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Figure S1, related to Figure 1. The Ras model predicts NF1 deficient phenotypes robustly.  

(A) The model reproduces common NF1-deficient phenotypes, and shows robustness under different 

levels of GAP deficiency.  We investigated the model’s ability to reproduce three phenotypes that are 

common to NF1-deficient systems: (1) haploinsufficiency, i.e. the partial increase in Ras signal when 

one copy of NF1 is lost;  (2) hyperactivity, i.e. an increased signal amplitude in response to growth 

factor stimulation for NF1 deficient conditions compared to WT conditions; and (3) hypersensitivity, i.e. 

a heightened response to a lower concentration of growth factor in the NF1 deficient state.  We further 

considered this for different proportions of GAP-activity due to NF1 (25%, 50%, 75%, and 100%, as 

indicted above, to the left of each row). 

(B) The percentage of the one million computational random Ras mutants that exceeded this level of 

RasGTP in NF1-deficient conditions, but not in wild-type conditions. 

(C) An alternative measure of Ras activation also demonstrates that NF1-deficient conditions can 

potentiate the effects of some Ras mutants. Similar to Figure 1C, but with the percentage of Ras 

effector proteins bound to RasGTP used as a measure of Ras activation. White, G12V; Black; G12D; 

Red, F28L; Yellow, WT Ras only.  

(D) Summary statistics of the computational random mutants for key subsets. Each of the 

computational random mutants is specified by twelve independent parameters, each of which is 

specified as a multiple of the wild-type parameter value (e.g. kGTPase,G12D = α kGTPase,WT ). For each of the 

twelve independent parameters of a modeled computational random mutant, the average values of x = 

log10(α) and the standard deviation for: all computational random mutants (“All”, black), computational 

random mutants where there was less than 25% total RasGTP for both WT and NF1 deficient contexts 

(“Neither”, gray), computational random mutants where there was 25% or more total RasGTP in the 

NF1 deficient context but not in the wild-type context (“NF1 only”, orange), or computational random 

mutants that resulted in 25% or more RasGTP in both wild-type and NF1 deficient conditions (“Both”, 

violet). 

(E) Modeling a NF1 point mutation produces similar results as a mutation resulting in loss of NF1 GAP 

expression. NF1 deficiency modeled in Figure 1 was for complete loss of GAP activity, such as by a 

NF1 gene deletion or a nonsense mutation resulting in a premature stop codon before the GAP 

domain.  The effects of a NF1 point mutation were modeled by incorporating previous experimental 

data for the kcat and Km of a GAP domain mutation R1276A. White, G12V; Black; G12D; Red, F28L; 

Yellow, WT Ras only.  
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Figure S2, related to Figure 2. Comparison of proliferation by MEFs with varying levels of 

neurofibromin expression. 

(above) Proliferation assay for Nf1+/+, Nf1+/-, and Nf1-/- MEFs. (below) Analysis of the data from 

above to quantify the diluted fraction of the CellTrace Violet dye. 
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Figure S3, related to Figure 3. The Ras model predicts the acquisition of a state with increased 

sensitivity to perturbation robustly. 

(A) Net change in RasGTP for a change in the indicated Ras network concentration parameter. 

RasGTP levels (M) and net changes in RasGTP levels are determined through model simulations when 

concentration parameters are varied in WT and NF1-deficient networks. Parameters are varied in terms 

of fold change from the baseline value of the parameter. 

(B) Net changes in RasGTP for a change in the indicated Ras network reaction parameter. Net 

changes in RasGTP levels determined through model simulations when the reaction parameters are 

varied in NF1-WT and NF1-deficient networks.   Parameters are varied in terms of fold change from the 

baseline value of the parameter.  ΔRasGTP levels are normalized to the total amount of Ras. 

(C) The proportion of total basal GAP activity lost influences the magnitude and sensitivity of the GAP-

deficient network. The ratio of sensitivities (i.e. the change in RasGTP for a small change in each 

parameter) between GAP-deficient (e.g. NF1-deficient) and GAP-WT networks was determined for 

varying levels of basal GAP activity lost.  

