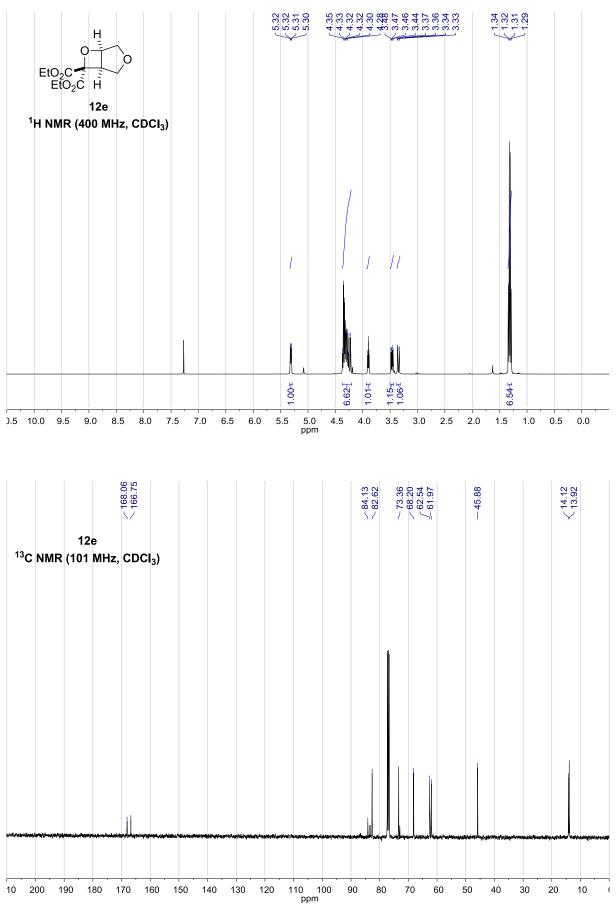


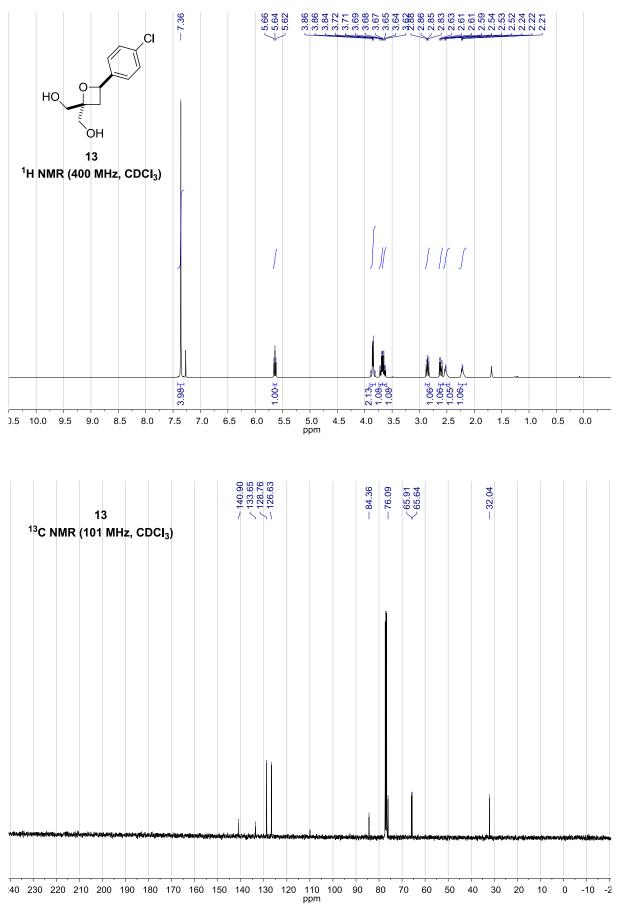


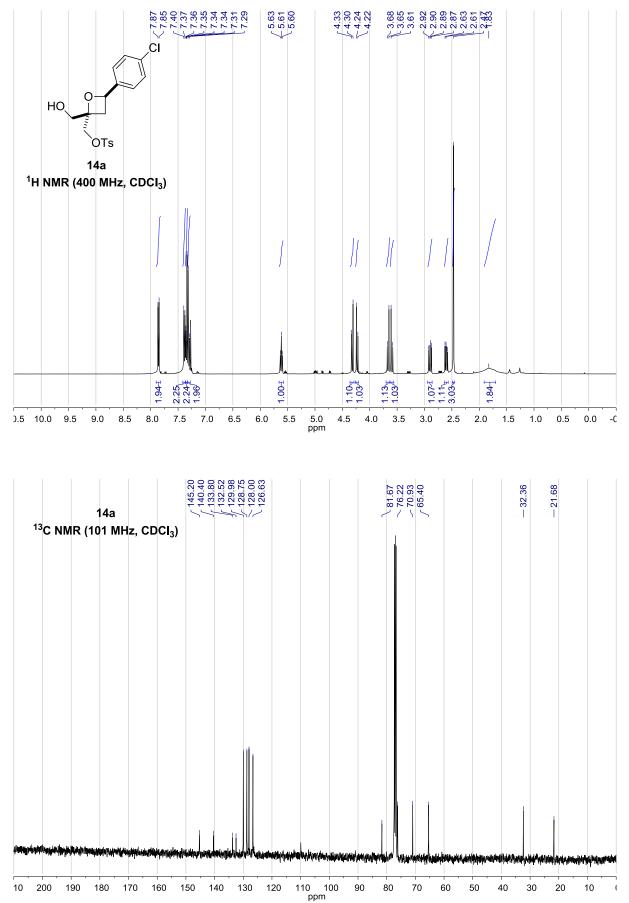


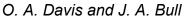

S110

