Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field

Supplementary Information

Michael J. Robertson, Julian Tirado-Rives, and William L. Jorgensen* Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States Table S1. Summary of the Force Field Parameters Developed and Tested in this **Table S2.** Summary of the χ_1 Force Field Parameters Developed **Table S3.** Summary of the χ_2 Force Field Parameters Developed and Tested in this Work......pp 9-10
Table S4. Summary of the Results of the Molecular Dynamics
 Simulations of Blocked Dipeptides Performed in this Work......pp 10-12
Table S5. Relative Conformer Energies for the Blocked Alanine Dipeptide
 Calculated with Various Ab Initio Methods and Molecular Mechanics Force Fields.....pp 13

Table S6. Relative Conformer Energies for the Blocked Alanine Tetrapeptide
Calculated with Various <i>ab initio</i> and DFT Methodspp 14
Table S7. Values of φ and ψ for the Alanine Tetrapeptides
Calculated at the ω B97X-D/6-311++g(p,d) Level of Theorypp 15
Table S8. Values of φ and ψ for the Alanine Tetrapeptides
Calculated at the M06-2X/6-31+g(d) Level of Theorypp 16
Table S9. Relative Conformer Energies for the Blocked Proline Dipeptide
Calculated with Various ab initio Methods and Molecular Mechanics Force Fieldspp 17
Table S10. Summary of the Force Field Parameters Developed and Tested
in this Work for Prolinepp 17
Figure SI2. The Populations of Each Rotamer as a Percentage from
Molecular Dynamics Simulations of Blocked Dipeptides Versus the Average
Populations from a Coil Librarypp 18-19
Figure SI3. The RMSD Between the Coordinates of the Backbone
Atoms in the MD Simulations Compared to the Starting Experimental Structurepp 19-20

Figure S1. Two dimensional phi-psi potential energy surfaces calculated for A) alanine at the B2PLYP-D3BJ/aug-cc-pVTZ// ω B97X-D/6-311++G(d,p) level of theory, B) glycine at the B2PLYP-D3BJ/aug-cc-pVTZ// ω B97X-D/6-311++G(d,p) level of theory, C) alanine with the

original OPLS-AA forcefield, D) glycine with the original OPLS-AA forcefield, E) alanine with the OPLS-AA/L force field, F) glycine with the OPLS-AA/L force field, G) alanine with the newly derived 2000 K parameters, and H) glycine with the newly derived 2000 K parameters. The energies are given in kcal/mol.

Table S1. Summary of the Force Field Parameters Developed and Tested in this Work for the Alanine and Glycine Peptide Backbone and their Boltzmann-Weighted Errors Compared to the B2PLYP-D3BJ/aug-cc-pVTZ// ∞ B97X-D/6-311++G(d,p) Relative Energies. Parameters Noted with a * are those Selected for the OPLS-AA/M Force Field.

		Paramete	ers ^a			Boltzmann Weighted Error ^a			
		V1	V2	V3		500 K	1000 K	2000 K	Unweighted
OPLS-AA	φ	-2.365	0.912	-0.850	Alanine	0.1055	0.2779	0.5283	1.2606
	ψ	1.816	1.222	1.581	Glycine	0.2765	0.5689	0.8932	1.6028
	φ'	0.000	0.462	0.000					
	ψ'	1.173	0.189	-1.200					
OPLS-AA/L	φ	-0.596	0.279	-4.913	Alanine	0.1073	0.2646	0.5317	1.3811
	ψ	0.743	2.508	-0.805	Glycine	0.6807	1.1942	1.7343	3.0049
	φ'	0.519	0.877	5.223					
	ψ'	1.865	0.089	0.351					
Optimized									
Parameters									
500 K	φ	-2.196	0.286	-0.493	Alanine	0.0814	0.2074	0.4089	1.0437
	ψ	1.508	1.592	-0.44	Glycine	0.1503	0.3357	0.5548	1.0913
	φ'	-1.2	0.733	0.26					
	ψ'	1.19	0.508	-0.012					
1000 K	φ	-2.417	0.266	-0.383	Alanine	0.0866	0.1995	0.3761	0.9518
	ψ	1.55	1.96	-0.5	Glycine	0.1423	0.3023	0.3848	1.0007
	φ'	-0.73	0.318	0.439					
	ψ'	1.502	0.47	-0.023					
*2000 K	φ	-2.511	0.21	-0.2	Alanine	0.0934	0.2037	0.3719	0.9271
	Ψ	1.81	2.155	-0.47	Glycine	0.1497	0.2975	0.4766	0.9558
	φ'	-0.682	0.13	0.338					
	ψ'	1.779	0.419	-0.11					
Unweighted	φ	-2.271	0.072	0.017	Alanine	0.1053	0.2169	0.3792	0.9128
	ψ	2.016	2.217	-0.517	Glycine	0.1658	0.3124	0.3870	0.9544
	φ'	-0.632	-0.053	0.055					
	ψ'	1.946	0.255	-0.146					

Table S2. Summary of the χ_1 Force Field Parameters Developed and Tested in this Work and their Boltzmann-Weighted Errors Compared to the B2PLYP-D3BJ/aug-ccpVTZ// ω B97X-D/6-311++G(d,p) Relative Energies. Parameters Noted with a * are those Selected for the OPLS-AA/M Force Field.