(D) The model-based predictions that NF1-deficient networks are more sensitive to perturbation are 

robust to changes in the basal protein concentrations. Nine concentration sets, which were previously 

used to assess the robustness of the Ras network model to the changes in specific concentrations of 

network proteins (Stites et al., 2007), were used here to assess predictions about neurofibromin 

deficiency.  The same nine concentration sets were applied to the analysis presented in Fig. 3D. Each 

data point represents the ratio of sensitivities between NF1-deficient and NF1-WT networks for the 

specified parameter for one of the nine concentration sets.  

(E) Ras GEF activation can potentiate the effects of a noncanonical Ras mutant. The same one million 

random mutants simulated and presented in Figure 1 for WT and NF1 deficient conditions were also 

simulated in the GEF activated states.  Resulting levels of RasGTP are plotted for both WT and GEF 

activated conditions. White, G12V; Black; G12D; Red, F28L; Yellow, WT Ras only.  

(F) Ras networks with increased basal GEF activity are more sensitive to perturbation. Calculations of 

the sensitivity of RasGTP levels to changes in model parameters were performed for networks with 

increased basal GEF activity and compared to the wild-type network, similar to what was done in Fig. 

3D for neurofibromin deficiency.  The ratio of sensitivities between the GEF activated and the NF1-WT 

network is presented (green).  The ratio of sensitivities between the NF1‑deficient network and the 

NF1-WT network is reproduced here for comparison (black).  
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Figure S4, related to Figure 4. Analysis of cancer genome data sets finds an increased rate of 

co-occurrence for mutations within the Ras signaling network. 

(A) Percentage of canonical and noncanonical RAS mutants that co-occur with a TP53 mutation within 

the CCLE dataset (left), or within the TCGA dataset (right).  Differences are not significant by Fisher’s 

exact test. 

(B) The percentage of samples or without an NF1 that co-occur with a TP53 mutation was found for 

subsets of the CCLE and TCGA datasets.  Differences are not significant by Fisher’s exact test. 

(C) The number of mutations per sample with canonical and noncanonical KRAS mutations. Data are 

from the TCGA.  Differences were not significant by the Mann-Whiney test. 

(D) There is an increased number of mutations per sample within samples found to have a combination 

of KRAS mutations and NF1 mutations. For the TCGA dataset, the number of mutations per sample 

was found for samples with a canonical KRAS mutation but no NF1 mutation and for samples with both 

canonical KRAS and NF1 mutations (left).  The number of mutations per sample was also found for 

samples with a noncanonical KRAS mutation but no NF1 mutation and for samples with both 

noncanonical KRAS and NF1 mutation (right).  The increase was statistically significant for canonical 

KRAS and NF1 mutations (p = 0.025) and for noncanonical KRAS and NF1 mutations (p = 0.0047) by 

the Mann-Whitney test. 

(E) Co-occurrence of noncanonical Ras mutants with NF1 and Ras GAP mutants. The percentage of 

canonical and noncanonical KRAS mutants that co-occur with a Ras GAP mutation within the CCLE 

dataset (above) or within the TCGA dataset (below). The p-value for all panels is by Fisher’s exact test.  

(F) Co-occurrence of noncanonical Ras mutants with Ras GEF mutants. The percentage of canonical 

and noncanonical KRAS mutants that co-occur with a Ras GEF mutation within the CCLE dataset 

(above) or within the TCGA dataset (below). The p-value for all panels is by Fisher’s exact test.  

  

 

 



Supplemental Methods 

 

Modeling the Ras signaling network 

We have previously developed a mathematical model of the processes that 

regulate which nucleotide is bound to the Ras GTPases (Figure 3A).  Model predictions 

for quantities, such as the amount of RasGTP present when different Ras mutants are 

transfected into a cell line, have previously been shown to compare well with 

experimentally determined values.  We previously used this model to study the 

constitutively elevated levels of Ras pathway signals that are produced by canonical 

oncogenic Ras mutants (Stites et al., 2007).  Among the predictions of our earlier model 

was that oncogenic Ras mutants lead to increased activation of wild-type Ras within the 

same cell. The different roles of wild-type and oncogenic mutant Ras in cancer have 

since become an important topic in cancer biology (Grabocka et al., 2014; Jeng et al., 

2012; Lim et al., 2008; Young et al., 2013). Additionally, although the kcat for the GAP 

activity on RasGTP is approximately ten-thousand times greater than the rate constant 

for spontaneous GTPase activity, the model predicted that a GAP-insensitive mutant 

with wild-type-level GTPase activity would be much less active than a mutant that was 

both GAP-insensitive and GTPase impaired (like the canonical Ras mutants).  After our 

predictions were made, a GAP-insensitive mutant with GTPase activity near wild-type 

levels was reported to have been found in a Noonan syndrome patient, and, consistent 

with our model’s predictions and contrary to conventional wisdom, levels of RasGTP for 

this mutant were significantly less than the canonical Ras mutants (Schubbert et al., 

2007).  

