1 2 3 4 5 6	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	MSATKSIVGEALEYVNIGLSHFLALPLAQRISLIIIIPFIYNIVWQLLYSLR-KDRPPLVFYWIPWVGSAVVYGMKPY MAIVETVIDGINYFLSLSVTQQISILLGVPFVYNLVWQYLYSLR-KDRAPLVFYWIPWFGSAASYGQQPY MVPMLWLTAYMAVAVLTAILLNVVYQLFFRLWNRTEPPMVFHWVPYLGSTISYGIDPY MGLIAFILDGICKHCSTQSTWVLVGIGLLSILAVSVIINVLQQLLFKNPHEPPVVFHWFPFIGSTISYGIDPY : :: *:: * ::*:**:*.**: ** .**	77 69 58 73
7 8 9 10	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	EFFEECQKKYGDIFSFVLLGRVMTVYLGPKGHEFVFNAKLADVSAEAAYAHLTTPVFGKGVI <mark>Y</mark> DCPNSRLMEQKKFVKGA EFFESCRQKYGDVFSFMLLGKIMTVYLGPKGHEFVFNAKLSDVSAEDAYKHLTTPVFGKGVI <mark>Y</mark> DCPNSRLMEQKKFAKFA KFFFACREKYGDIFTFILLGQKTTVYLGVQGNEFILNGKLKDVNAEEVYSPLTTPVFGSDVVYDCPNSKLMEQKKFIKYG KFFFDCRAKYGDIFTFILLGKKTTVYLGTKGNDFILNGKLRDVCAEEVYSPLTTPVFGRHVVYDCPNAKLMEQKKFVKYG	157 149 138 153
12 13 14 15 16 17	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	LTKEAFKSYVPLIAEEVYKYFRDSKNFRLNERTTGTIDVMVTQPEMTIFTASRSLLGKEMRAKLDTDFAYLYSDLDKGFT LTTDSFKRYVPKIREEILNYFVTDESFKLKEKTHGVANVMKTQPEITIFTASRSLFGDEMRRIFDRSFAQLYSDLDKGFT LTQSALESHVPLIEKEVLDYLRDSPNFQGSSGRVDISAAMAEITIFTAARALQGQEVRSKLTAEFADLYHDLDKGFT LTSDALRSYVPLITDEVESFVKNSPAFQGHKGVFDVCKTIAEITIYTASRSLQGKEVRSKFDSTFAELYHNLDMGFA ** .::. :** * .*: .:	237 229 215 230
18 19 20 21 22 23	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	PINFVFPNLPLEHYRKRDHAQKAISGTYMSLIKERRKNNDIQDRDLIDSL-MKNSTYKDGVKMTDQEIANLLIGVLMG PINFVFPNLPLPHYWRRDAAQKKISATYMKEIKSRRERGDIDPN-RDLIDSLLI-HSTYKDGVKMTDQEIANLLIGILMG PINFMLPWAPLPHNKKRDAAHARMRSIYVDIITQRRLDGEKDSQKSDMIWNL-M-NCTYKNGQQVPDKEIAHMMIILLMA PINFMLPWAPLPHNRKRDAAQRKLTETYMEIIKARRQAGSKKDS-EDMVWNL-M-SCVYKNGTPVPDEEIAHMMI <mark>A</mark> LLMA ****::* ** * :** *: : *: *: *: ** *:: .* :**:*	314 307 293 307
24 25 26 27 28 29 30	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	GQHTSAATSAWILLHLAERPDVQQELYEEQMRVLDGGKKELTYDLLQEMPLLNQTIKETLRMHHPLHSLFRKVMK GQHTSASTSAWFLLHLGEKPHLQDVIYQEVVELLKEKG-GDLNDLTYEDLQKLPSVNNTIKETLRMHMPLHSIFRKVTN GQHSSSSISAWIMLRLASQPKVLEELYQEQLANLGPAGPDGSLPPLQYKDLDKLPFHQHVIRETLRIHSSIHSIMRKVKS GQHSSSSTASWIVLRLATRPDIMEELYQEQIRVLGSDLPPLTYDNLQKLDLHAKVIKETLRLHAPIHSIIRAVKN ***:*:: ::*::*:*: ::*:*: ::*:*: : * * * *::: :.*:****:* .:***:* ::	389 385 373 382
30 31 32 33 34 35 26	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	DMHVPNTSYVIPAGYHVLVSPGYTHLRDEYFPNAHQFNIHRWNNDSASSYSVGEEVDYGFGAISKGVSSPYLPFGG PLRIPETNYIVPKGHYVLVSPGYAHTSERYFDNPEDFDPTRWDTAAAKANSVSFNSSDEVDYGFGKVSKGVSSPYLPFGG PLPVPGTPYMIPPGRVLLASPGVTALSDEHFPNAGCWDPHRWENQATKEQENDKVVDYGYGAVSKGTSSPYLPFGA PMAVDGTSYVIPTSHNVLSSPGVTARSEEHFPNPLEWNPHRWDENIAASAEDDEKVDYGYGLVSKGTNSPYLPFGA : : * *::* . :* *** : :.:* *. :: **:. :*	465 465 449 458
30 37 38 39 40 41	S. cerevisiae C. albicans A. fumigatus A A. fumigatus B	GRHRCIGEHFAYCQLGVLMSIFIRTLKWHYPEGKT-VPPPDFTSMVTLPTGPAKIIWEKRNPEQKI GRHRCIGEQFAYVQLGTILTTFVYNLRWTI-DGYK-VPDPDYSSMVVLPTEPAEIIWEKRETCMF- GRHRCIGEKFAYVNLGVILATIVRHLRLFNVDGKKGVPETDYSSLFSGPMKPSIIGWEKRSKNTSK GRHRCIGEQFAYLQLGTITAVLVRLFRFRNLPGVDGIPDTDYSSLFSKPLGRSFVEFEKRESATKA ******* :*** :**.: : :: :: * :* :* :*:	530 528 515 524