		Parameters	5 ^a		Average E	Boltzmann Wei	ghted Error Per	r Scan ^a
		V1	V2	V3	500 K	1000 K	2000 K	Unweighted
Valine								<u> </u>
OPLS-AA	χ1	0.845	-0.962	0.713	0.761	1.011	1.293	1.846
	χ_1	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	0.946	0.383	0.440	0.370	0.474	0.575	0.751
	χ_1	-1.294	0.748	0.000				
2000 K Val	χ1	2.804	0.081	0.511	0.139	0.221	0.315	0.496
	χ_1	-1.823	0.797	0.000				
*2000 K Val/Ile	χ1	2.994	0.252	0.300	0.169	0.260	0.360	0.553
	χ1'	-1.422	1.068	0.000				
2000 K Val/Ile/Leu	χ1	2.561	0.283	0.277	0.185	0.277	0.377	0.574
	χ1'	-1.407	1.279	0.000				
Isoleucine								
OPLS-AA	χ1	0.845	-0.962	0.713	0.660	1.003	1.363	2.022
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	2.647	0.954	0.522	0.264	0.473	0.703	1.145
	χ1'	0.678	1.276	0.000				
2000 K Ile	χ1	3.746	0.483	0.185	0.169	0.344	0.552	1.001
	χ1'	-0.756	1.241	0.000				
*2000 K Val/Ile	χ1	2.994	0.252	0.300	0.191	0.382	0.602	1.066
	χ1'	-1.422	1.068	0.000				
2000 K Val/Ile/Leu	χ1	2.561	0.283	0.277	0.197	0.388	0.609	1.085
	χ1'	-1.407	1.279	0.000				
Leucine								
OPLS-AA	χ1	0.845	-0.962	0.713	0.318	0.560	0.859	1.498
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	0.110	0.263	0.594	0.324	0.560	0.847	1.490
	χ1'	-0.539	0.073	0.000				
*2000 K Leu	χ1	1.572	0.159	0.200	0.263	0.457	0.695	1.238
	χ1'	-1.751	1.606	0.000				
2000 K Val/Ile/Leu	χ1	2.561	0.283	0.277	0.281	0.483	0.741	1.313
	χ1'	-1.407	1.279	0.000				
Serine								
OPLS-AA	χ1	6.280	-1.467	2.030	0.404	0.645	0.977	1.717
	χ1'	-6.180	0.000	0.000				
OPLS-AA/L	χ1	5.429	-0.879	1.058	0.418	0.643	0.935	1.577
	χ1'	-5.654	-0.872	0.000				
2000 K Ser	χ1	5.835	-0.607	0.705	0.309	0.475	0.692	1.169
	χ1'	-5.006	0.809	0.000				
*2000 K Ser Empirical	χ1	6.258	-1.037	1.367	0.359	0.556	0.815	1.388
	χ1'	-5.793	0.405	0.000				

Table S2 Continued

		Parameter	'S ^a		Average B	oltzmann Weig	hted Error Per	Scan ^a
		V1	V2	V3	500 K	1000 K	2000 K	Unweighted
Threonine								
OPLS-AA	χ_1^{C}	0.845	-0.962	0.713	0.598	0.981	1.486	2.582
	χ_1^{C}	-1.697	-0.456	0.585				
	χ_1^{O}	6.280	-1.467	2.030				
	χ_1^{0}	-6.180	0.000	0.000				
OPLS-AA/L	χ_1^{C}	0.845	-0.962	0.713	0.444	0.700	1.029	1.783
	χ_1^{C}	-1.697	-0.456	0.585				
	χ_1^0	5.429	-0.879	1.058				
	χ_1^{0}	-5.654	-0.872	0.000				
2000 K Val/Ile/Leu γ ₁ ^C	γ_1^{C}	2.561	0.283	0.957	0.314	0.491	0.725	1.269
Ser γ_1^0	χ_1^{C}	-1.407	1.279	-0.680				
X	γ_1^0	5 835	-0.607	0 705				
	χ_1^0	-5.006	0.809	0.000				
2000 K Val/Ile v. ^C	χ^{1}	2 994	0.252	0.300	0 346	0 554	0.827	1 455
Ser Empirical χ_{i}^{0}	χ^{C}	-1 422	1.068	0.000	0.010	0.000	0.027	1.100
	λ ¹	6 259	1.000	1 267				
	χ^{1}_{0}	5 702	-1.037	0.000				
Aspartata	χ_1	-3.195	0.403	0.000				
	~	0.845	0.062	0.713	0.267	0.040	2.017	5 676
JFLS-AA	χ1	1.645	-0.902	0.713	0.307	0.949	2.017	5.020
	χ1	-1.097	-0.430	0.385	0.201	0.446	0.014	2 757
JPLS-AA/L	χ1,	-9.457	-0.154	-0.255	0.201	0.446	0.914	2.757
000 K A cm / A cm	χ1	-4.//4	3.031	0.000	0.142	0.221	0 (15	1 001
2000 K Asp/Asii	χ_1	-5.885	1.243	0.000	0.143	0.321	0.645	1.881
0000 K A	χ1	0.897	2.069	0.433	0.107	0.216	0.442	1.462
2000 K Asp	χ1	-8.290	0.662	0.997	0.107	0.216	0.442	1.405
	χ1΄	1.543	3.096	0.000	0.101	0.254	0.(20	1.007
2000 K Asp Empirical	χ1	-7.890	0.662	0.997	0.191	0.354	0.638	1.807
	χ1΄	1.543	0.696	0.000				
Asparagine								
OPLS-AA	χ1	0.845	-0.962	0.713	0.825	1.342	2.111	4.076
	χ1'	-1.697	-0.456	0.585				
DPLS-AA/L	χ1	-3.467	-0.677	1.465	0.387	0.685	1.116	2.207
	χ1'	1.045	-1.603	0.000				
2000 K Asp/Asn	χ1	-5.885	1.243	0.000	0.280	0.442	0.671	1.246
	χ1'	0.897	2.069	0.433				
*2000 K Asn	χ1	-5.501	1.527	0.000	0.250	0.403	0.613	1.127
	χι'	0.598	1.558	0.255				
Glutamine								
OPLS-AA	χ1	0.845	-0.962	0.713	0.259	0.461	0.722	1.368
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	1.167	-0.526	0.805	0.230	0.411	0.646	1.219
	χ1'	-2.692	0.836	0.000				
2000 K Leu	χ1	1.572	0.159	0.200	0.233	0.414	0.648	1.220
	χ_1	-1.751	1.606	0.000				
2000 K Gln	γ., γ.,	1.240	0.838	0.983	0.163	0.279	0.441	0.872
	χ_1^{\prime}	-2.096	0.821	0.000				
[*] 2000 K Gln/Lvs	ν, γ,	0.884	0.897	0.880	0.162	0.283	0.454	0.910
	~ ,	2 358	0.011	0.000				*