We have used modeled levels of RasGTP and levels of effector bound to 

RasGTP as measures of Ras activation.  We here focus on levels of RasGTP as a 

computational readout as it tends to be an intuitive measure of Ras signaling and 

therefore facilitates communication.  Levels of RasGTP can be measured by thin-layer 

chromatography (Boykevisch et al., 2006; Gibbs et al., 1990), and can be measured 

after RasGTP specific binding and pull-down with constructs of the Raf-1 Ras binding 

domain (RBD) (Courtois-Cox et al., 2006; Shapira et al., 2007).  The level of effector 

bound to RasGTP is less easily measured directly, in part because of the large number 

of proteins with a Ras binding domain that bind to the Ras proteins (Rodriguez-Viciana 

et al., 2004). Antibodies and methods for measuring ERK phosphorylation by flow-



cytometry are particularly well validated and are a common and well-established 

surrogate measure of Ras pathway activation (Trampont et al., 2010).  The activation of 

effectors directly downstream of Ras, such as Raf, involves multiple processes other 

than simply binding to Ras (Hu et al., 2013).  Measurements of signaling below Raf 

(such as ERK phosphorylation) can indicate that Ras signals have been transmitted 

beyond the binding of Ras to Raf.  We therefore use flow-cytometry measurements of 

ERK phosphorylation to measure Ras activation because this is a well-accepted 

measure of Ras activation, because the reagents and methods are well established, and 

because single-cell measurements of ERK phosphorylation allow us to measure how 

changes in expression reflect changes in Ras activation. 

 

Modeling GAP deficiency 

When we originally developed our Ras model, we focused upon neurofibromin as 

the basally active Ras GAP that maintains low-levels of Ras signal in non-stimulated 

cells (Ahmadian et al., 1997). Of all Ras GAPs, neurofibromin has the best evidence for 

contributing to the basal regulation of steady-state RasGTP levels and the clearest 

association with cancer. NF1, the gene coding for neurofibromin, is one of the most 

commonly mutated genes in lung cancer (Ding et al., 2008), ovarian cancer (Kan et al., 

2010; The Cancer Genome Atlas Netwrok, 2011), and glioblastoma (Brennan et al., 

2013; Parsons et al., 2008; The Cancer Genome Atlas Network, 2008). Loss of a single 

copy of tumor suppressor gene NF1 does not appear capable of promoting cancer 

alone, although NF1 displays haploinsufficiency and a loss of one functional allele is 

sufficient to cause a small increase in RasGTP and the cellular proliferation rate 

(Shapira et al., 2007).  Individuals with neurofibromatosis also have an increased risk of 

developing many different tumors (Williams et al., 2009). The disease neurofibromatosis 

is caused by germline loss of one functional copy of NF1, which further highlights that a 

small, partial increase in Ras signal can have pathological consequences.  

Loss of the full complement of neurofibromin can induce negative feedback to 

counteract the resultant increase in Ras pathway activation (Courtois-Cox et al., 2006).  

However, there is abundant evidence that negative feedback is not sufficient to 

counteract the consequences of decreased GAP activity.  Neurofibromin deficient cells 

display elevated levels of RasGTP (Bollag et al., 1996), ERK phosphorylation (Shapira 

et al., 2007), and proliferation (Joseph et al., 2008).  Indeed, the disease 



neurofibromatosis highlights that negative feedback is not sufficient to completely 

counteract loss of neurofibromin (Williams et al., 2009). 