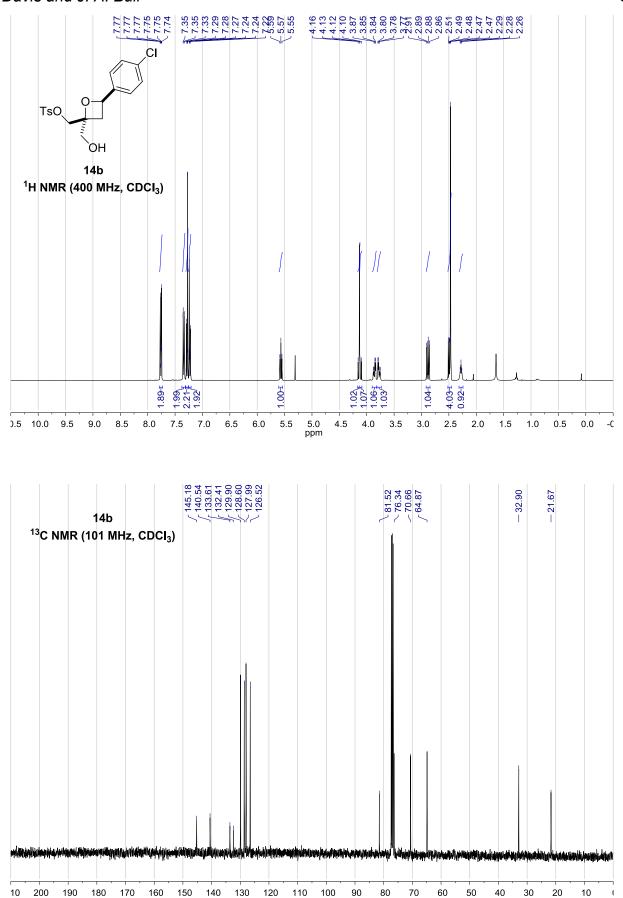

(



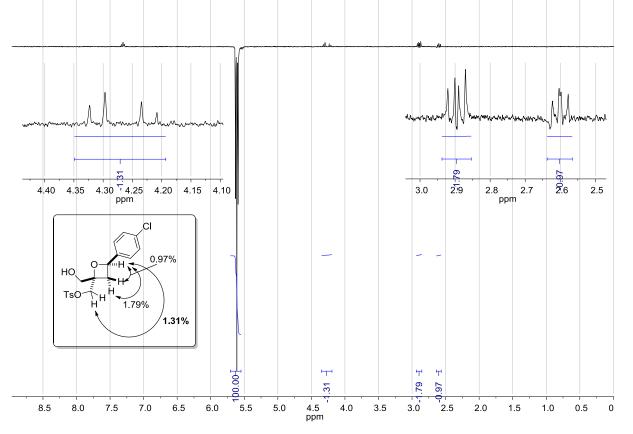

(

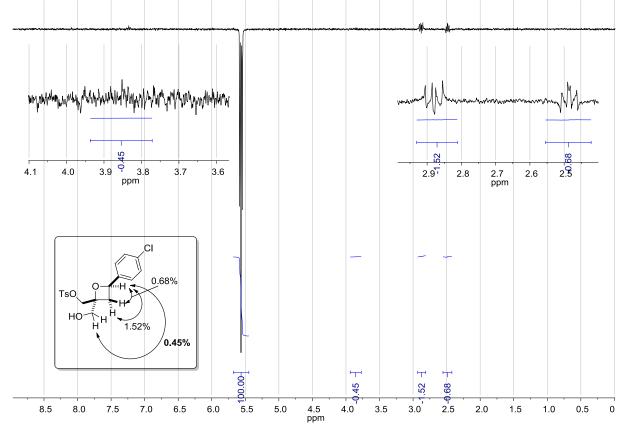




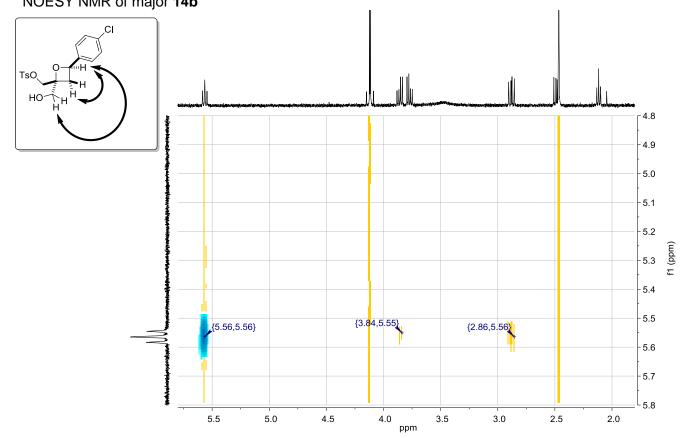


