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Supplementary Text 

1. TOFU: a bioinformatics pipeline for PacBio transcriptome data
We developed a novel bioinformatics pipeline called TOFU to leverage both CCS (Circular 
Consensus Sequence) reads and non-CCS reads for transcript discovery. TOFU consists of three 
components: identifying full-length reads, isoform-level clustering, and final consensus polishing. 
We explain details in each step in the subsections below. 

1.1 Full-length read identification and artifact removal 
Given either CCS or subreads, we use the phmmer program from HMMER1 to detect and remove 
the Clontech 5’ / 3’ primers (5’ – AAGCAGTGGTATCAACGCAGAGTAC – 3’). A read is 
considered full-length if both primers are detected at the ends with a polyA tail signal of at least 
12 consecutive ‘A’s preceding the 3’ primer. Based on polyA tail and 3’ primer orientation, 
primer-trimmed reads are reverse complemented to represent the sense strand. Because the 
Clontech protocol does not ensure the capture of the 5’ cap, reads are considered 3’-complete but 
potentially 5’-partial; the 5’ incompleteness is taken into account in later stages of transcript 
collapsing. To remove artificial concatemers that may have formed via ligation of primer-
attached inserts, the same phmmer program is used to detect the presence of Clontech primers at 
least 100 bp away from either end of the sequence.  

1.2. Iterative isoform clustering & consensus calling using Quiver 
We develop an iterative isoform clustering algorithm called ICE (Iterative Clustering for Error 
Correction) that uses PacBio sequencing QVs for determining whether two reads come from the 
same isoform. ICE consists of several main modules: (1) clique-finding based on similarity graph; 
(2) fast consensus calling with no QV information using DAGCon; (3) reassignment of sequences 
to different clusters based on likelihood. The following flow chart shows the process. 

In the initial phase of clustering, the input sequence, which are often only a portion of the entire 
dataset, are aligned against each other using BLASR2 to construct a similarity graph where each 
node represents a read and each connecting edge indicates an “isoform hit”. Since BLASR is 
designed to align through long stretches of gaps, a hit between two transcripts that share some 
number of exons may have an alignment. To distinguish alignments from the same isoform while 
accounting for sequencing errors, an alignment between two reads is considered an “isoform hit” 
(from the same isoform) only if the percentage of gaps that cannot be attributed to base errors 
within a window size w is below some threshold T.	
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Formally, let the alignment string between two fully aligned sequences x and y be A = a1a2...an 
where ai is ‘M’ for a match, ‘S’ for a substitution, ‘I’ for insertion, and ‘D’ for deletion (hence A 
is just an unraveled cigar string). Let  denote the probability of each 
error type based on the raw QVs for sequence x. Construct an non-match vector E = e1e2…en 
where ei = 0 if one of the following is true: 

• ai = 'M’
• ai = ‘S’ and (
• ai = ‘I’ and (
• ai = ‘D’ and (

otherwise ei = 1 which indicates a likely genuine non-match. Finally, we define x and y as being 
different isoforms if exists i, j > 0, where  j – i < w, such that . In other words, 
we identify indel-rich regions in the alignment that are likely due to exon-level differences. We 
use a previously published linear time algorithm for identifying indel-rich regions3 . A pair of 
aligned sequences x, y, that do not have an indel-rich region, is considered an “isoform hit”. In 
this study, we set c = 0.1, w = 20, and T = 0.5. 

With the similarity graph constructed using isoform hits, we look for perfect cliques in the graph. 
Ideally, all sequences from the same isoform would form a clique on its own with no other 
connecting edges. In practice, however, it is more likely that the sequences would form several 
cliques and may contain false positives (sequences from other isoforms). We address this by 
allowing “reassignment” of sequences to other clusters in a later step. For now, we run a maximal 
clique finding algorithm 4, 5 that non-deterministically finds maximal cliques in a graph, removes 



3	
  

the clique nodes from the graph, then repeat the process until the entire graph is partitioned into 
mutually exclusive cliques (clusters).  