Table S2 Continued

		Parameters	a		Average I	Boltzmann Wei	ghted Error Per	Scan ^a
		V1	V2	V3	500 K	1000 K	2000 K	Unweighted
Lysine								
OPLS-AA	χ1	0.845	-0.962	0.713	0.320	0.500	0.741	1.347
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	0.639	-0.214	0.399	0.296	0.461	0.684	1.310
	χ1'	-2.235	-0.536	0.00				
2000 K Leu	χ1	1.572	0.159	0.200	0.239	0.410	0.648	1.283
	χ1'	-1.751	1.606	0.000				
2000 K Lys	χ1	0.357	0.932	0.750	0.147	0.272	0.465	1.014
	χ1'	-2.745	1.015	0.000				
*2000 K Gln/Lys	χ1	0.884	0.897	0.880	0.155	0.286	0.482	1.024
	χ1'	-2.358	0.911	0.000				
Glutamate								
OPLS-AA	χ1	0.845	-0.962	0.713	0.387	0.650	1.052	2.691
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	4.952	-0.257	-0.235	0.369	0.585	0.987	2.629
	χ1'	-1.618	-0.571	0.000				
2000 K Leu	χ1	1.572	0.159	0.200	0.328	0.558	0.917	2.444
	χ1'	-1.751	1.606	0.000				
2000 K Glu	χ1	3.287	0.457	0.820	0.213	0.341	0.621	1.970
	χ_1	-1.764	1.100	0.000				
*2000 K Glu Empirical	χ1	1.987	0.457	0.820	0.280	0.440	0.734	2.132
*	χ_1	-1.764	0.700	0.000				
Cysteine	701							
OPLS-AA	χ1	1.428	0.086	0.029	0.534	0.852	1.199	1.845
	χ_1	-4.344	-1.714	0.000				
OPLS-AA/L	χı	1.428	0.086	0.029	0.544	0.872	1.225	1.876
	χ_1	-4.344	-1.714	0.000				
2000 K Cys	χı	2.355	0.529	0.544	0.199	0.375	0.572	0.940
	χ_1	-3.323	1.469	0.000				
*2000 K Cys Empirical	χı	2.055	0.529	0.544	0.246	0.435	0.652	1.062
5 1	χ_1	-3.323	0.529	0.000				
Methionine	70-							
OPLS-AA	χ1	0.845	-0.962	0.713	0.354	0.547	0.764	1.185
	χ_1	-1.697	-0.456	0.585				
OPLS-AA/L	χ.	1.493	0.199	-0.098	0.377	0.554	0.728	1.045
	$\tilde{\chi}_1$	0.384	-0.762	0.000				
2000 K Leu	χ.	1.572	0.159	0.200	0.293	0.476	0.677	1.084
	χı'	-1.751	1.606	0.000				
*2000 K Met	χ.	0.214	0.541	0.392	0.185	0.276	0.369	0.553
	χ_1	-0.911	0.699	0.000				
Arginine	<i>7</i>							
OPLS-AA	χ1	0.845	-0.962	0.713	0.298	0.464	0.639	0.975
	χ_1	-1.697	-0.456	0.585				
OPLS-AA/L	χ ₁	1.821	0.951	1.168	0.298	0.506	0.728	1.166
	χ ₁ '	-0.678	1 653	0.000				
2000 K Leu	χ ₁	1 572	0.159	0.200	0.223	0.385	0.565	0.941
	χ,'	-1 751	1 606	0.000				
*2000 K Arg	χı Υι	0.103	0.653	0.563	0.146	0.245	0.365	0.662
	χ_1^{\prime}	-1.971	0.770	0.000	-	-		
Phenylalanine	Λı	1.2/1	0.770	0.000				
OPLS-AA	γ.	0.845	-0.962	0.713	0.412	0.682	0.996	1.641
	×1 21,	-1 697	-0.456	0 585				
OPLS-AA/L	χ, γ,	0.845	-0.962	0.713	0.394	0.673	0.994	1.645
0. 10 / 11 / 1	χ,'	-1 697	-0.456	0.585				
*2000 K Phe	λ1 γ.	1 712	0.725	0.365	0.201	0 377	0 577	0 990
2000 K 1 IIC	κ,	1.712	1 777	0.000	0.201	0.577	0.077	0.770
	¥ 1							

Table S2 Continued

		Parameter	s ^a		Average F	Boltzmann Weis	ghted Error Per	Scan ^a
		V1	V2	V3	500 K	1000 K	2000 K	Unweighted
Tyrosine								
OPLS-AA	χ1	0.845	-0.962	0.713	0.405	0.686	1.007	1.663
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	0.845	-0.962	0.713	0.390	0.682	1.014	1.676
	χ_1	-1.697	-0.456	0.585				
2000 K Tyr	χ1	1.611	0.653	0.535	0.200	0.379	0.584	1.011
-	χ1'	-1.491	1.792	0.000				
*2000 K Phe	χ1	1.712	0.725	0.366	0.202	0.382	0.587	1.014
	χ1'	-1.406	1.777	0.000				
Tryptophan								
OPLS-AA	χ1	0.845	-0.962	0.713	0.410	0.683	0.980	1.548
	χ1'	-1.697	-0.456	0.585				
OPLS-AA/L	χ1	-1.294	0.562	0.094	0.369	0.618	0.911	1.541
	χ1'	-1.058	-0.625	0.000				
2000 K Phe	χ1	1.712	0.725	0.366	0.226	0.446	0.723	1.330
	χ_1	-1.406	1.777	0.000				
2000 K Trp	χ1	0.068	1.020	0.665	0.221	0.361	0.529	0.893
	χ_1	-0.506	1.375	0.000				
*2000 K Trp Empirical	χ1	-0.588	1.020	0.665	0.260	0.413	0.593	0.970
1 1	χ_1	-0.506	0.975	0.000				
Histidine-E	<i>,</i>							
OPLS-AA	χ1	0.845	-0.962	0.713	0.323	0.651	1.053	1.883
	χ1,	-1.697	-0.456	0.585				
OPLS-AA/L	χı	-0.713	0.502	0.289	0.304	0.584	0.921	1.633
	χ_1	-1.607	0.046	0.000				
2000 K Hie	χı	-0.437	0.538	0.000	0.255	0.419	0.631	1.105
	χ_1	-1.416	2.050	-0.082				
*2000 K Hie/Hid	χı	-0.542	0.435	0.000	0.251	0.421	0.637	1.113
	χ_1	-1.282	1.645	-0.017				
Histidine-8	<i>7</i> 0-							
OPLS-AA	χ1	0.845	-0.962	0.713	0.428	0.724	1.084	1.809
	χ_1	-1.697	-0.456	0.585				
OPLS-AA/L	χ. γ1	-0.713	0.502	0.289	0.333	0.560	0.827	1.364
	χ_1^{\prime}	-1.607	0.046	0.000				
2000 K Hid	χ ₁	-0.614	0.455	0.013	0.247	0.439	0.670	1.155
	χ_1^{\prime}	-1.055	1 204	0.000				
*2000 K Hie/Hid	χ, γ,	-0 542	0.435	0.000	0.250	0.445	0.679	1.177
	χ,'	-1 282	1 645	-0.017				
Protonated His	χ1	1.202	1.0 10	0.017				
OPLS-AA	γ1	0.845	-0.962	0.713	0.514	0.806	1.233	2.654
	χ_1^{\prime}	-1 697	-0.456	0.585				
OPLS-AA/L	χ ₁	0.347	-0.350	1.468	0.514	0.799	1.171	2.253
	γ_1	1.679	0.082	0.000				
2000 K Hid/Hie	χ. γ.	-0.542	0.435	0.000	0.310	0.538	0.898	2.047
	χ_1^{\prime}	-1.282	1.645	-0.017				
*2000 K Hip	λı Υı	-3.038	0.419	0.000	0.243	0.449	0.761	1.747
2000 it inp	λ ¹ γ ₁ '	-1 708	1 516	-0.502				
0- 1 1	νı	1.700	1.510	0.302				

Table S3. Summary of the χ_2 Force Field Parameters Developed and Tested in this Work and their Boltzmann-Weighted Errors Compared to the ω B97X-D/6-311++G(d,p) and, where Applicable, B2PLYP-D3BJ/aug-cc-pVTZ// ω B97X-D/6-311++G(d,p) Relative Energies. Parameters Noted with a * are those Selected for the OPLS-AA/M Force Field.