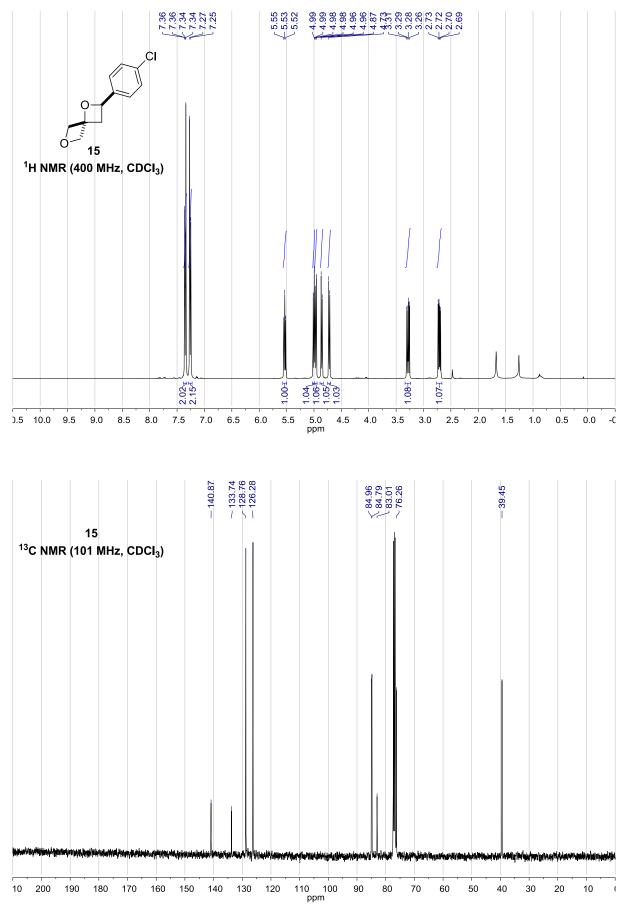
O. A. Davis and J. A. Bull

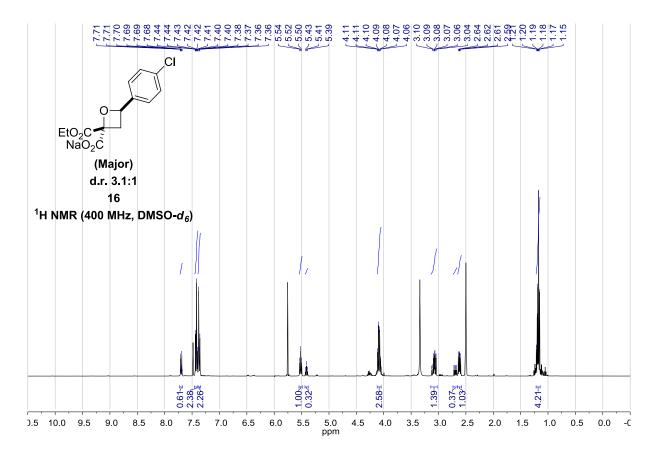


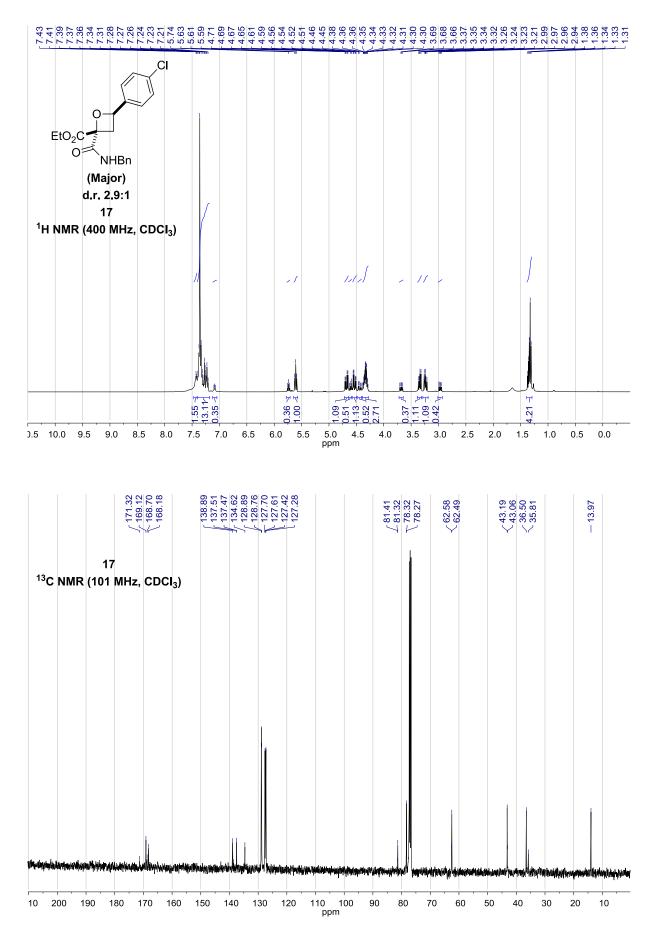


ppm