Pathological NF1 mutations, such as those associated with cancer and 

neurofibromatosis, commonly result in loss of expression of neurofibromin 

(The Cancer Genome Atlas Network, 2008). Gene mutations within the Ras pathway 

can also result in a protein product with altered biochemistry. For example, the 

oncogenic Ras mutant RasG12V has an apparent complete loss of kcat for GAP activity 

on Ras, an order of magnitude decrease in its intrinsic GTPase reaction, slight variations 

in nucleotide affinity, and slightly increased affinity for its effector Raf. Such changes can 

be applied to the model to make predictions that match well with experimental data 

(Stites et al., 2007). Thus, mathematical models can find behaviors that naturally emerge 

from the changes in rate constants and concentrations that follow from gene mutation, 

and in that manner predict how the system responds to particular mutations (Stites and 

Ravichandran, 2012). 

In the case where all basal GAP activity is due to NF1, complete loss of both 

copies of NF1 would result in zero basal GAP activity and loss of one copy would result 

in a 50% reduction in GAP concentration (if there is no feedback changes in expression).  

However, although we have focused on neurofibromin as the basally active Ras GAP, 

other Ras GAPs may also serve to maintain low levels of Ras signaling in non-

stimulated conditions. For example, DAB2IP has been shown to serve the role of a 

basally active Ras GAP in prostate cancer cells (Min et al., 2010).  In a situation where 

DAB2IP and NF1 equally contribute to basal GAP activity, a homozygous loss of NF1 

might result in a 50% reduction in basal GAP concentration.  As our model more 

generally describes the behavior of basally active Ras GAPs on regulating Ras pathway 

activation, our model analysis should more generally apply to conditions where other 

Ras GAPs serve the role of basally active Ras GAP. In cases where more than one Ras 

GAP contributes to basal Ras activation, loss of NF1 (or loss of another Ras GAP) could 

result in a fraction other than 50% of total, basal, Ras GAP activity being lost. We 

considered fractions from 0% to 100% of total, basal, Ras GAP activity being lost and 

found that our model predictions were robust to the level of GAP deficiency modeled 

(Figure S3C).  As we are using the model to gain non-obvious insights into the 

consequences of NF1/GAP deficiency and to the consequences of combinations of 



mutations that can then be tested experimentally and/or bioinformatically, we use a 50% 

reduction in NF1 as a convenient starting point. 

 We wished to determine if the model could apply to a NF1 deficient system with 

additional perturbations. Three behaviors common to NF1 deficient networks were 

considered to evaluate the predictive ability of the model in NF1 deficient conditions: 

haploinsufficiency, i.e. the partial increase in Ras signal when one copy of NF1 is lost 

(Bennett et al., 2003; Shapira et al., 2007; Yang et al., 2006a); hyperactivity, i.e. an 

increased signal amplitude in response to growth factor stimulation for NF1 deficient 

conditions compared to WT conditions (Ingram et al., 2000; Yang et al., 2006a; Yang et 

al., 2006b); and hypersensitivity, i.e. the response to a lower concentration of growth 

factor in NF1 deficient cells such that a growth factor dose response curve is left-shifted 

(Bennett et al., 2003; Bollag et al., 1996; Yang et al., 2006a; Yang et al., 2006b). The 

model was able to reproduce all of these key features of NF1 signaling (Figure S1A). 

Only the GAP levels were varied to reflect NF1 deficiency, only the GEF levels were 

varied to reflect growth factor stimulation, and we did not have to tune or otherwise 

adjust our model for it to produce all three behaviors.  We considered different levels of 

GAP loss to investigate how the proportion of total, modeled, basal GAP activity 

removed would impact the predictive ability of the model.  We removed 50% of total 

basal GAP activity to model the NF1-/- state, removed 25% to represent the NF1+/- 

state, and removed 0% (i.e. no removal) for the NF1+/+ (WT) state. We observed 

haploinsufficiency, hyperactivity, and hypersensitivity for this wide range of NF1 

contributions to basal GAP activity (Figure S1A). 

The above approach for modeling neurofibromin deficiency should apply well to 

mutations that result in loss of expression of neurofibromin (such as gene/chromosome 

deletions) and to mutations that result in the expression of a neurofibromin protein that 

does not include the GAP domain (such as may occur with a nonsense mutation that 

results in a stop codon prior to the GAP domain).  NF1 mutations may also result in 

nonsense mutations that express full-length protein but with altered biochemistry.  