		Parameters ^a			Average Bolt	Average Boltzmann Weighted Error Per Scan ^a			
		V1	V2	V3	500 K	1000 K	2000 K	Unweighted	
Isoleucine								0	
*OPLS-AA	χ2	1.300	-0.200	0.200	0.196	0.295	0.407	0.661	
2000 K Ile	χ ₂	0.595	-0.240	0.295	0.157	0.253	0.366	0.629	
Leucine	70-								
*OPLS-AA	χ_2	1.300	-0.200	0.200	0.166	0.283	0.424	0.733	
2000 K Ile	χ2	0.295	-0.005	0.300	0.160	0.265	0.387	0.640	
Serine	70-								
*OPLS-AA	χ2	-0.356	-0.174	0.492	0.355	0.530	0.687	0.929	
OPLS-AA/L	χ_2	-0.991	-0.869	0.739	0.359	0.534	0.685	0.912	
2000 K Ser	χ_2	-0.366	-0.849	0.542	0.315	0.486	0.639	0.875	
Cysteine	70-								
*OPLS-AA	χ2	-0.759	-0.282	0.680	0.249	0.426	0.581	0.813	
2000 K Cys	χ_2	-0.754	-1.502	0.745	0.231	0.368	0.485	0.659	
Methionine	70-								
OPLS-AA	χ_2	2.619	-0.620	0.258	0.318	0.481	1.166	2.665	
*2000 K Met	χ2	-1.565	-0.009	-0.450	0.160	0.285	0.463	1.196	
Asparagine									
OPLS-AA	$\chi_2 N$	2.844	-0.361	-0.325	0.226	0.465	0.838	1.737	
	χ ₂ 'Ο	0.406	1.304	0.139					
OPLS-AA/L	$\chi_2 N$	-0.546	-2.127	-0.832	0.354	0.537	0.779	1.333	
	γ ₂ 'Ο	0.000	1.166	0.000					
*2000 K Asn	$\chi_2 N$	1.494	-0.511	0.125	0.159	0.263	0.413	0.759	
	$\tilde{\gamma}_2^{2}$	1.656	1.304	0.439					
Aspartate	<i>//</i>								
OPLS-AA	χ_2	0.000	0.546	0.000	0.239	0.382	0.547	0.878	
*2000 K Asp	χ ₂	0.000	1.000	1.350	0.187	0.298	0.433	0.710	
Glutamine	70-								
OPLS-AA	χ_2	-1.567	-0.979	0.636	0.181	0.362	0.615	1.476	
2000 K Gln	χ_2	-0.867	-0.829	0.036	0.143	0.279	0.484	1.295	
*2000 K Gln Emp.	χ_2	-1.267	0.479	-0.486	0.172	0.349	0.489	1.384	
Glutamate									
OPLS-AA	χ_2	-3.185	-0.825	0.493	0.195	0.445	0.888	2.506	
2000 K Glu	χ2	-6.745	-0.759	-0.647	0.143	0.346	0.766	2.493	
*2000 K Glu Emp.	χ_2	-0.885	1.025	-1.293	0.281	0.554	1.062	2.819	
Phenylalanine									
*OPLS-AA	χ_2	0.000	0.000	0.000	0.128	0.243	0.373	0.616	
2000 K Phe	χ2	-2.955	0.095	1.015	0.126	0.232	0.354	0.584	
Tyrosine									
*OPLS-AA	χ_2	0.000	0.000	0.000	0.157	0.270	0.405	0.662	
2000 K Tyr	χ_2	-3.040	0.150	0.125	0.158	0.261	0.386	0.630	
Tryptophan	<i>,</i> ,								
*OPLS-AA	χ_2	-0.714	0.000	0.000	0.274	0.455	0.684	1.295	
2000 K Trp	χ2	-1.714	-0.800	-0.900	0.260	0.417	0.608	1.104	
<u>Histidine-</u>	<i>,.</i> -								
OPLS-AA	χ2	2.366	-0.262	0.505	0.363	0.538	0.729	1.109	
OPLS-AA/L	χ_2	-0.543	0.014	0.700	0.235	0.354	0.491	0.778	
2000 K Hie	χ2	-0.790	-0.335	0.140	0.164	0.244	0.344	0.576	
*2000 K Hie/Hid	χ ₂	-0.560	-0.740	0.349	0.181	0.265	0.364	0.581	

Table S3 Continued

		Parameter	's ^a		Average B	Average Boltzmann Weighted Error Per Scan ^a				
		V1	V2	V3	500 K	1000 K	2000 K	Unweighted		
Histidine-δ										
OPLS-AA	χ_2	2.366	-0.262	0.505	0.187	0.390	0.646	1.152		
OPLS-AA/L	χ2	-0.543	0.014	0.700	0.202	0.353	0.526	0.850		
2000 K Hid	χ2	-0.585	-1.100	0.375	0.125	0.211	0.314	0.522		
*2000 K Hie/Hid	χ2	-0.560	-0.740	0.349	0.132	0.222	0.326	0.531		
Protonated His										
OPLS-AA	χ_2	2.366	-0.262	0.505	0.610	1.030	1.792	3.976		
OPLS-AA/L	χ2	-0.543	0.014	0.700	0.392	0.693	1.227	2.740		
*2000 K Hip	χ2	-3.990	1.680	0.290	0.265	0.444	0.713	1.395		
2000 K Hie/Hid	χ2	-0.560	-0.740	0.349	0.431	0.750	1.310	2.887		

^aBoth the parameters and the Error values have units of kcal/mol

Table S4. Summary of the Results of the Molecular Dynamics Simulations of Blocked

Dipeptides Performed in this Work with all Force Fields.