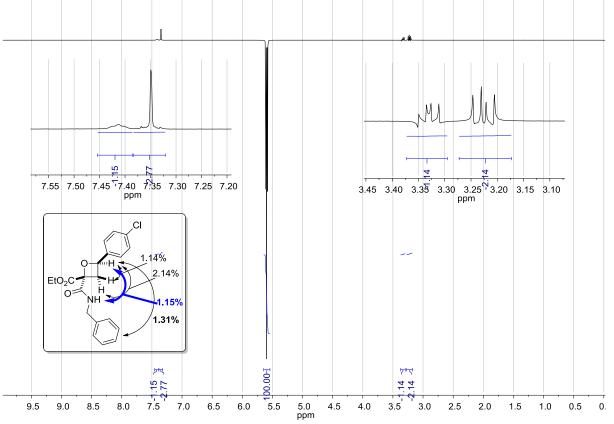

Selective NOE of minor 14a - Irradiation at 5.61 ppm

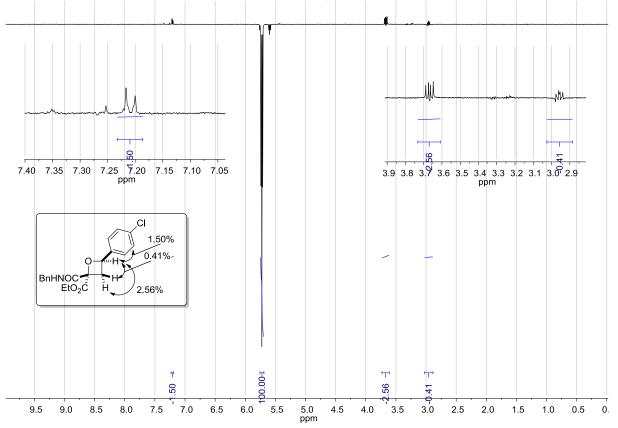


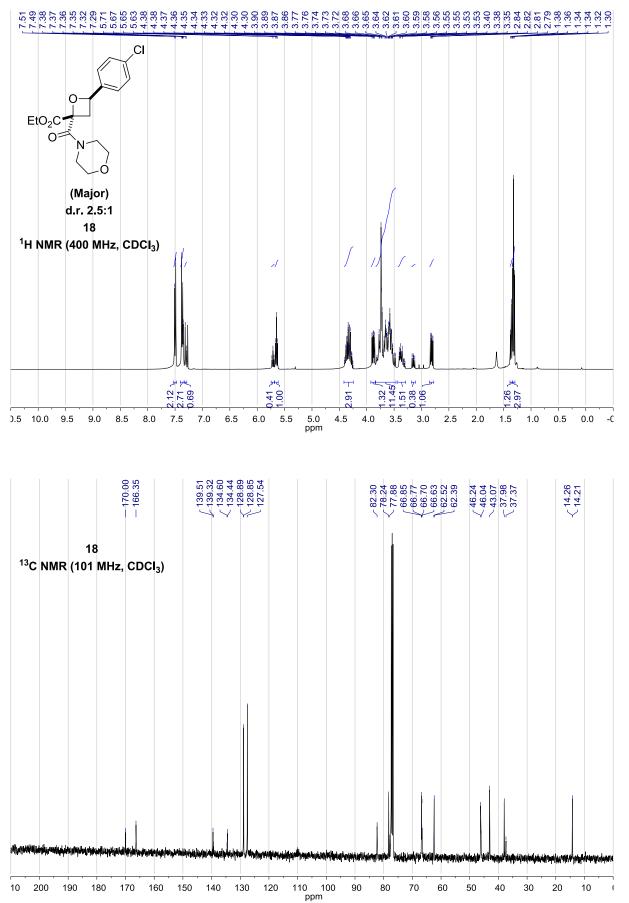

