Science Signaling

www.sciencesignaling.org/cgi/content/full/8/359/ra5/DC1

Supplementary Materials for

MAPK feedback encodes a switch and timer for tunable stress adaptation in yeast

Justin G. English, James P. Shellhammer, Michael Malahe, Patrick C. McCarter, Timothy C. Elston, Henrik G. Dohlman*

*Corresponding author. E-mail: hdohlman@med.unc.edu

Published 13 January 2015, *Sci. Signal.* **8**, ra5 (2015) DOI: 10.1126/scisignal.2005774

This PDF file includes:

Fig. S1. The antibodies generated against phosphorylated p38 recognize monophosphorylated and dually phosphorylated Hog1. Fig. S2. Negative feedback only model fails to capture the Hog1 signaling profile. Fig. S3. Hog1 signaling profile in the Ste50^{5A} strain. Fig. S4. Hog1 signaling profile in *ssk1*\Delta and *rga1*\Delta yeast. Fig. S5. Gating parameters for flow cytometry data. Table S1. Transcription factor binding and interaction analysis. Table S2. List of yeast strains used in this study. Table S3. List of parameter values used in modeling. Legends for database S1 and S2

Other Supplementary Material for this manuscript includes the following:

(available at www.sciencesignaling.org/cgi/content/full/8/359/ra5/DC1)

Database S1 (Microsoft Excel format). Annotated microarray data with GO analysis and organization.

Database S2 (Microsoft Excel format). Induction of 95 proteins from clusters 1 to 4 in response to 0, 350, or 650 mM KCl.

Fig. S1. The antibodies generated against phosphorylated p38 recognize monophosphorylated and dually phosphorylated Hog1. The indicated strains were treated with KCl for five minutes, collected, lysed, and analyzed by Western blotting using the phosphop38 antibodies.

Fig. S2. Negative feedback only model fails to capture the Hog1 signaling profile. The model of Behar *et al.* (*23*) fails to explain catalytically-inactive Hog1 mutant experimental time-courses. (A) The model of the wild-type behavior. (B) The model when Hog1 feedback is inhibited model. (C) The total amount of ppHog1 from the model of wild-type cells.

Fig. S3. Hog1 signaling profile in the Ste50^{5A} strain. Hog1 signaling profile in the Ste50^{5A} strain. Data represent two experiments.

Fig. S4. Hog1 signaling profile in *ssk1* Δ **and** *rga1* Δ **yeast.** (A) Hog1 signaling profile in an *ssk1* Δ strain determined as described in Fig. 1. Data are means +/- SEM (n = 3). (B) Hog1 signaling profile in an *rga1* Δ strain, determined as described in Fig. 1. Data represent two experiments.

Fig. S5. Gating parameters for flow cytometry data. Gate 1 establishes a cut-off for autofluorescent debris and dead cells determined by staining with wheat germ-agglutinin (WGA) conjugated to AlexFluor-594. Fluorescence minus one (FMO) experiments were performed to compensate for bleed-through on line. Data are compensated fluorescence values. FSC-A, forward scatter area; SSC-A, side scatter area.

Table S1. Transcription factor binding and interaction analysis. Percent value represents number of query set gene promoters associated with the transcription factor (TF). p-value calculations and cut-offs were determined as outlined on YEASTRACT. Significance of gene set (left) to TF (top) association indicated as highly significant (**, $p < 1E^{-5}$), significant (*, $p < 1E^{-5}$), or nonsignificant (p > 0.01). 67 random genes were selected from the yeast genome as a negative control.

	Msn2	Msn4	Sko1	Hot1	Hog1
random (67)	51.56%	37.50%	21.88%	1.56%	9.38%
	(0.245)	(0.346)	(0.016)	(0.152)	(0.003)
All microarray (252)	95.63%	87.30%	46.83%	17.86%	10.71%
	(0**)	(0**)	(0**)	(0**)	(1.2E-09**)
C1 (107)	98.10%	94.39%	57.94%	28.97%	13.08%
	(0**)	(0**)	(0**)	(0**)	(5.4E-07**)
C2 (111)	96.40%	87.39%	37.84%	11.71%	10.81%
	(0**)	(0**)	(6.3E-12**)	(8.3E-12)**	(2.4E-05**)
C3&4 (34)	85.29%	64.71%	41.18%	2.94%	2.94%
	(1E-06**)	(1.8E-4*)	(8.0E-08**)	(0.052)	(0.27)
flow cytometry (67)	94.03	82.09%	49.25%	14.93%	13.43
	(0**)	(1E-15**)	(9.3E-14**)	(9.24E-11**)	(2.55E-05**)

Strain	Genotype	Background	Reference
BY4741	$MATa, his3\Delta I, leu2\Delta, met15\Delta,$	BY4743	(73)
	$ura3\Delta$		
JGE001	hog1 ^{T100A}	BY4741	This study
JGE002	ssk1_::KanMX4	BY4741	This study
JGE003	ssk2_::KanMX4	BY4741	This study
JGE004	ssk22 <i>A</i> ::KanMX4	BY4741	This study
JGE005	pbs2 Δ ::KanMX4	BY4741	This study
JGE006	msb2_::KanMX4	BY4741	This study
JGE007	hkr1 <u></u> ::KanMX4	BY4741	This study
JGE008	rga1 <i>A</i> ::KanMX4	BY4741	This study
JGE009	rga2∆::KanMX4	BY4741	This study
JGE010	bem3Д::KanMX4	BY4741	This study
JGE011	ste20 <i>A</i> ::KanMX4	BY4741	This study
JGE012	stel1_::KanMX4	BY4741	This study
JGE013	opy2A::KanMX4	BY4741	This study
JGE014	ste50 <i>\D</i> ::KanMX4	BY4741	This study
JGE015	hog14::KanMX4	BY4741	This study
JGE016	ptc1_::KanMX4	BY4741	This study
JGE017	ptc2_::KanMX4	BY4741	This study
JGE018	<i>ptp2</i> Δ::KanMX4 <i>ptp3</i> Δ::LEU2	BY4741	This study
JGE019	ptp2_::KanMX4	BY4741	This study
JGE020	<i>ptp3Δ</i> :: <i>LEU</i> 2	BY4741	This study
JGE021	hog1 ^{T174A}	BY4741	This study
JGE022	hog1 ^{Y176F}	BY4741	This study
JGE023	<i>ste50</i> ^{5A} (S155A, S196A, S202A,	BY4741	(18)
	S248A, Thr341A)		

Table S2. List of yeast strains used in this study.

Parameter	Value		
k1	0.303763		
k1m	0.675469		
k2	7.73342		
k2m	2.14647		
а	3.77649		
k3	0.000935217		
k3m	0.550563		
k4	0.0039341		
k4m	0.987791		
k5	71.749		
k5m	122.966		
k6	0.675903		
k6m	8.02219		
kn	0.000118967		
kc	0.000102928		
k8	0.0168266		
k8m	0.678538		
k9	0.000133456		
k9m	0.585395		
k10	0.000116113		
k12	0.000173807		

Table S3. List of parameter values used in modeling.

Database S1. Annotated microarray data with GO analysis and organization. C1, cluster 1;

C2, cluster 2; C3 & 4; clusters 3 and 4. Data were classified by "biological process."

Database S2. Induction of 95 proteins from clusters 1 to 4 in response to 0, 350, or 650 mM KCl.