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Supplemental Material

A. Theoretical Analysis 

A1. Derivation of the dynamic 

equation for sperm orientation 𝜽 

In this section we provide a derivation for the 

shear-induced rotation of the sperm in Eq. (2) 

based on the linearity of low Reynolds 

number flows and the symmetry of the 

problem.  This derivation makes it clear that 

the rotation results from the local shearing 

motion near the wall and that the form of the 

equation is a general result for any 

axisymmetric but front-back asymmetric 

object interacting hydrodynamically with a 

wall.  Note that the principle of linear 

superposition of low Reynolds number flows 

implies that the rotation of the sperm due to 

the imposed shear flow can be described 

independently of the swimming induced 

rotation provided that one has a specification 

of the flagellum configuration and we restrict 

our attention to the former problem here. 

To place the result for rotation of a sperm 

near a wall in context, we first review two 

related results: (1) the Jeffery rotation of a 

particle in an unbounded shear flow; and (2) 

the rotation of a front-back asymmetric 

particle confined in a channel with a 

thickness smaller than the particle length. 

The orientation vector s of an axisymmetric 

particle experiencing a linear flow field far 

from a wall must be a linear function of the 

velocity gradient u and can depend on the 

orientation vector s.  Together with the 

constraint that s remain a unit vector,  

2𝑠𝑖𝑠𝑗̇ =
𝑑

𝑑𝑡
(𝑠2) = 0. 

And the requirement that the orientation 

vector rotate in a solid body rotation when the 

flow is purely rotational, these observations 

lead to a rotation rate 

𝑠̇𝑖 = sjΩji + λ(𝛿𝑖𝑗 − 𝑠𝑖𝑠𝑗)𝐸𝑗𝑘𝑠𝑘, (S1) 

where =(1/2)(u-u†) is the rotational 

and E=(1/2)(u+u†) the straining portion 

of the velocity gradient and   is a rotational 

parameter whose value depends on the 

particle geometry.  While this equation was 

first derived by Jeffery [1] for spheroidal 

particles, Bretherton  [2] showed that it 

applies to all axisymmetric particles.  It is 

noteworthy that the rotation rate predicted by 

(S1) is antisymmetric upon the  

transformation s→-s, so that any fixed point 

for the particle orientation in the upstream 
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hemisphere of a simple shear flow must have 

an equivalent fixed point in the downstream 

hemisphere [2].  It is clear then as noted in 

Ref. [3] that upstream swimming cannot arise 

from shear-induced rotation in an unbounded 

fluid.   

If a particle is confined to a channel whose 

thickness is comparable with the particle 

length, the particle respond to the full 

imposed Poisseuille flow in channel, which 

can be characterized by a mean (gap averaged) 

velocity u.  This problem was considered in 

Ref. [4], for a front-back asymmetric but 

axisymmetrtic particle.  The interest in Ref. 

[4] was in a microswimmer but the principle 

of linear superposition implies that the 

current argument involves only the imposed 

flow and not the swimming induced motion.  

In this case, linearity and the maintenance of 

the unit magnitude of s yields: 

𝑠̇𝑖 = (𝛿𝑖𝑗 − 𝑠𝑖𝑠𝑗)𝑏𝑗, (S2) 

with  

𝑏𝑖 = 𝜆1𝑢𝑖 + 𝜆2𝑛𝑖(𝑠𝑗𝑢𝑗),  

where 𝜆1  and 𝜆2  can be functions of 𝒔 ∙ 𝒏 , 

where n is the unit vector normal to the 

surface, and we have used the fact that 𝒖 ∙

𝒏 = 0 since the surfaces are impermeable.  In 

Ref. [4], it is assumed that s is parallel to the 

surface as may occur if the length is much 

larger than the channel thickness and 

therefore 𝒔 ∙ 𝒏 = 0 , and 𝒔̇ ∙ 𝒏 = 0 .  This 

required 𝜆2 = 0  and 𝜆1 = −𝜈 , which must 

be independent of 𝒔 ∙ 𝒏. Thus, 

𝑠̇𝑖 = −ν(𝛿𝑖𝑗 − 𝑠𝑖𝑠𝑗)𝑢𝑗. (S3) 