Selective NOE of major 14b - Irradiation at 5.57 ppm

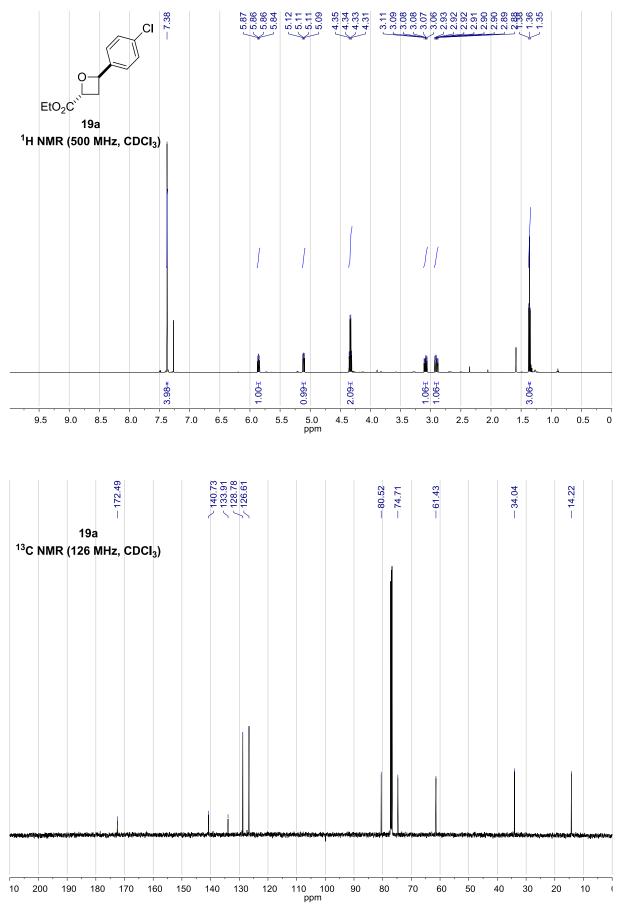


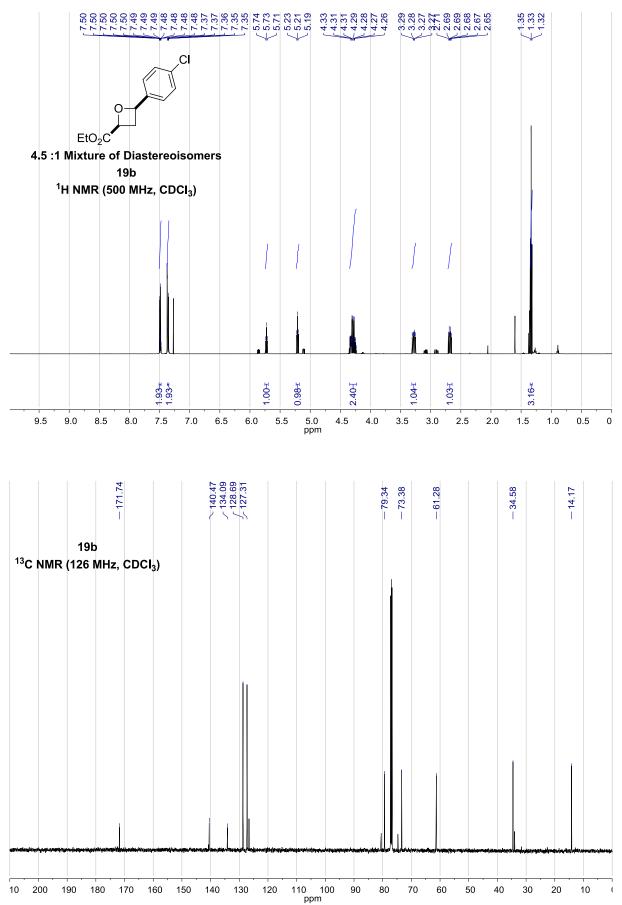
O. A. Davis and J. A. Bull NOESY NMR of major **14b**