We call an initial consensus on all clusters using DAGCon, a directed acyclic graph based 
consensus calling algorithm originally developed for error correcting PacBio genomic 
sequences6. With the improved accuracy of the consensus sequences, we can better approximate 
the likelihood of sequences belonging to the same isoform. Here, we use a “reassignment” 
procedure similar to the Gibbs sampling method described for detecting HIV quasispecies7. 
Briefly, we calculate the posterior probability of a sequence x originating from an isoform h(c) for 
cluster c as: 

Theoretically, we need to calculate  for all sequences x and all cluster 
consensus In practice, only pairs of (x, h(c)), for which there is an “isoform hit” are 
calculated. Here “isoform hit” uses the same linear time algorithm in the similarity graph 
construction; the only difference is h(c) is considered error-less.  

At each “reassignment” step, for each sequence x, there are three possible moves: 

• Case 1: If no isoform hit exists for x, it is put into an “orphan” bin
• Case 2a: If there exists another cluster c’ such that , 

reassign x to c’.
• Case 2b: If x is in a singleton cluster and there exists another cluster c’ such that h(c’) and

x has an isoform hit, with some probability p, reassign x to c’.
• Case 3: If none of the above is true, x remains in c.

Case 2a deals with clusters that are big enough (>= 3 sequences) to generate consensus. In cases 
where DAGCon cannot generate consensus because there is only 1 or 2 sequences in the cluster 
(called “singleton clusters”),  will always have the best probability and x will not 
have any possible moves. To allow the singletons to “escape”, we reassign it to another cluster for 
which there is an isoform hit with some low probability (by default, p=0.3).  

At the end of the reassignments, the “orphan” sequences go through the same similarity graph 
construction and maximal clique finding process to form new clusters. Any cluster that has 
membership changes must have run through DAGCon again for consensus calling, as well as 

 recalculated. 

Because our algorithm does not jointly optimize for a global objective function (such as 
, the total probability of observing the clusters given the input sequences and 

alignments) and our maximal clique finding is not guaranteed to put all isoform sequences in one 
cluster, a single isoform can end up being represented by multiple clusters. Thus, we add a phase 
of cluster merging, where the consensus sequences of two clusters are aligned against each other 
and if they are highly identical (  similar) and are considered an isoform hit, then the two 
clusters are merged together. Note that, if two clusters were incorrectly merged, most commonly 
DAGCon will call consensus on one isoform but not the other, and as a result sequences 
belonging to the other isoform will be “orphaned” out in the next reassignment phase. 
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The iterative nature of the clustering process described so far makes adding new sequences very 
easy. New sequences can be introduced as follows: First, all new sequences are aligned against 
existing cluster consensus and assigned to the cluster with highest probability. For all sequences 
that did not have an isoform hit to an existing cluster, it is “orphaned” and follows the maximal 
clique finding procedure to be introduced into the dataset. 

To summarize, the iterative process consists of maximal clique finding, consensus calling using 
DAGCon, cluster reassignment, and cluster merging. After a burn-in phase of reassignment and 
merging, the final set of DAGCon-generated consensus sequences are sent to the final stage of 
consensus calling using the more accurate and slower Quiver. 

In this final stage of Quiver consensus calling, non-full-length reads, that were excluded from the 
iterative clustering process, is recruited to improve consensus accuracy. Non-full-length reads are 
aligned to all DAGCon-generated consensus sequences and filtered so that only “isoform hits” 
(using the same criterion as before but allowing for partial alignment) remain in the final 
alignment. Quiver uses the raw QVs from all aligned PacBio reads and outputs informative QVs 
along with the consensus sequence. Using the consensus QVs, we can filter out low quality 
consensus sequences that are often junk sequences and artifacts, though we also risk throwing out 
rare transcripts that have too little coverage. 