Mutations to the GAP-related domain, for example, may result in altered kcat and Km for 

the GAP activity on Ras.  We also modeled the behavior of NF1 point mutations by 

modeling the NF1 R1276A mutant.  Sermon et al previously measured a kcat of 0.02/s for 

R1276A compared to a kcat of 23/s for wild-type neurofibromin, and no change in the 

interaction with Ras, suggesting no change to Km (Sermon et al., 1998).  The change in 



kcat was applied to the modeled NF1 mutant. We considered 50% of total GAP to be 

mutant and 50% of total GAP to be wild-type (Figure S1E). 

 

Computational Random Mutagenesis 

Within a model with all wild-type Ras, the parameters of the model correspond to 

observable biochemical properties of wild-type Ras protein.  For example, the rate 

constant for the intrinsic GTPase activity of Ras is a value of the rate constant measured 

experimentally for wild-type Ras (Donovan et al., 2002).  The network containing a Ras 

mutant can be modeled by using the parameters appropriate for a Ras mutant.  For 

example, RasG12D is known to have a reduced rate of the intrinsic GTPase activity 

(Eccleston et al., 1991).  Applying all known changes to the parameters governing the 

known reactions involving Ras allows the mutant to be modeled. It is possible to specify 

the rate constant for a mutant as a multiple of the wild-type parameter.  For example, the 

rate constant for the intrinsic GTPase activity of RasG12D (k,GTPase,G12D) can be 

specified as  

k,GTPase,G12D = α k,GTPase,WT  

where here  

α = kGTPase,G12D / kGTPase,WT.   

This approach of specifying mutant parameters as a multiple of the wild-type parameter 

is useful for specifying computational random mutants. 

Computational random Ras mutants were generated by obtaining a random set 

of factors (α i with i=1:12) with which to vary each of the twelve independent RasWT 

reaction parameters. Each random mutant was generated by first creating a set of 

twelve random numbers from a random number distribution with a mean of zero and 

standard deviation of 1 (xi with i=1:12). This random number, xi, was transformed into 

the corresponding parameter multiplication factor, αi=10x. These were then applied to 

twelve free reaction parameters (kmut,i = αi kWT,i). The remaining parameter, (kcatGTPGEF) 

was calculated from the other parameters to ensure thermodynamically consistent 

parameters for nucleotide exchange (whether GEF-mediated or free nucleotide 

exchange).  Each random mutant was specified by these new parameters.  The model 

was then simulated with 25% of total Ras comprised of the computational random 

mutant and the remaining 75% of total Ras comprised of wild-type Ras.  Simulations 



were run until steady-state was reached, and levels of RasGTP and RasGTP-effector 

complex were saved.  This was done for all one million computational random mutants. 

 

Sensitivity Analyses 

Sensitivity analysis, or the process of determining how model outputs vary in 

response to changes in model parameters, has long been a part of the analysis of 

mathematical models of cell signaling networks (Kitano, 2002; Schoeberl et al., 2002).  

There are many potential uses for a sensitivity analysis (Zi, 2011), including the study of 

how network behavior might depend on variations within the underlying network (Gaudet 

et al., 2012) and where mutations in the network might have the largest effect (Chen et 

al., 2014).  More generally, the results of a sensitivity analysis can help reveal behaviors 

of the studied network that were not obvious by prior inspection and are interesting 

candidates for further computational and/or experimental study  (Benedict et al., 2011). 

The Ras model studied here was developed so that the parameters of the model 

corresponded directly to observable biochemical properties.  The output of the model 

studied, levels of RasGTP, corresponds to a biologically important observable.  

Increased levels of RasGTP are believed to be an important part of pro-cancer signaling.  

Our analysis of changes to which model parameters (biochemical properties) are likely 

to result in large changes in RasGTP levels therefore seems useful for identifying 

properties that could result in increased pro-cancer signaling.  As the total amount of 

Ras pathway signal appears to be an important factor in the cellular phenotype of 

neurofibromin deficient cells (Shapira et al., 2007) and in cells containing Ras mutants 

(Donovan et al., 2002), we focus our sensitivity on the net total change in Ras GTP for a 

change in a parameter.  The change in RasGTP for a change in a model parameter was 

determined with simulations and/or with analytical calculations. For simulations, a single 

parameter was adjusted by ±0.1% of its value in the WT network, and the resultant level 

of RasGTP was determined with model simulations. The difference in RasGTP, or 

ΔRasGTP, was determined from the two resulting levels of steady-state RasGTP. This 

was done for WT and NF1/GAP-deficient networks. The ratio of ΔRasGTP for the NF1-

deficient network to ΔRasGTP for the WT network was used as a measure of relative 

sensitivity to a change in a single parameter value.  