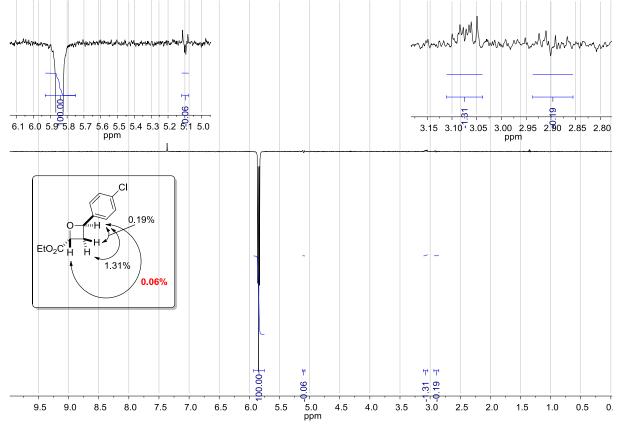


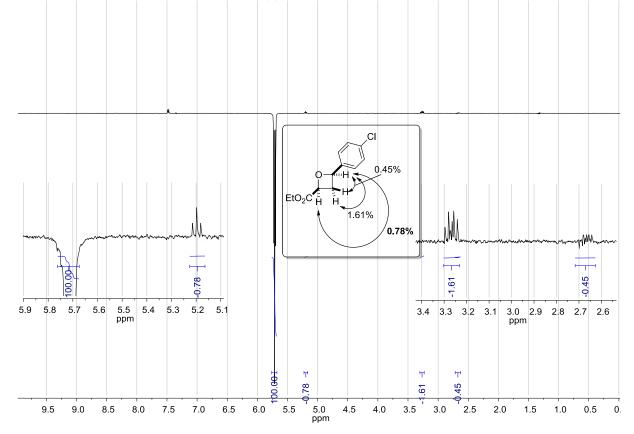


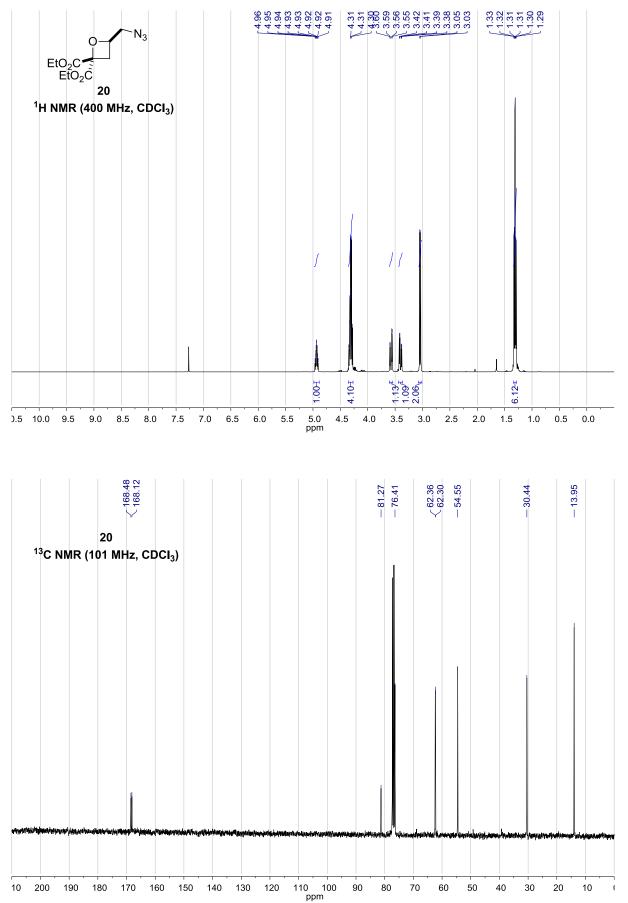

Selective NOE of Major Product 17 – Irradiation at 5.60 ppm



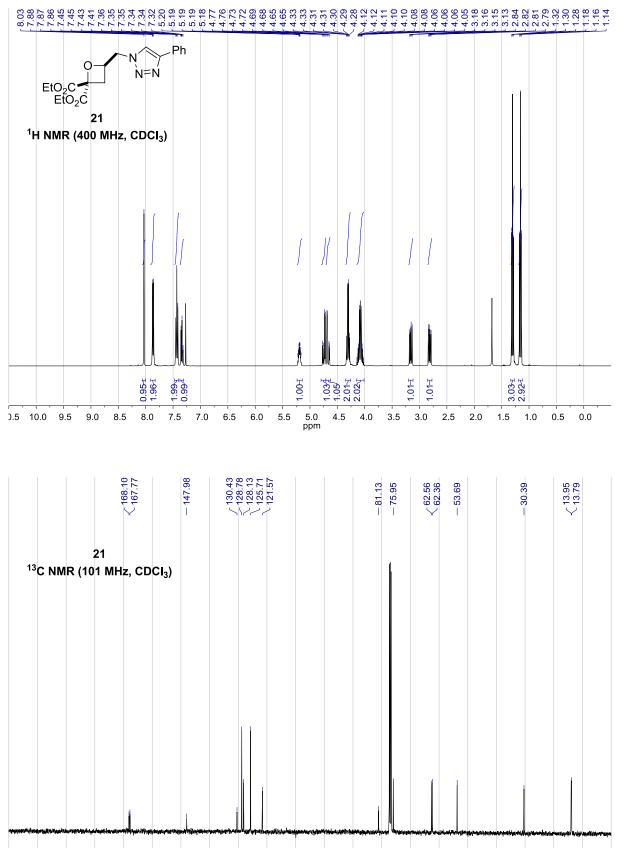
Selective NOE of Minor Product 19 - Irradiation at 5.73 ppm