Several speedups and parallelization are employed in the actual implementation of ICE. First, 
full-length reads are binned by size range (ex: 1-2k, 2-3k, 3-6k) since sequences from the same 
isoform must be within certain length differences even with indel errors. Partitioning the input 
sequences also serves to reduce the memory usage of each ICE process, which for efficiency 
maintains all QV information of “active” sequences (described below) in memory. Depending on 
the readlengths, 100k reads can take up 40-60GB of memory. Another speedup employed is to re-
run DAGCon consensus calling only on clusters that are relatively small, where the removal of 
one or two sequences can affect the consensus sequence. In this study, we set the re-run cluster 
𝐴, ℎ does not to be re-calculated since it will remain the same. Finally, ICE maintains a set of 
“active” sequences that are sequences that are highly likely to be reassigned or orphaned because 
it is in a small cluster. A “freeze phase” is introduced after certain iterations of ICE, where any 
sequence that is in a cluster of size greater than the re-run size threshold and does not have an 
isoform hit to any other clusters is “inactivated” and forced to remain in its current cluster. QVs 
of inactive sequences are removed from memory. Consequently, clusters that contain inactive 
sequences, which must be of size greater than the re-run size threshold, does not ever have 
consensus re-run, and its core members can only increase.  

1.3 Software availability 
As of this writing, TOFU has been incorporated into the official SMRTAnalysis suite (versions 
2.2 and above) by Pacific Biosciences under the protocol name RS_IsoSeq. The only difference 
between TOFU and RS_IsoSeq is that while TOFU uses a mixture of CCS reads and subreads, 
RS_IsoSeq uses the improved ReadsOfInsert protocol that generates a consensus read for each 
ZMW. The developemental version of TOFU is available publicly at 
http://github.com/PacificBiosciences/cDNA_primer. 

2. Short read mapping to long read consensus and filtering by coverage
Strand-specific Illumina paired short reads are treated as paired and concordantly mapped to the 
PacBio consensus sequences using BowTie2 with ‘--very-fast –norc’ and otherwise default 
parameters. Based on the short read coverage, PacBio consensus sequences are discarded if it: (1) 
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has zero short read coverage that is not at the end of the sequence; or (2) has a sudden drop in 
coverage that is greater than 100X fold and the smaller coverage is less than 10.  

3. Identifying exon and splice junctions and removing redundancy
PacBio consensus sequences are mapped to the P. crispa contigs using GMAP (version 2014-04-
24) with parameters ‘--allow-close-indels 0 --cross-species’. Alignments with less than 99%
coverage are discarded. Exon boundaries and alternative junctions are defined based on the 
remaining alignments. Because the PacBio reads are considered 3’ complete but possibly 5’ 
partial, transcripts are merged if they share the same 3’ exon and do not have any conflicting 
splice junctions. In the case of a single-exon transcript, all overlapping transcripts are merged. 

4. ORF prediction and comparison with genome annotation
ORF prediction is done using TransDecoder8 on the PacBio (TOFU) transcript consensus 
sequences. To find polycistronic candidates, we filter for any PacBio transcripts that satisfy the 
following: (1) has two or more non-overlapping ORF predictions; (2) does not have another 
PacBio consensus with a single ORF prediction that maps to the same loci and whose predicted 
ORF length is between 80%-120% of the total ORF length (in aa) from (1). We ignore any 
polycistronic candidates that have a similar PacBio consensus with single predicted ORF because 
most of them appear to be either incompletely or faulty spliced. The filtered polycistronic 
transcripts are then categorized as either reference-supported or non-reference-supported 
depending on whether each of the predicted ORFs overlaps an annotated reference gene. 

5. Identification of full-length CCS and subread sequences
We ran a total of 77 SMRTCells on the PacBio RS II consisting of different size fractions: 20 
with no size selection, 22 from the 1-2k size selection, 19 from the 2-3k size selection, and 16 
from the > 3k size selection. The loading efficiency (P1) for the runs were from 30-55%, which is 
the recommended range. The RS_Filter protocol from SMRTPortal (version 2.0) was used to 
generate filtered CCS (Circular Consensus Sequence) and subread sequences. Out of a total of 
4,920,305 sequencing ZMWs, 1,628,297 (33%) were CCS ZMWs. We defined a CCS or subread 
sequence to be full-length (FL) if both the 5’ and 3’ cDNA primers were present and there was a 
polyA tail signal preceding the 3’ primer. Primers and polyA tails were trimmed from full-length 
sequences. Out of a total of 2,177,319 full-length CCS or non-CCS ZMWs, 4,748 were detected 
as artificial concatemers (0.2%) and were removed. The remaining trimmed, full-length 
sequences were further filtered for potential PCR chimeras by removing any sequence with at 
least 12 consecutive Ts in the beginning of the sequence. The remaining 2,548,103 sequences 
(from 2,143,039 ZMWs) were then used as input to the subsequent ICE clustering step. 