Valine	Experiment	Coil Librarv ^b	ODISAA		2000K Val/IIa/Lau	2000K Val/IIa
³ I(I II) (II-)	(INMK) 7.20		0PLS-AA	0PLS-AA/L		
$^{\circ}J(H_{N}H_{\alpha})$ (HZ)	7.30	0.2	8.15 ± 0.02	8.01 ± 0.01	7.40 ± 0.01	7.39 ± 0.01 8.1 + 1.2
%m	8.1 ± 2.5	9.5 22.2	74.0 ± 5.2	62.2 ± 3.0	0.0 ± 0.0	0.1 ± 1.2
%p	39.2 ± 5.7	55.5	13.1 ± 2.9	9.9 ± 1.9	18.4 ± 2.6	13.6 ± 0.9
%t	52.8 ± 6.8	57.4	13.0 ± 2.4	27.9 ± 1.2	75.6 ± 2.6	78.3 ± 0.3
Isoleucine	Experiment	Coil			2000K	2000K
	(NMR) ^a	Library	OPLS-AA	OPLS-AA/L	Val/Ile/Leu	Val/Ile
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.33		8.19 ± 0.06	7.81 ± 0.00	7.42 ± 0.00	7.40 ± 2.3
%m	63.1 ± 6.7	61.2	3.7 ± 1.8	71.3 ± 1.6	57.8 ± 7.2	55.6 ± 6.3
%р	28.3 ± 6.0	26.7	85.0 ± 12.9	23.0 ± 0.1	24.2 ± 3.5	19.2 ± 10.2
%t	8.6 ± 4.4	12.1	11.3 ± 11.3	5.7 ± 1.6	18.1 ± 2.0	25.2 ± 4.1
Leucine	Experiment	Coil			2000K	
	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	Val/Ile/Leu	2000 K Leu
$^{3}J(H_{N}H_{\alpha})$ (Hz)	6.88		8.04 ± 0.01	7.72 ± 0.02	7.28 ± 0.00	7.40 ± 0.01
%m	73.6 ± 6.0	73.1	55.9 ± 4.7	81.3 ± 1.0	36.7 ± 1.4	66.1 ± 1.7
%p	7.0 ± 6.8	1.8	10.1 ± 6.3	5.3 ± 1.2	0.8 ± 0.1	1.6 ± 0.1
%t	19.6 ± 4.6	25.1	34.0 ± 2.3	13.4 ± 0.7	62.5 ± 1.5	32.3 ± 1.8
	Experiment	Coil				2000 K Ser
Serine	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Ser	Reweighted
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.02		7.87 ± 0.00	7.87 ± 0.04	7.10 ± 0.01	7.21 ± 0.01
%m	33.1 ± 0.7	29.4	13.9 ± 2.9	10.3 ± 0.4	66.8 ± 2.3	40.0 ± 2.9
%p	29.4 ± 0.3	53.4	63.0 ± 6.5	75.6 ± 1.1	17.7 ± 1.9	28.6 ± 4.4
%t	37.5 ± 1.0	17.2	23.1 ± 3.6	14.1 ± 0.9	15.5 ± 0.9	31.4 ± 3.7
,,,,	Experiment	Coil				2000 K Ser
Threonine	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Ser	Reweighted
3 J(H ₂ H ₂) (H ₇)	7 35		$\frac{8.01 \pm 0.01}{8.01 \pm 0.01}$	$\frac{8.02 \pm 0.08}{8.02 \pm 0.08}$	7.13 ± 0.03	7.22 ± 0.04
%m	393 + 73	27.3	6.01 ± 0.01	1.1 ± 0.1	64.2 ± 8.2	46.9 ± 11.6
%n	46.6 ± 5.1	63.7	973 ± 66	54.5 + 33.3	34.2 ± 8.4	51.1 ± 11.6
νoh γoh	40.0 ± 5.1	9.0	92.3 ± 0.0	$5+.5 \pm 55.5$	16+06	20+04
70l	$14.1 \pm /.1$	2.0	1.1 ± 2.4	44.3 ± 33.9	1.0 ± 0.0	2.0 - 0.7

^aJ couplings for dipeptides given in reference 48. Rotamer populations and errors given are the averages and standard deviations over all residues in denatured ubiquitin and protein G from reference reference 42 ^bCoil library data from reference 43