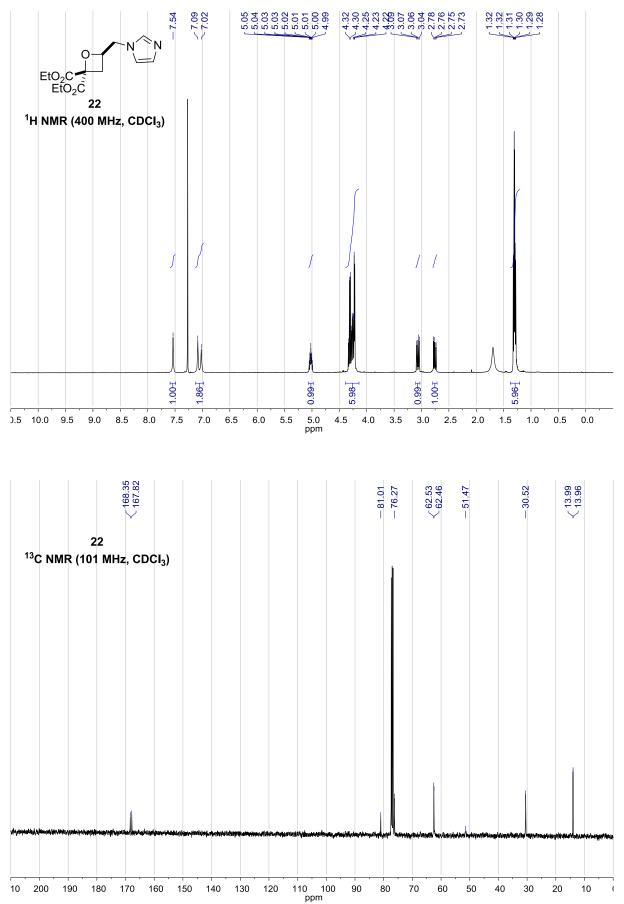


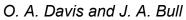
Selective NOE of trans-19a - Irradiation at 5.86 ppm

