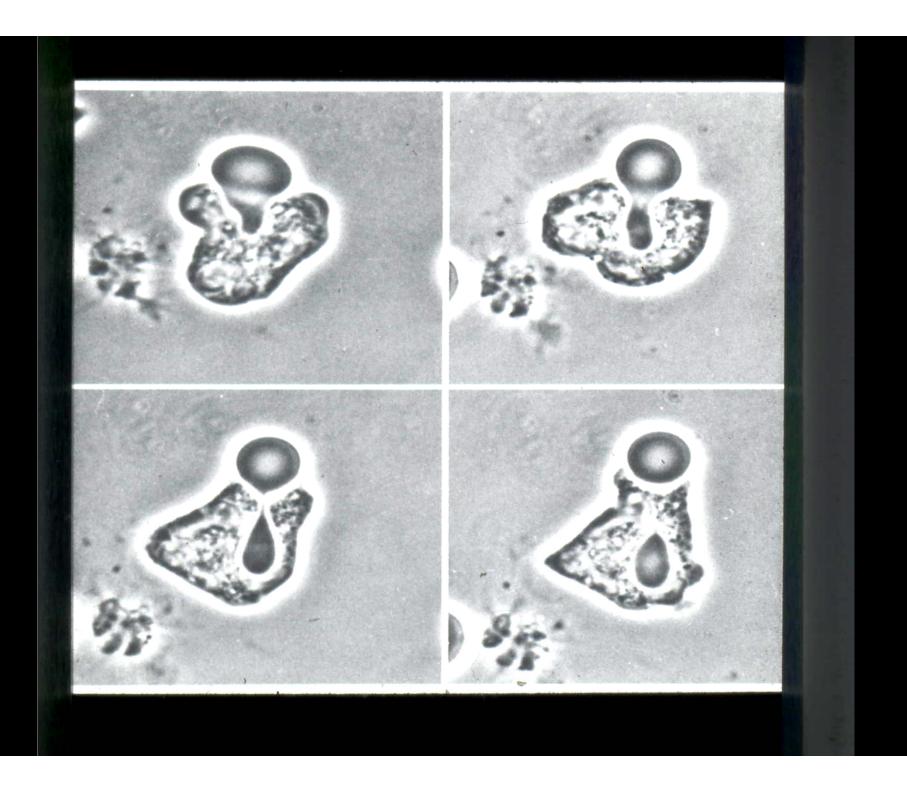

PATHOGENESIS AND MECHANISMS OF IMMUNE HEMOLYTIC ANEMIA

George Garratty, PhD, FRCPath. Scientific Director American Red Cross Blood Services Southern California Region

george.garratty@redcross.org

IMMUNE DESTRUCTION OF CIRCULATING BLOOD CELLS

- Intravascular complementmediated destruction usually initiated by antibody
- Extravascular macrophagemediated destruction: antibody (IgG, IgA), complement (C3b, iC3b), antibody + complement


MAXIMUM RATE OF RBC DESTRUCTION (Mollison et al 1997, pg 341)

Extravascular 0.25 ml RBCs/kg/hr ...70 kg patient = 17.5 ml RBCs/hr = 420 ml RBCs/24 hr Intravascular e.g., anti-A/B can destroy 200 ml **RBCs in 1 hr**

RECEPTORS ON MACROPHAGES AND MONOCYTES

- Fc: IgG1, IgG3, (IgG2), IgA
- CR1: C3b, iC3b
- CR3: iC3b

CR4: iC3b (C3dg, C3d)

PHAGOCYTOSIS

FRAGMENTATION ->SPHEROCYTES

 $M\Phi$

CYTOTOXICITY (ADCC)

FACTORS THAT INFLUENCE THE PATHOGENICITY OF RBC ANTIBODIES

- Characteristics of antibody
- Quantity of RBC-bound lgG/complement
- Characteristics of target antigen
- Type of complement present on RBCs
- Activity of reticuloendothelial system

CHARACTERISTICS OF ANTIBODY THAT INFLUENCE PATHOGENICITY OF RBC ANTIBODIES

- Class
- Subclass
- Specificity
- Thermal range
- Complement activating efficiency
- Affinity

CHARACTERISTICS OF ANTIGEN THAT INFLUENCE PATHOGENICITY OF RBC ANTIBODIES

- Chemistry of target antigen
- Quantity of antigen on membrane
- Distribution of antigen on membrane
- Antigen in tissues and/or body fluids (competition)

SIGNIFICANCE OF RBC-BOUND COMPLEMENT COMPONENTS

- Intravascular lysis
- Sequestration in reticuloendothelial system with subsequent phagocytosis
- Temporary sequestration with normal or shortened RBC survival
- Essentially normal survival

ABNORMAL MACROPHAGE ACTIVITY

HYPERACTIVE

- Infection
- AIHA, SCD, thalassemia
- cytokines (INFy, IL6) HYPOACTIVE
 - Fc receptors blocked with: immune complexes (e.g., SLE) maternal anti-HLA (fetal MPs)
 ? Drugs (e.g., methyldopa)

A RETROSPECTIVE ANALYSIS OF THE VALUE OF MONOCYTE MONOLAYER ASSAY RESULTS FOR PREDICTING THE CLINICAL SIGNIFICANCE OF BLOOD GROUP ALLOANTIBODIES.