6. Creating high-quality transcript consensus sequences
To speed up the clustering step, input sequences were divided into several bins (one for sequences 
shorter than 1kb, four for sequences between 1-2kb, two for sequences between 2-3kb, and one 
for sequences longer than 3kb) and ran through ICE independently on each bin. This resulted in 
many redundant transcripts consensus sequences that were merged in later steps. After obtaining 
the Quiver consensus sequence for each cluster, we estimated the number of expected errors 
based on the consensus QVs and discarded any consensus sequence that had more than 10 
expected errors. While we risk throwing away rarer transcripts that have less coverage and thus 
worse consensus QVs, this ensured that the resulting consensus sequences were high quality. 40% 
of the clusters (176,903/443,242) passed this filter, which together consisted of 84% of the full-
length input sequences. Most of the discarded clusters consisted of only one subread sequence, 
suggesting that these were likely low-quality sequences.   
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The high-quality consensus sequences were mapped to the P. crispa genome scaffolds using 
GMAP (version 2013-07-20) and removed for any sequence that did not map to the genome with 
at least 99% coverage; 12,085/179,603, or 6.8%, were removed.  

7. Further filtering of PacBio consensus sequences based on short read evidence
Paired-end Illumina reads were mapped to the PacBio consensus sequences using BowTie2. Most 
of the short reads mapped to at least one PacBio consensus sequence. We found that most PCR 
chimeras that have formed during the full-length cDNA library construction in the PacBio reads 
were successfully filtered by the detection for polyT stretches in the sequence filtering steps. To 
exclude remaining PCR chimeras, we discarded any consensus sequence that did not have 
sufficient Illumina short read coverage throughout the sequence. We removed 17,335 out of 
164,818 consensus sequences at this step. The remaining 147,483 consensus sequences then 
constitutes the redundant, high-quality transcript sequences that are supported by three 
independent sources: PacBio raw read support, Illumina short read support, and good alignment 
to the reference genome. 

8. Collapsing redundant PacBio transcripts
Because the PacBio reads were considered 3’ complete but possibly 5’ partial, transcripts were 
merged if they shared the same 3’ exon and did not have any conflicting splice junctions. After 
merging redundant transcripts, we obtained 22,956 non-redundant transcript sequences in 9,073 
isoform clusters.  

9. Categorizing polycistronic readthrough transcripts
We screened for PacBio transcripts that had two or more non-overlapping ORF predictions that 
were not covered by another transcript that had a single, long ORF prediction. We then collapsed 
the readthrough transcripts by their mapped genomic locations and found 508 distinct loci to be 
polycistronic, among which 314 have support from genome-based gene predictions. The 
polycistronic transcripts were distributed across the genomic scaffolds and ranged from 828 to 
5080 bp with an average length of 2330 bp. The majority of the candidates were bi-cistronic 
(471/508, or 93%), with the mean ORF lengths for the first and second ORFs being 256 aa and 
277 aa .The mean distance between the two ORFs was 364 bp. 
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Supplementary	
  Tables	
  

Table	
  A.	
  PacBio	
  Sequencing	
  

statistics.	
  