Cysteine	Experiment (NMR) ^a	Coil Library ^b	OPLS-AA	OPLS-AA/L	2000 K Cys	2000 K Cys Reweighted	
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.31		7.89 ± 0.01	8.01 ± 0.03	7.23 ± 0.00	7.25 ± 0.01	
%m		45.8	3.7 ± 0.3	2.9 ± 0.4	78.2 ± 1.6	57.8 ± 0.9	
%р		29.2	63.3 ± 4.9	74.3 ± 2.6	6.7 ± 0.7	13.8 ± 1.6	
%t		25.0	33.0 ± 4.5	22.9 ± 2.3	15.1 ± 2.1	28.4 ± 0.0	
Methionine	Experiment (NMR) ^a	Coil Library ^b	OPLS-AA	OPLS-AA/L	2000 K Met		
$^{3}J(H_{N}H_{a})$ (Hz)	7.02		7.97 ± 0.01	7.66 ± 0.01	7.45 ± 0.02		
%m		61.3	211 ± 14	21.2 ± 0.4	52.9 ± 0.9		
%n		13.9	337 + 72	86 ± 14	8.2 ± 0.2		
%t		24.8	45.7 ± 7.2	70.2 ± 1.3	38.9 ± 1.0		
Asparagine	Experiment	Coil Library ^b	OPI S-A A	OPLS-AA/I	2000 K Asn		
³ I(H ₂ H ₂) (Hz)	7.45	2	7.88 ± 0.00	7.84 ± 0.17	739 ± 0.00		
%m	7.43	55.1	7.88 ± 0.00	7.84 ± 0.17 5.0 ± 2.8	60.9 ± 2.9		
/0111 0/m	40.1 ± 3.2	18.9	0.0 ± 0.0	5.0 ± 2.8	91 + 18		
70p 0/+	27.1 ± 3.4	26.0	0.0 ± 0.0	33.9 ± 23.3	30.0 ± 1.0		
701	20.3 ± 4.4	Coil	100.0 ± 0.0	41.0 ± 22.7	50.0 ± 1.4	2000K	2000 K Asp
Aspartate	Experiment (NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Asp	Asp/Asn	Reweighted
$^{3}J(H_{N}H_{\alpha})$ (Hz)	6.93		7.75 ± 0.01	7.80 ± 0.00	6.85 ± 0.01	7.05 ± 0.00	6.99 ± 0.02
%m	44.9 ± 5.5	48.2	0.0 ± 0.0	0.2 ± 0.0	97.0 ± 1.3	23.9 ± 1.7	55.8 ± 5.2
%р	30.3 ± 5.9	22.8	0.0 ± 0.0	97.5 ± 0.2	2.2 ± 1.1	4.6 ± 0.4	25.4 ± 4.6
%t	24.8 ± 4.3	28.9	100.0 ± 0.0	2.3 ± 0.2	0.8 ± 0.9	71.4 ± 1.6	18.8 ± 2.7
Glutamine	Experiment (NMR) ^a	Coil Library ^b	OPLS-AA	OPLS-AA/L	2000K Gln/Lys		
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.14		8.27 ± 0.06	7.85 ± 0.02	7.37 ± 0.02		
%m	61.4 ± 3.5	64.0	80.1 ± 6.4	63.6 ± 3.2	52.3 ± 3.5		
%р	15.7 ± 2.0	11.4	7.5 ± 5.1	14.5 ± 2.8	5.4 ± 0.8		
%t	22.9 ± 3.5	24.6	12.3 ± 2.0	21.9 ± 2.1	42.3 ± 3.9		
Glutamate	Experiment (NMR) ^a	Coil Library ^b	OPLS-AA	OPLS-AA/L	2000 K Glu	2000 K Glu Reweighted	
$^{3}J(H_{N}H_{\alpha})$ (Hz)	6.63		7.58 ± 0.03	7.22 ± 0.10	7.08 ± 0.03	6.97 ± 0.04	
%m	60.8 ± 3.1	60.1	84.1 ± 4.2	88.3 ± 5.4	42.3 ± 9.9	70.4 ± 5.5	
%р	16.4 ± 2.3	13.9	8.9 ± 2.1	6.8 ± 2.2	0.00 ± 0.00	4.7 ± 3.6	
%t	22.7 ± 2.6	26.0	6.9 ± 2.2	4.9 ± 3.2	57.2 ± 10.0	24.9 ± 4.6	
Lysine	Experiment (NMR) ^a	Coil Library ^b	OPLS-AA	OPLS-AA/L	2000K Gln/Lys		
$^{3}J(H_{N}H_{a})$ (Hz)	6.83		8.12 ± 0.01	7.90 ± 0.02	7.37 ± 0.02		
%m	60.7 ± 3.2	64.9	61.8 ± 3.9	26.0 ± 1.5	43.2 ± 2.7		
%p	15.3 ± 2.1	10.6	24.7 ± 6.1	49.9 ± 2.1	10.5 ± 1.9		
%t	24.0 ± 3.1	24.6	13.4 ± 2.2	24.1 ± 0.1	46.3 ± 4.3		
Arginine	Experiment (NMR) ^a	Coil Library ^b	OPLS-AA	OPLS-AA/L	2000 K Arg		
3 J(H _N H _a) (Hz)	6.85		8.18 ± 0.02	7.82 ± 0.11	7.53 ± 0.02		
%m	59.5 ± 1.9	60.6	52.4 ± 6.0	74.3 ± 0.9	56.4 ± 4.0		
%р	16.1 ± 3.0	16.6	23.7 ± 9.6	1.8 ± 0.2	15.7 ± 0.7		
%t	24.4 ± 2.1	22.8	23.9 ± 3.6	23.9 ± 1.0	27.9 ± 3.7		

Table S4 Continued

^aJ couplings for dipeptides given in reference 48. Rotamer populations and errors given are the averages and standard deviations over all residues in denatured ubiquitin and protein G from reference 42 ^bCoil library data from reference 43

Table S4 Continued

	Experiment	Coil				
Phenylalanine	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Phe	
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.18		8.18 ± 0.01	8.01 ± 6.4	7.41 ± 0.02	
%m	60.7 ± 5.3	51.6	36.5 ± 6.0	26.7 ± 8.2	51.3 1.3	
%р	12.2 ± 5.0	19.0	33.1 ± 9.0	51.9 ± 14.1	2.0 0.6	
%t	27.2 ± 3.6	29.5	30.4 ± 3.1	21.4 ± 6.0	46.7 1.1	
	Experiment	Coil				
Tyrosine	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Tyr	
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.13		8.21 ± 0.02	8.05 ± 0.05	7.46 ± 0.05	
%m	59.4 ± 7.8	48.4	38.8 ± 3.5	31.3 ± 5.3	49.7 ± 4.4	
%р	14.1 ± 2.0	18.8	26.6 ± 9.9	42.6 ± 10.5	2.1 ± 0.3	
%t	26.5 ± 6.2	32.8	34.7 ± 6.7	26.0 ± 5.2	48.2 ± 4.2	
	Experiment	Coil				2000 K Trp
Tryptophan	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Trp	Reweighted
$^{3}J(H_{N}H_{a})$ (Hz)	6.91		8.01 ± 0.03	7.91 ± 0.05	7.46 ± 0.04	7.55 ± 2.8
%m	52.0	44.7	6.0 ± 2.3	11.9 ± 0.3	44.7 ± 6.0	56.2 ± 2.7
%р	14.3	23.3	36.8 ± 0.6	47.6 ± 4.9	3.5 ± 1.0	9.2 ± 0.8
%t	33.6	32.0	57.2 ± 4.3	40.5 ± 5.1	51.8 ± 5.0	34.6 ± 1.9
	Experiment	Coil				
Histidine-8	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Hid	
$^{3}J(H_{N}H_{\alpha})$ (Hz)			7.94 ± 0.01	7.70 ± 0.06	7.40 ± 0.02	
%m		55.6	31.7 ± 0.4	22.7 ± 1.0	67.8 ± 3.7	
%р		18.9	9.7 ± 7.2	26.6 ± 6.1	9.0 ± 0.7	
%t		25.5	58.7 ± 7.6	50.7 ± 5.2	23.1 ± 3.5	
	Experiment	Coil				
Histidine-ε	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Hie	
$^{3}J(H_{N}H_{\alpha})$ (Hz)			7.88 ± 0.3	7.60 ± 0.05	7.17 ± 0.01	
%m		55.6	25.5 ± 6.9	21.4 ± 2.1	71.0 ± 1.9	
%р		18.9	31.8 ± 8.8	40.8 ± 3.4	10.7 ± 1.1	
%t		25.5	42.7 ± 1.9	37.7 ± 1.4	18.4 ± 1.0	
Histidine	Experiment	Coil				
Protonated	(NMR) ^a	Library ^b	OPLS-AA	OPLS-AA/L	2000 K Hip	
$^{3}J(H_{N}H_{\alpha})$ (Hz)	7.76		7.97 0.01	8.05 0.02	7.54 0.02	
%m	60.1	55.6	9.3 0.9	71.4 8.8	73.0 2.4	
%р	14.0	18.9	13.2 2.9	13.2 10.5	16.2 1.7	
%t	25.9	25.5	77 5 3 8	15335	10.8 0.7	