Analytical calculations were performed using the same set of reactions and 

conservation laws for total Ras and total effector. These reaction equations were 

algebraically reduced to an expression that relates the levels of RasGTP to each 

parameter. Further algebraic manipulation reduced these equations to a single 

expression that implicitly relates steady-state levels of RasGTP to each parameter, 

G(RasGTP,k)=0, where k indicates all of the parameters of the model (including 

concentrations, rate constants, and enzymatic parameters. To determine   !  !"#$%  !"#$%&
!  !"#"$%&%#

 

for each parameter, we use the implicit function theorem, with 

 !  !"#$%  !"#$%&
!  !"#"$%&%#

= − !" !"#$#%&'&$
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The resulting expression was then numerically evaluated at the steady-state level of 

RasGTP with the model parameter values. This was done for WT (100% basal GAP 

present) and NF1-deficient (50% basal GAP present) conditions. The ratio of	
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  for the NF1-deficient network to the	
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  for the WT network was 

used as a measure of relative sensitivity to a change in a single parameter value, just as 

when these changes were determined with simulations. The values of the slopes 

determined from this analytic approach were compared to values derived from numerical 

simulations to verify the accuracy of the algebraic and numeric evaluation. The use of 

two separate approaches to yield the same results helps assure the validity of the 

modeling results (Gunawardena, 2014).	
  
We note that we focus here on the absolute increase in RasGTP from the 

respective NF1-WT and NF1-deficient conditions rather than the relative change in 

RasGTP because it appears that the total amount of Ras pathway activation, and not the 

relative change from each mutation, represents an important feature in cancer cell 

signaling (Donovan et al., 2002; Shapira et al., 2007).	
  We also noted that the increased 

magnitude change in RasGTP does not occur for some large changes to reaction rate 

constants (Figures S3A,B for several parameters). This is likely because the NF1-

deficient network has a higher proportion of total Ras in the RasGTP form, and a smaller 

net change is needed to reach saturation in RasGTP levels. However, the level of 

constitutive Ras pathway signaling associated with disease causing mutations appears 

to be far less than saturating (Donovan et al., 2002). Thus, the increased magnitude 

change within NF1-deficient conditions that occurs from an already elevated baseline 

appears relevant to cancer progression.	
  



 

Modeling GEF activation 

Mutations to the Ras GEF Sos1 have been found in Noonan syndrome and have 

been found to result in modest increases in RasGTP levels (Tartaglia et al., 2007).  The 

amount of basal GEF activity on Ras could also be increased by an increase in 

upstream signaling (e.g. increased basal EGFR signaling leading to increased basal 

Sos1 recruitment to the membrane). We considered whether increased levels of basal 

GEF activity might also influence the effects of noncanonical Ras mutations. To 

investigate this, we used our mathematical model to simulate the same set of one million 

computational random Ras mutants within the condition of a partial increase in GEF 

activity. Partial GEF activation could also increase the effects of some Ras mutants 

(Figure S3E). We note that the effects of a GEF mutation or an upstream mutation that 

results in increased GEF activation would likely have wide range of potential levels of 

GEF (and resultant Ras) activation. To facilitate comparisons between aberrant GEF 

conditions with GAP-deficient conditions, we wanted to have a similar baseline of 

RasGTP activity for the two conditions.  We therefore chose to model aberrant GEF 

activity by using an elevated level of basally active Ras GEF that would result in the 

same level of basal RasGTP as would result from a modeled 50% decrease in the basal 

GAP concentration.  A 2.0865×	
 increase in the modeled concentration of basal GEF 

activity resulted in 15.38% of Ras being bound to GTP, and a decrease of 50% of the 

modeled concentration of basal GAP also resulted in 15.38% of Ras being bound to 

GTP. 

