## Supplementary Information

## Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity

Ji Sung Lee<sup>1, \*</sup>, Jin Myung Cha<sup>2, \*</sup>, Ha Young Yoon<sup>1</sup>, Jin-Kyu Lee<sup>2,</sup> and Young Keun Kim<sup>1,</sup>

<sup>1</sup>Department of Materials Science and Engineering, Korea University, 145 Anam-ro,

Seongbuk-gu, Seoul 136-713, Korea

<sup>2</sup>Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-

742, Korea

<sup>\*</sup>These authors contributed equally this work.

Correspondence and requests for materials should be addressed to Y.K.K. (email: ykim97@korea.ac.kr) or J.-K.L. (jinklee@snu.ac.kr)

## **Supplementary Data**



Figure S1. Size distribution of MGNCs. The sizes of the nanoclusters were counted in the TEM images and they follow a Gaussian distribution. Size counting reveals that the nanoclusters have averaged diameters and standard deviation ( $\sigma$ ) values of  $30 \pm 3$  nm,  $42 \pm 4$  nm,  $64 \pm 6$  nm,  $78 \pm 7$  nm,  $108 \pm 7$  nm,  $125 \pm 8$  nm,  $153 \pm 12$  nm,  $193.2 \pm 17$  nm, and  $231 \pm 15$  nm.



**Figure S2. Zero-field-cooled (ZFC) and field-cooled (FC)** *M*–*T* **curves.** All data were obtained from the PPMS measurements under magnetic field of 100 Oe.