RS	
  II	
  sequencing	
  statistics	
  
Number	
  of	
  SMRTcells	
   77	
  
Number	
  of	
  sequencing	
  ZMWs	
   4,920,305	
  
Number	
  of	
  full-­‐length	
  ZMWs	
   2,177,319	
  

Quality	
  filtering	
  
Removed:	
  artificial	
  concatemers	
   4,748	
  (0.2%)	
  
Removed:	
  suspicious	
  polyT	
   29,532	
  (1%)	
  
Input	
  to	
  consensus	
  clustering	
  (ICE):	
  2,548,103	
  sequences	
  (2,143,039	
  ZMWs)	
  

Post-­‐ICE	
  consensus	
  sequencing	
  filtering	
  
Number	
  of	
  clusters	
   443,342	
  
Number	
  of	
  high-­‐quality	
  clusters	
   176,903	
  (40%)	
  
Removed:	
  low	
  alignment	
  to	
  genome	
   12,085	
  (6.8%)	
  
Removed:	
  low	
  short	
  read	
  support	
   17,335	
  (10.5%)	
  
Number	
  of	
  high-­‐quality,	
  redundant	
  clusters	
  with	
  support	
  from	
  PacBio,	
  Illumina	
  short	
  reads,	
  
and	
  genome	
  scaffold:	
  147,	
  483	
  

Collapsing	
  redundant	
  transcripts	
  
Number	
  of	
  non-­‐redundant	
  transcripts	
   22,956	
  
Number	
  of	
  isoform	
  clusters	
   9,073	
  

Table B. Statistics for assembled transcripts from short reads. 
Program Number of 

assembled 
transcripts 

Well-mapped 
transcripts  

Number of 
Non-
redundant 
transcripts 

Length of non-redundant 
transcripts (nt) 

Min Max Median 

Rnnotator 29,754 27,549 24,637 43 15,374 614 
Oases 112,669 80,761 68,693 100 19,699 1,481 
Cufflinks 10,211 10,184 10,051 96 20,688 1,960 

Table C. Comparison of assembled transcripts from short reads against 
PacBio transcripts.  
Program Number of 

non-
redundant 
transcripts 

Match against PacBio* 
Exact Extended Subset Concordant Alternative Nomatch 

Rnnotator 24,637 3975 
(16%) 

2488 
(10%) 

5770 
(23%) 

824 
(3%) 

5171 
(21%) 

6409 
(26%) 

Oases 68,693 5212 
(17%) 

20419 
(33%) 

14351 
(6%) 

4581 
(3%) 

11081 
(22%) 

13049 
(19%) 

Cufflinks 10,051 1684 
(8%) 

3308 
(30%) 

590 
(21%) 

294 
(7%) 

2220 
(16%) 

1955 
(19%) 
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* Each assembled transcript was matched against PacBio transcripts and categorized based on the
number and exact position of donor-acceptor sites, regardless of the start and end position of the 
first and last exon. An exact match indicates that the exon junctions are the same, whereas 
extended, subset, and concordant indicates exon junction agreement where there is overlap but 
there are additional junctions not covered by either the assembled transcript or PacBio. An 
alternative match means disagreement in exon junctions but the mapped loci overlaps. Finally, a 
nomatch indicates no PacBio is observed at the loci. 

Table	
  D.	
  RT-PCR	
  validation	
  of	
  polycistronic	
  transcripts.	
  Primers	
  were	
  designed	
  to	
  
cover	
  more	
  than	
  one	
  of	
  the	
  predicted	
  ORF	
  regions	
  to	
  prevent	
  mis-validation	
  by	
  sequencing	
  
of	
  non-polycistronic	
  transcripts	
  that	
  contain	
  only	
  one	
  of	
  the	
  ORFs.	
  Eight	
  out	
  of	
  ten	
  of	
  the	
  
RT-PCR	
  products	
  and	
  subsequent	
  sequencing	
  confirmed	
  the	
  presence	
  of	
  the	
  polycistronic	
  
transcripts.	
  