^aJ couplings for dipeptides given in reference 48. Rotamer populations and errors given are the averages and standard deviations over all residues in denatured ubiquitin and protein G from reference reference 42 ^bCoil library data from reference 43

 Table S5. Relative Conformer Energies (in kcal/mol) for the Blocked Alanine Dipeptide

 Calculated with Various Ab Initio Methods and Molecular Mechanics Force Fields

	CCSD(T)/	DF-	OPLS-	OPLS-				Unweighted
	CBS ^a	LCCSD(T0) ^b	AA	AA/L	500K	1000K	2000K	_
C7-eq	0	0	0.00	0.00	0.00	0.00	0.00	0.00
C5	1.43	1.24	1.37	0.98	1.54	1.43	1.21	0.81
C7-ax	2.45	2.42	2.52	2.48	2.04	2.15	2.16	2.11
B2 ^c	3.31	3	5.39	3.33	3.85	3.65	3.55	3.28
Alpha L ^c	4.95		8.26	7.26	6.29	6.01	5.85	5.81
Alpha Prime	6.56		6.56	6.19	6.64	6.90	7.04	6.95
RMSD Minima			0.05	0.29	0.21	0.23	0.30	0.40
RMSD All		0.18	1.60	0.97	0.61	0.49	0.45	0.48

^aReference 16 ^bReference 15 ^cNot true minima with the force fields, phi and psi were fixed at their values from the ω B97X-D/6-311++G(d,p) calculations

Table S6. Relative Conformer Energies (in kcal/mol) for the Blocked Alanine Tetrapeptide Calculated with Various *ab initio* and DFT Methods

Conformer		ωB97X-D/6-31	l++g(p,d) Optimize	d Geometry	M06-2X/6-31+g(d) Optimized Geometry				
Number	RI- MP2(CBS)// HF/6-31G** Energy ^a	ωB97X-D/ 6-311++g(p,d) Energy	ωB97X-D/aug- cc-pVTZ Energy	ωB97X-D/ jun-cc-pVQZ Energy	M06-2X/ 6-31+g(d) Energy	M06-2X/ aug-cc- pVTZ Energy	M06-2X/jun- cc-pVQZ Energy		
1	4.13	6.18	5.05	4.72	6.94	5.31	4.95		
2	4.19	5.93	4.99	4.71	6.64	5.28	4.96		
3	0.57	0.71	0.62	0.57	2.52	2.09	1.96		
4	5.73	7.43	6.44	6.14	8.37	6.93	6.62		
5	5.26	6.97	6.05	5.79	7.96	6.53	6.26		
6	2.90	3.29	3.11	3.08	3.23	2.71	2.65		
7	6.67	7.40	7.01	6.95	8.24	7.24	7.25		
8	4.64	5.89	5.69	5.62	5.61	5.31	5.31		
9	7.92	8.38	7.95	7.79	10.23	9.45	9.22		
10	7.79	8.57	8.80	8.80	8.93	8.70	8.54		
11	0	0.43	0.45	0.46	0.80	0.45	0.56		
12	0.29	0.00	0.00	0.00	0.00	0.00	0.00		
13	3.66	5.09	4.27	4.02	5.74	4.61	4.34		
14	4.68	5.61	4.97	4.78	6.31	5.56	5.36		
15	2.19	2.84	2.85	2.84	2.33	2.33	2.33		
16	3.55	4.09	3.87	3.79	4.93	4.67	4.59		
17	3.42	3.17	3.15	3.15	4.21	3.94	3.98		
18	1.91	3.29	2.61	2.42	3.75	2.92	2.70		
19	3.82	4.71	4.16	3.97	5.66	4.95	4.73		
20	1.76	3.13	2.64	2.46	3.62	3.24	3.06		
22	2.92	6.85	0.89	6.84	7.54	4.38	7.31		
25	2.50	4.09	3.58	3.43	4.40	3.84	3.76		
26	0.67	2.35	1.99	1.89	2.39	2.10	2.10		

^aReference 30

$1 abic 577 anaco 01 \psi ana \psi 101 che manne 1 chapepeneo Calculatea at the wb/11 b$	Table S	S7 . `	Values o	ofφa	and y	for	the	Alanine	Tetrape	ptides	Calculated	at t	the	ωB97	/X-D)/6
--	---------	---------------	----------	------	--------------	-----	-----	---------	---------	--------	------------	------	-----	------	------	-----

311++g(p,d) Level of Theory

Conformer Number	ωB97X-D/6-311++g(p,d) Optimized Geometry								
	Ala1 φ	Alal y	Ala2 φ	Ala2 y	Ala3 φ	Ala3 ψ			
1	201.8	167.4	203.2	169.4	204.1	165.2			
2	200.9	164.9	201.8	163.8	277.3	78.5			
3	280.4	88.6	74.4	303.4	284.2	82.8			
4	201.1	162.5	276.9	83.6	201.2	154.6			
5	202.3	170.8	280.0	348.6	205.3	166.5			
6	272.4	62.6	56.0	23.2	181.7	148.5			
7	53.9	204.9	270.8	65.4	194.7	299.3			
8	71.0	288.9	304.8	132.6	61.8	23.6			
9	74.2	303.3	74.7	304.1	74.3	302.2			
10	68.4	12.9	48.3	40.3	71.2	288.9			
11	63.6	255.8	300.1	326.1	278.5	76.5			
12	62.8	242.7	296.1	339.7	254.1	23.0			
13	201.2	158.1	276.6	69.6	273.5	71.6			
14	199.3	162.1	293.1	339.7	251.4	16.2			
15	292.9	116.1	54.7	37.9	85.9	345.7			
16	291.7	113.9	74.5	311.9	269.1	357.6			
17	274.2	69.5	67.2	291.7	286.2	121.5			
18	276.2	70.9	274 7	65.9	274.4	71.6			
19	276.9	70.6	274 7	71.6	71.6	303 7			
20	277.5	73.6	290.3	339 5	261.2	10.5			
21	277.2	67.0	110.0	294.8	294.8	1117			
22	63.4	31.5	72.1	304.6	240.5	11.1			
23	05.4	51.5	/ 2.1	504.0	240.5	11.1			
24	280.2	336.0	275.0	67 5	63.0	37.8			
25	286.8	350.0	286.0	344.7	276.0	70.3			
26	200.0	338.8	200.0	346.0	270.0	64			
27	291.7	334.6	274.4	35 /	69.5	283.8			
	272.4	554.0	240.0	JJ. 4	09.5	203.0			