> Arndt PA, Garratty G. Transfusion 2004;44:1273-81

DELAYED HEMOLYTIC TRANSFUSION REACTIONS (DHTRs) VS. DELAYED SEROLOGICAL TRANSFUSION REACTIONS (DSTRs) AT MAYO CLINIC (1980-1998)

DHTR	DSTR
47	137
	50
	36
	36
	46
	15
	14
4	8
3	3 9 2 1
3	2
6	1
0	9
182 <mark>(</mark> 33%)	366 (67%

PATIENTS RECEIVING ABO INCOMPATIBLE BLOOD MEANT FOR ANOTHER PATIENT

- Linden et al: Transfusion errors in New York State: an analysis of 10 years' experience. Transfusion 2000;40:1207
 - -47% of 237 patients reported as "no adverse effect"
- Robillard et al: Trends in red cell-associated ABO mistransfusions, acute and delayed serologic transfusion reactions in the Quebec Hemovigilance System: 2000-2003. Transfusion 2004;44:17A (abstr)

–46% of 24 patients reported as "asymptomatic"

CLINICAL OUTCOMES OF ABO-INCOMPATIBLE TRANSFUSIONS (Janatpour et al, Am J Clin Pathol 2008;129:276)

	≤ 50 mL	>50 mL
No. of Patients	12	36
Survived	12	30
Died	0	<mark>6 (20%)</mark>
Patients without signs or symptoms	9 (75%)	13 (36%)
Patients with signs or symptoms	3	23
Acute hemolytic transfusion reaction	3	16
Renal failure	0	10 (28%)
Shock	1	3
Disseminated intravascular coagulopathy	0	3

THE JAMES BLUNDELL AWARD LECTURE 2007: DO WE REALLY UNDERSTAND IMMUNE RED CELL DESTRUCTION?

> Garratty G. Transfus Med Rev 2008;18:321-34

QUESTIONS STILL TO BE ANSWERED

- Why do circulating RBCs die after 110 – 120 days ? [autoantibody; sialic acid; phosphatidylserine; apoptosis (eryptosis)]
- Why do RBCs strongly coated with IgG1 or IgG3 sometimes survive normally?
- Why do ABO incompatible transfusions sometimes not cause severe reactions?

QUESTIONS STILL TO BE ANSWERED

- Why are some auto and alloantibodies causing severe immune hemolytic anemia not detected by routine techniques?
- Can T (cytotoxic) lymphocytes, NK cells, granulocytes, dendritic cells participate in immune hemolysis?
- Do differences in clinical severity and response to treatment relate to relative efficiency of macrophage-induced phagocytosis versus cytotoxicity?

QUESTIONS STILL TO BE ANSWERED

- Why do hyperhemolytic HTRs occur in sickle cell disease?
- Can antibodies cause IHA without activating complement or interaction with macrophage Fc/receptors?
- How do we predict the clinical significance of a RBC antibody?
- How should we define "clinical significance"?

POSSIBLE NOVEL MECHANISMS FOR IMMUNE DESTRUCTION OF RBCs AND PLATELETS

- Bystander / reactive lysis
- Immune complexes
- "Armed" macrophages
- Antibody <u>independent</u> cell-mediated cytotoxicity (NK cells)
- Antibody activation of platelets can lead to RBC lysis
- Antibody generated ozone $/H_2O_2 \rightarrow$ lysis

POSSIBLE NOVEL MECHANISMS FOR IMMUNE DESTRUCTION OF RBCs AND PLATELETS

- Antibodies to antigens on GPA can change the RBC membrane → channels allowing Ca²⁺ to enter RBCs plus appearance of phosphatidylserine on membrane
- Agglutinins can sometimes sequester in spleen/liver → HA without Fc or complement involvement

- Baudino et al. IgM and IgA anti-erythrocyte autoantibodies induce anemia in a mouse model through multivalency-dependent hemagglutination but not through complement activation. Blood 2007;109:5355-62.
- Liepkalns et al. Biphasic clearance of incompatible red blood cells through a novel mechanism requiring neither complement nor Fc gamma receptors in a murine model. Transfusion 2012;52:2631-45.

 Chadebech et al. IgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαR1. Blood 2010;116:4141-7.

PERSONAL OPINIONS

- Most HTRs associated with IVIG are due to ABO alloantibodies
- Although reducing the titer of anti-A and anti-B will help lower the number of cases with HA there will still be a few cases associated with low titer antibodies
- The only way to stop the HTRs is to have no anti-A/-B in products