Our computational random mutagenesis found that a modest increase in basal 

GEF activity could also potentiate the effects of some (but not all) Ras mutants. The 

proportion of Ras mutants that were strongly activating in GEF aberrant conditions but 

not in WT conditions (16% of simulated mutants) was similar to that observed for GAP 

deficiency (15% of simulated mutants). The fraction of mutants that displayed greater 

than additive behavior with aberrant GEF signaling (16%) was also similar to what was 

observed for GAP deficiency (13%). Overall, these simulations suggest that mutations 

that result in increased levels of basal GEF activation may potentiate Ras mutant 

signals, essentially similar to mutations in NF1 and other Ras GAP proteins.  

 



Cell transfection 

Immortalized Nf1+/+, Nf1+/-, and Nf1-/- MEF cells were obtained from Dr. 

Reuven Stein at the George S. Wise Faculty of Life Sciences, Tel Aviv, Israel. Cells 

were maintained as described previously (Shapira et al., 2007). The plasmid encoding 

3xHA-tagged H RasWT was obtained from Missouri S&T cDNA Resource Center. Ras 

mutants H RasG12D and H RasF28L were generated using the QuikChange 

mutagenesis kit (Stratagene) and confirmed by sequencing. V5 tagged NF1-GRD was 

provided by Dr. David Largaespada at the University of Minnesota, Minneapolis, MN. 

MEF cells were plated on six-well plates and transiently transfected with 3µg of plasmid 

constructs using Lipofectamine 2000 and according to manufacturer’s instructions 

(Invitrogen). After 4 hours, fresh growth medium was added for 6 hours. Cells were 

starved for 12 hours in DMEM 0.5% fetal calf serum (FCS) and then harvested for 

cytometry analysis. 

 

Immunoblotting 

MEF cells were subjected to lysis in a buffer containing 50 mM Tris (pH 7.6), 150 

mM NaCl, 1 mM EDTA, 1% Triton X-100 10 mM sodium pyrophosphate, 10 mM sodium 

fluoride, 1 mM sodium orthovanadate, and protease inhibitors (Calbiochem). Total cell 

lysates were separated by 5-20% gradient SDS-PAGE and transferred to PVDF 

membrane. Membranes were blocked with 5% milk in 1% tween-20 Tris-buffered saline 

buffer. Proteins were detected by antibodies against NF1 (Upstate Biotechnology, 

Millipore), Erk1/2 (Cell signaling Tech), phospho-Erk1/2 (Cell Signaling Tech), HA-tag 

(Cell Signaling Tech), V5-tag (Millipore), p120 RasGAP (BD biosciences). Immunoblots 

were developed using enhanced chemiluminescence (Pierce, Rockford, IL). 

 

Quantitative PCR  

Total RNAs were extracted from MEF cells with a QIAshredder and RNeasy kit 

(Qiagen). The SuperScript III kit (Invitrogen) was used for reverse transcription. TaqMan 

Gene Expression assays for Rasa1, Rasa4, DAB2IP, and Nf1 (Applied Biosystems) 

were used for quantitative PCR. Samples were amplified in duplicate and target 

transcripts were normalized to Hprt1 mRNA as a housekeeping gene. The relative 

expression of each target gene was calculated by the comparative cycling method with 



StepOne v2.1 software (Applied Biosystems). The standard deviation was calculated 

after normalization of multiple experiments. 

 

Flow cytometry 

MEF cell staining for phospho-Erk1/2 (referred to as phoshpo-ERK or pERK) and 

HA-tagged H-Ras was performed as described previously (Stites et al., 2007). Data 

were acquired on a FACS CantoII (Becton Dickinson). Stimulation of cells with PMA 

served as a positive control for maximal pERK activation. The inhibition of the pERK 

signal inhibitory ERK peptide and the U0126 drug served to confirm the veracity of the 

observed pERK signals in this flow cytometry based detection assay.  

Cells were gated based on the intensity of the HA signal to define “high” and 

“low” HA expressing populations. The same intensity gates were used for comparisons 

between Nf1+/+ and Nf1-/- MEFs, as well as between cells transfected with different Ras 

constructs. Mean pERK intensity was quantified for high and low HA expression, and the 

ratio of differences between high and low HA expression, 

𝑟𝑎𝑡𝑖𝑜 = !"!!"! !"!!/!   !  !"!"#(!"!!/!)
!"!!"! !"!!/!   !  !"!"#(!"!!/!)