Transcrip
t ID 

Length 
(nt) Locus 

Primer 
target 
region 

Observed 
read region 

Number of Full-Match Reads 
5' primer 
detected 

3' primer 
detected 

5' & 3' 
detected 

i1_c21309 1918 
scaffold_13:45194

3-454078 635 - 1832 635 - 1832 91 123 71 

i4_c15846 2155 
scaffold_4:136449

3-1367235  393 - 1784 393 - 1784 77 104 45 

i4_c2393 2949 
scaffold_16:25638

7-259704 437 - 2428 437 - 2428 432 405 312 

i4_c71086 2728 
scaffold_9:120106

1-1204786  30 - 2029 30 - NA 6989 0 0 

i5_c14860 2457 
scaffold_5:113696-

116791 110 - 1606 110 - 1606 930 871 747 

i6_c15213 3333 
scaffold_3:127027

1-1274332  1006 - 2505 1006 - 2505 113 137 93 

i6_c18769 3332 
scaffold_8:146034

1-1464471  398 - 2593 398 - 2593 652 607 495 

i6_c19101 4168 
scaffold_14:66823

9-673734  1622 - 3821 1622 - 3821 206 208 157 

i6_c36760 3101 
scaffold_2:123125-

126961 125 - 2426 125 - 2426 64 49 31 

i6_c38512 3506 
scaffold_15:63886

4-642834  382 - 3390 382 - 1860 1290 1233 1071 

Table	
  E.	
  The	
  list	
  of	
  species	
  that	
  are	
  used	
  for	
  searching	
  conserved	
  gene	
  pairs.	
  
JGI	
  mycocosym	
  ID	
   conserved	
  gene	
  pair	
  

	
  configurations	
  
taxonomic	
  relation	
  
to	
  P.	
  crispa	
  

Ompol1	
   10	
   Agaricales	
  
PleosPC9_1	
   21	
   Agaricales	
  
Agabi_varbisH97_3	
   19	
   Agaricales	
  
Schco_LoeD_1	
   12	
   Agaricales	
  
Schco3	
   12	
   Agaricales	
  
Schco_TatD_1	
   10	
   Agaricales	
  
Lacbi2	
   23	
   Agaricales	
  
Volvo1	
   7	
   Agaricales	
  



9	
  

Agabi_varbur_1	
   18	
   Agaricales	
  
PleosPC15_2	
   16	
   Agaricales	
  
Agabi_varbisH97_2	
   17	
   Agaricales	
  
Galma1	
   19	
   Agaricales	
  
Armme1	
   7	
   Agaricales	
  
Punst1	
   15	
   Agaricomycetes	
  
Conpu1	
   20	
   Agaricomycetes	
  
Phchr2	
   19	
   Agaricomycetes	
  
Aurde3_1	
   3	
   Agaricomycetes	
  
SerlaS7_3_2	
   22	
   Agaricomycetes	
  
Botbo1	
   4	
   Agaricomycetes	
  
Dicsq1	
   13	
   Agaricomycetes	
  
Wolco1	
   14	
   Agaricomycetes	
  
Bjead1_1	
   18	
   Agaricomycetes	
  
PosplRSB12_1	
   14	
   Agaricomycetes	
  
Fompi3	
   17	
   Agaricomycetes	
  
Jaaar1	
   25	
   Agaricomycetes	
  
Glotr1_1	
   21	
   Agaricomycetes	
  
Cersu1	
   17	
   Agaricomycetes	
  
SerlaS7_9_2	
   24	
   Agaricomycetes	
  
Stehi1	
   16	
   Agaricomycetes	
  
Pirin1	
   1	
   Agaricomycetes	
  
Phlbr1	
   15	
   Agaricomycetes	
  
Phaca1	
   17	
   Agaricomycetes	
  
Trave1	
   19	
   Agaricomycetes	
  
Hetan2	
   22	
   Agaricomycetes	
  
Serla_varsha1	
   21	
   Agaricomycetes	
  
Fomme1	
   13	
   Agaricomycetes	
  
Gansp1	
   15	
   Agaricomycetes	
  
Dacsp1	
   3	
   Agaricomycotina	
  
Treme1	
   1	
   Agaricomycotina	
  
Psehu1	
   1	
   Basidiomycota	
  
Mellp1	
   1	
   Basidiomycota	
  
Tilan2	
   1	
   Basidiomycota	
  
Malgl1	
   2	
   Basidiomycota	
  
Hisca1	
   1	
   Ascomycota	
  
Clagr3	
   1	
   Ascomycota	
  
Hyspu1	
   1	
   Ascomycota	
  
Talma1_2	
   1	
   Ascomycota	
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