31+g(d) Level of Theory

Conformer Number	M06-2X/6-31+g(d) Optimized Geometry							
	Ala1 φ	Ala1 y	Ala2 φ	Ala2 y	Ala3 φ	Ala3 ψ		
1	197.8	168 3	199.0	167.6	198.0	166.5		
2	198.4	166.5	198.6	160.9	277.0	73.0		
3	270.2	86.0	75 7	202.2	295.0	94.5		
4	279.2	00.9	276.0	303.5	285.0	84.5 156 0		
5	198.3	160.1	276.0	/6.5	196.9	156.9		
6	198.6	168.1	280.2	349.1	200.7	168.7		
7	272.7	64.0	53.2	26.9	180.4	148.9		
8	51.4	204.3	271.8	65.0	196.5	301.8		
9	70.7	284.6	308.9	137.9	60.7	22.7		
10	75.6	304.1	76.0	306.3	75.1	308.5		
10	64.5	22.7	54.5	31.5	73.2	303.2		
11	60.1	245.9	305.1	326.3	281.4	78.3		
12	61.5	240.0	297.3	337.8	255.9	22.4		
13	197.4	159.1	276.3	68.4	274.1	67.9		
14	197.0	162.2	293.2	339.7	264.4	9.0		
15	294.7	118.2	53.6	39.8	84.8	347.4		
16	292.9	109.3	75.0	313.0	273.3	355.1		
17	276.4	69.7	65.3	282.7	295.3	127.6		
18	276.5	71.0	274.7	66.2	273.5	69.4		
19	270.5	71.9	274.7	71.4	274.0	204.7		
20	2/6./	/1.1	2/4.4	/1.4	/3.3	304./		
21	277.1	73.8	291.6	338.3	265.4	8.4		
22	217.6	40.6	71.3	285.9	308.2	138.4		
23	63.2	31.5	73.5	307.2	221.2	23.4		
24	61.8	32.4	73.6	302.8	200.2	358.0		
25	290.2	337.5	277.0	110.2	61.8	32.9		
25	289.4	346.1	285.8	348.6	276.5	68.1		
20	292.8	337.4	295.1	345.3	272.9	359.3		
27	291.8	338.2	263.7	9.3	74.9	301.6		

	CCSD(T)/CBS ^a	OPLS-AA	OPLS-AA/L	2000 K
tCd	0.00	0.00	0.00	0.00
tCu	1.44	3.81	3.84	1.70
cAd	3.27	3.03	1.61	2.90
cAu	4.29	4.82	4.52	4.29
tAu	4.95			
cFd	6.00	3.35	3.21	6.40
cFu	6.50	4.85	5.10	6.31
RMSD		1.58	1.67	0.26

 Table S9. Relative Conformer Energies (in kcal/mol) for the Blocked Proline Dipeptide

 Calculated with Various *ab initio* Methods and Molecular Mechanics Force Fields

^aReference 16

Table S10. Summary of the Force Field Parameters Developed and Tested in this Work for Proline and their Average per Scan Boltzmann-Weighted Errors Compared to the B2PLYP-D3BJ/aug-cc-pVTZ// ∞ B97X-D/6-311++G(d,p) Energies for the Two Proline ψ Scans. Parameters Noted with a * are those Selected for the OPLS-AA/M Force Field.

		Paramete	ers ^a		Atoms	Boltzmann Weighted Error ^a			
		V1	V2	V3		500 K	1000 K	2000 K	Unweighted
OPLS-AA	Ψ	1.816	1.222	1.581	N-Ca-C-N	0.266	0.653	1.287	3.331
	ψ'	1.173	0.189	-1.200	Ν-C-Cα-Cβ				
	χ1	0.845	-0.962	0.713	Ν-Cα-Cβ-Cγ				
	χ1'	-1.697	-0.456	0.585	C-Cα-Cβ-Cγ				
	φ'''	-1.737	1.251	-3.501	Cδ-N-Cα-C				
	χ.5	4.753	-0.734	0.00	Cδ-N-Cα-Cβ				
	χ_4	2.859	2.058	-11.266	C γ- C δ- N - C α				
OPLS-AA/L	Ψ	0.743	2.508	-0.805	N-Ca-C-N	0.199	0.498	0.964	2.550
	ν̈́	1.865	0.089	0.351	Ν-C-Cα-Cβ				
	χ1	0.845	-0.962	0.713	Ν-Cα-Cβ-Cγ				
	χ1'	-1.697	-0.456	0.585	C-Cα-Cβ-Cγ				
	φ'''	-1.737	1.251	-3.501	Cδ-N-Cα-C				
	χ.5	4.753	-0.734	0.00	Cδ-N-Cα-Cβ				
	χ_4	2.859	2.058	-11.266	Cγ-Cδ-N-C α				
*2000 K Pro	Ψ	-0.940	2.755	-2.670	N-Ca-C-N	0.170	0.331	0.568	1.116
	ν̈́	5.029	0.719	2.240	Ν-C-Cα-Cβ				
	χ1	1.572	0.159	0.200	Ν-Cα-Cβ-Cγ				
	χ_1 '	-1.751	1.606	0.000	C-Cα-Cβ-Cγ				
	φ'''	-1.737	1.251	-3.501	Cδ-N-Cα-C				
	χ5	4.753	-0.734	0.00	Cδ-N-Cα-Cβ				
	χ4	2.859	2.058	-11.266	Cγ-Cδ-N-Cα				

Figure SI2. The populations of each rotamer as a percentage from molecular dynamics simulations of blocked dipeptides versus the average populations from a coil library. Results are given for the OPLS-AA (A), OPLS-AA/L (B), and OPLS-AA/M (C). Dashed lines delineate the

region of populations that fall within +/- 20% of the experimental result. Error bars from simulation represent the standard deviation in the populations from triplicate 200 ns simulations.

Figure SI3. The RMSD between the coordinates of the backbone atoms in the MD simulations compared to the starting experimental structure over the course of the trajectory for the first run.

The first, second, and third rows correspond to trajectories with OPLS-AA, OPLS-AA/L, and OPLS-AA/M, while the first and second columns correspond to ubiquitin residues 1-72 and GB3 respectively.