- 42 Figure S1 Sequence alignment of S. cerevisiae CYP51 (Uniprot: A6ZSR0), C. albicans
- 43 CYP51 (Uniprot: P10613) and A. fumigatus CYP51A (Uniprot: Q4WNT5) and B (Uniprot:
- 44 Q96W81). The alignment was carried out using the T-coffee server (Espresso) using pdb 4k0f as a
- 45 reference (1). The conserved tyrosine Y140 is highlighted in yellow while G310, T322 and G464 are
- 46 highlighted in red (*S. cerevisiae* numbering).
- 47

48 49

50 Figure S2 Sites of mutation in *C. albicans* and *A. fumigatus* CYP51 (residues G464 and K151 51 in ScErg11p). The main chain is indicated as a grey ribbon and fluconazole is indicated as 52 sticks (C atoms cyan, N atoms blue, O atoms red and F atoms pale blue). The heme cofactor is 53 also shown as sticks (magenta C atoms). Hydrogen bonds between the water molecule at G464 54 and the heme propionate as well as K151 and the second heme propionate are shown (yellow 55 dashed lines). Hydrogen bonding is also shown between HOH743, FLC, heme and Y140, as 56 well as between HOH790, FLC, and S382.

- 57 58
- 20

PDB code	4WMZ
Space group	P 1 2 ₁ 1
Resolution range (Å)	37.84 - 2.05 (2.11 - 2.05)
Unit cell axes (Å)	a = 77.24, b = 65.21 c = 81.02
Diffraction source	Australian Synchrotron MX1
Wavelength (Å)	0.954
Total reflections	293689
Unique reflections	47935
Average redundancy	6.1 (5.3)
Completeness (%)	95.6 (84.6)
	12.4 (1.4)
Wilson B-factor	33.4
$R_{merge}{}^{\dagger}$	0.083 (0.953)
CC(1/2)	0.998 (0.634)
Refinement	
R _{crystt} ‡	0.20 (0.30)
R_{free} §	0.23 (0.32)
Number of reflections	47899 (2351)
Number of atoms in model	
Protein	4304
Ligand	22
Water molecules	155
Deviation from ideal bond lengths* (Å)	0.008
Deviation from ideal bond angles 8^* (⁰)	1.1
Ramachandran analysis (%)	
Preferred	96.5
Allowed	3.2
Residues in disallowed regions	0.2

59
 Table S1. Data collection and refinement statistics.

60

 $\dagger \mathbf{R}_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - [I(hkl)]| / \sum_{hkl} \sum_{i} I_i(hkl).$ 61

62	$R_{cryst} = \Sigma_{hkl} F_{obs}-F_{calc} / \Sigma_{hkl} Fobs $ computed over a working set composed of 95% of data.		
63	$ \label{eq:Rfree} \$ R_{free} = \Sigma_{hkl} \left F_{obs} \right - \left F_{calc} \right / \left \Sigma_{hkl} \right \left F_{obs} \right \mbox{ computed over a test set composed of 5% of data. } $		
64	*The parameters for ideal values for bond lengths and bond angles used were defined by		
65	Engh and Huber (2). The validation statistics were obtained from Aimless (3) and Phenix (4).		
66			
67	Table S2:		
68	CSD codes used for Fe-N and Fe-S distances respectively.		
69	Fe-N		
70	ABIVOX, ABIWAK, ABIWEO, AFADAN, BANTIV, COQHUM, COQJEY, DUPLOP,		
71	EVINAZ, EVINED, EVINIH, EVINON, FENBAB, HEPREA, HERDOY, IXIDUO,		
72	IXIFAU, JAQVOM, JAQWAZ, JEHVAU, JITSUB, KABWAN, KABWER, NEZXOG,		
73	PAVDIA, PAVDOG, PAVDOG01, PAVDUM, POLNUA, QEHFIT, QIYROG, QUISAT,		
74	QOFMUU, SAJFAL, SAJFAL01, TESLUY, TESMAF, TETWUK, , UCIVEH, UCIVIL,		
75	WOQCOV, WOQCUB, WOQCUB01, WOQDIQ, WOQDOW, YIVSEB, DEDLAB,		
76	DEDMEG,		
77	Fe-S; KULWOD, PIMVFE01, SAXTEQ, YEHDAR		
78			
79			
80	References		
81	1. Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V,		
82 83	Notredame C. 2006. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res 34 ·W604-608		
83 84	 Engh RA, Huber R. 1991. Accurate Bond and Angle Parameters for X-Ray Protein- 		
85	Structure Refinement. Acta Crystallographica Section A 47: 392-400.		
86 87	3. Evans P. 2006. Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr 62:72-82		
88	4. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ,		
89 00	Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure		
90 91	Biological Crystallography 66:12-21.		
92			