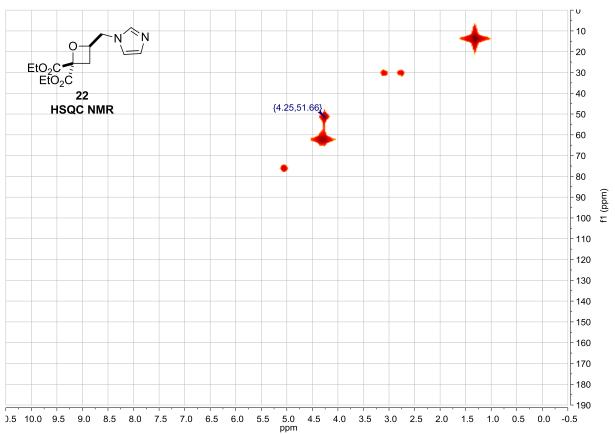


Selective NOE of cis-19b - Irradiation at 5.73 ppm

10 200




110 100


ppm

10 (

O. A. Davis and J. A. Bull

References

- [1] S. Fritz, J. Moya, M. Unthank, E. McGarrigle, V. Aggarwal, *Synthesis* **2012**, *44*, 1584.
- [2] P. Phukan, P. Chakraborty, D. Kataki, J. Org. Chem. 2006, 71, 7533.
- [3] G. K. Dewkar, S. V. Narina, A. Sudalai, Org. Lett. 2003, 5, 4501.
- [4] M. K. Agrawal, S. Adimurthy, B. Ganguly, P. K. Ghosh, *Tetrahedron* **2009**, *65*, 2791.
- [5] B. F. Sels, D. E. De Vos, P. A. Jacobs, J. Am. Chem. Soc. 2001, 123, 8350.
- [6] R. E. Lutz, R. K. Allison, G. Ashburn, P. S. Bailey, M. T. Clark, J. F. Codington, A. J. Deinet, J. A. Freek, K. C. Nicodemus, R. J. Rowlett, N. H. Shearer, J. D. Smith, J. W. Wilson, *J. Org. Chem.* 1947, 12, 617.
- [7] M. A. Reddy, K. Surendra, N. Bhanumathi, K. R. Rao, *Tetrahedron* 2002, 58, 6003.
- [8] A. K. Macharla, R. C. Nappunni, N. Nama, *Tetrahedron Lett.* **2012**, 53, 1401.
- [9] B. T. Cho, S. K. Kang, M. S. Kim, S. R. Ryu, D. K. An, *Tetrahedron* **2006**, *6*2, 8164.
- [10] N. B. Chapman, K. Clarke, D. J. Harvey, J. Chem. Soc. C 1971, 1202.
- [11] M. Bio, M. Waters, G. Javadi, Z. Song, F. Zhang, D. Thomas, Synthesis 2008, 891.
- [12] R. Perrone, F. Berardi, M. Leopoldo, V. Tortorella, M. D. Lograno, E. Daniele, S. Govoni, *J. Med. Chem.* **1992**, *35*, 3045.
- [13] J. Ren, W. Dong, B. Yu, Q. Wu, D. Zhu, Tetrahedron: Asymmetry 2012, 23, 497.
- [14] R. M. Haak, F. Berthiol, T. Jerphagnon, A. J. A. Gayet, C. Tarabiono, C. P. Postema, V. Ritleng, M. Pfeffer, D. B. Janssen, A. J. Minnaard, et al., *J. Am. Chem. Soc.* **2008**, *130*, 13508.
- [15] S. Wei, R. Messerer, S. B. Tsogoeva, Chem. Eur. J. 2011, 17, 14380.
- [16] J. Luis Olivares-Romero, E. Juaristi, *Tetrahedron* **2008**, 64, 9992.
- [17] S. Takano, T. Sugihara, T. Kamikubo, K. Ogasawara, *Heterocycles* **1991**, *32*, 1587.
- [18] H. Sharghi, M. M. Eskandari, Synthesis 2002, 1519.
- [19] N. Iranpoor, H. Firouzabadi, Can. J. Chem. 2006, 84, 69.
- [20] F. Camps, V. Gasol, A. Guerrero, Synthesis 1987, 511.
- [21] http://www.sigmaaldrich.com/catalog/product/aldrich/372404?lang=en®ion=GB
- [22] H. Kotsuki, T. Shimanouchi, R. Ohshima, S. Fujiwara, Tetrahedron 1998, 54, 2709.
- [23] http://www.sigmaaldrich.com/catalog/product/aldrich/718076?lang=en®ion=GB
- [24] http://www.sigmaaldrich.com/catalog/product/aldrich/184489?lang=en®ion=GB
- [25] B. Tamami, I. Ghazi, H. Mahdavi, Synth. Commun. 2002, 32, 3725.
- [26] M. Kandula, WO 2014/87323 A2, 2014.
- [27] F. Goto, N. Takemura, T. OTani, T. Hasegawa, H. Tsubouchi, N. Utsumi, S. Fujita, H. Kuroda, T. Shitsuta, H. Sasaki, EP1553088 A1, 2005.
- [28] S. C. Busman, G. D. Cuny, K. A. Zaklika, R. J. Ellis, US 1998/5756689 A1, 1998.
- [29] P. Yates, B. L. Shapiro, N. Yoda, J. Fugger, J. Am. Chem. Soc. 1954, 79, 5756.
- [30] G. M. Green, N. P. Peet, W. A. Metz, J. Org. Chem. 2001, 66, 2509.
- [31] J. S. Bradshaw, K. E. Krakowiak, G. C. Lindh, R. M. Izatt, *Tetrahedron* **1987**, *43*, 4271.
- [32] G. R. Newkome, J. D. Sauer, G. L. McClure, *Tetrahedron Lett.* 1973, 14, 1599.
- [33] G. Heublein, H. Schütz, A. Zschunke, *Tetrahedron* **1969**, *25*, 4225.
- [34] H. Masuda, K. Takase, M. Nishio, A. Hasegawa, Y. Nishiyama, Y. Ishii, *J. Org. Chem.* **1994**, *59*, 5550.
- [35] Sharghi, H.; Massah, A. R.; Eshghi, H.; Niknam, K. J. Org. Chem. **1998**, 63, 1455.
- [36] J. Xu, S. Xu, Synthesis **2004**, 276.
- [37] A. K. Gupta, R. J. Kazlauskas, *Tetrahedron: Asymmetry* **1993**, *4*, 879.
- [38] M. Julia, H. Mestdagh, *Tetrahedron* **1984**, *40*, 327.
- [39] T. J. Baker, D. F. Wiemer, J. Org. Chem. **1998**, 63, 2613.