 

was used as a measure of the change in sensitivity between Nf1-/- and Nf1+/+ 

conditions. To assess cell proliferation and allow cell cycle synchronization, MEF cells 

were starved for 12 hours in DMEM 0.5% FCS and stained with CellTrace™ Violet Cell 

proliferation kit, according to manufacturer’s instructions. Stained cells were then 

harvested in a time course and their state of proliferation analyzed by cytometry.  

 

Genomic Data Analysis 

Investigations looking for an increased co-occurrence of uncommonly mutated 

genes require large datasets.  We consider here two large datasets, the Cancer Cell 

Line Encyclopedia (Barretina et al., 2012), and the TCGA dataset of twelve types of 

cancers (Kandoth et al., 2013). Mutations for the genes of Ras network proteins (ARAF, 

BRAF, DAB2IP, EGFR, HRAS, KRAS, NF1, NRAS, PIK3CA, RAF1, RALGDS, RASA1, 

RASA2, RASA3, RASA4, RASA4B, RASAL1, RASAL2, RASAL3, RASGEF1A, 

RASGEF1B, RASGEF1C, RASGRF1, RASGRF2, RASGRP1, RASGRP2, RASGRP3, 

RASGRP4, SOS1, and SOS2) and for TP53 were obtained from the CCLE portal 



(http://www.broadinstitute.org/ccle) and/or from published cancer genome publications 

(Barretina et al., 2012; Kandoth et al., 2013). Exonic missense and nonsense mutation, 

and exonic insertions and deletions were considered. 

We assess co-occurrence with Fisher’s Exact Test, as has been the standard for 

genomic analyses looking for co-occurrence (Kandoth et al., 2013; Thomas et al., 2007; 

Yates and Campbell, 2012; Yeang et al., 2008). Coincident mutations were counted as 

the number of distinct samples with at least one mutation in the specified genes. For 

communicating different rates of co-occurrence between two genes (e.g. A and B), we 

may present the rate of a mutation to A when B is or is not mutated.  We highlight that 

even though we are examining the same number of total cancer genomes for the 

different combinations of gene mutations, that the number of times a specific gene is 

found to be mutated can vary widely. Due to this variability, we present the percentage 

of the mutated gene of interest that co-occurs with another mutated gene (i.e. 10% of 

canonical KRAS mutations co-occur with an NF1 mutation) to facilitate comparisons 

between members of a class of genes, and use the p-value from the Fisher’s Exact test, 

which takes into account the exact number of mutations, genomes analyzed, and the 

various co-occurrences, to determine whether the pattern of co-occurrence is statistically 

significant. TP53 mutations were included as a measure of the similarity between 

considered subsets of the CCLE and TCGA data.  We used the HGMD database 

(Stenson et al., 2014) to identify which NF1 mutations have previously been found in 

patients with neurofibromatosis.	
  
That combinations of mutations within the Ras network may be capable of 

functional cooperation may seem to contrast with the conventional wisdom that 

mutations do not co-occur within the same pathway (Thomas et al., 2007; Yeang et al., 

2008). However, conventional wisdom is based on the behavior of the strongly 

activating, canonical mutations, which do not co-occur. Indeed, our modeling suggests 

that combinations of mutations involving a strongly activating canonical mutation have a 

less-than-additive total response and would therefore not be expected to acquire a 

significant competitive advantage (Figure 1A). Therefore, our modeling is consistent with 

the lack of co-occurrence between strongly activating canonical mutations. 

Combinations of NF1 and BRAF V600E mutations have been observed in melanoma 

samples and cell lines, and mouse models that have been engineered to express BRAF 

V600E and to also have decreased Nf1 expression have demonstrated a cooperative 

effect for this combination (Maertens et al., 2013).  	
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Table S1, related to Figure 4. Ras pathway mutations from the CCLE dataset that 

were analyzed as part of this study. 

The CCLE dataset analyzed was reported in Barretina J, et al, 2012. 

 

Table S2, related to Figure 4. Ras pathway mutations from the TCGA dataset that 

were analyzed as part of this study. 

The TCGA dataset analyzed was reported in Kandoth C, et al, 2013. 

 

Table S3, related to Figure 4. NF1 mutations analyzed in this study that have also 

been observed in patients with neurofibromatosis. 

NF1 mutations analyzed in this study were compared with reported NF1 mutations from 

neurofibromatosis patients listed in the Human Gene Mutation Database (Stenson et al., 

2014). 

 

 

	
  