Please note that we have taken an opposite 

sign to that appears in Ref. [4].  It is 

noteworthy that the rotation rate in (S3) 

unlike that in is an even function of s and (S3) 

can exhibit a stable fixed point in the 

upstream semi-circle and an unstable fixed 

point in the downstream semi-circle when 

>0.  While the above argument is based 

solely on linearity and symmetry, it implies 

that the hydrodynamic interaction of a 

swimmer with the wall makes a transition to 

upstream swimming possible. 

In the present experiments, the sperm length 

(about 5 m) is much smaller than the 

channel thickness (120 m).  The sperm are 

observed to swim close to the wall with an 

orientation that is nearly parallel to the wall.  

In this situation, the swimmer responds 

primarily to the local linear flow field near 

the wall, which is a simple shear flow.  While 

one could use (S3) to describe the present 

situation, relating the rotation rate to the 

velocity gradient near the wall has the 

important advantage that of allowing the 

result to apply to any channel with a thickness 

much larger than the swimmer length.  It also 

provides a clearer physical picture of the 

origin of the rotation. 

Thus, we consider a particle orientation 

vector, which satisfies (S2) to remain a unit 

vector. In the most general case, the linearity 

of Stokes flow, b must be linear in ∇𝒖, and 

can depend on the wall normal n and the 

particle orientation s.  Thus, b can be written 

as 

𝑏𝑖 = 𝜆1𝑛𝑗𝜕𝑗𝑢𝑖 + 𝜆2𝑠𝑗𝜕𝑗𝑢𝑖 + 𝜆3𝑠𝑖(𝜕𝑗𝑢𝑗) +

𝜆4𝑛𝑖𝑠𝑗(𝜕𝑗𝑢𝑘)𝑠𝑘 + 𝜆5𝑛𝑖𝑛𝑗(𝜕𝑗𝑢𝑘)𝑠𝑘, 

where 𝜆1, …, 𝜆5 are again functions of 𝒔 ∙ 𝒏. 

This equation can be simplified using two 

observations.  First, the no slip boundary 

condition on the wall, a Taylor series 

expansion for the fluid velocity field and the 

continuity equation together implies that the 

velocity gradient must be normal to the wall 

while the streamlines are locally parallel to 



3 
 

the wall.  Thus, the velocity gradient satisfies 

the constraint 

∇𝐮 = 𝐧𝐧 ∙ ∇𝐮 ∙ (𝐈 − 𝐧𝐧) 

Second, we observe the sperm orientation to 

be parallel to the wall and thus apply the 

constraint that 𝒔 and 𝒔̇ are perpendicular to 𝒏, 

which provides 𝒔 ∙ 𝒏 = 0  and 𝒔 ∙ 𝒏 = 0. 

Using these constraints, it can be shown that 

𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 = 0 , and 𝜆1  is now 

independent of 𝒔 ∙ 𝒏.   Replacing the 

parameter 𝜆1 with − 𝜈, we obtain 

𝑠̇𝑖 = −𝜈(𝛿𝑖𝑗 − 𝑠𝑖𝑠𝑗)𝑛𝑘𝜕𝑘𝑢𝑗 . (S4) 

This form has the advantage of highlighting 

the relevance of the wall shear rate to the 

upstream rotation.  It should be noted that 

while both Ref. [4]’s application and ours 

involve microswimmers, the rotation in Eq. 

(S3) or (S4) is induced solely by the imposed 

flow and a similar rotation would occur for a 

passive front-back asymmetric body.  For a 

front-back symmetric (non-polar) body, one 

would have the constraint that 𝒔̇ is invariant 

to a change of sign of s and this leads to a 

requirement that = 0 so that the flow 

induced rotation is absent for front-back 

symmetric bodies. 

Given that our swimmers consistently turn to 

the right in the absence of a flow, equation 

(S4) is modified as 

𝑠̇𝑖 = 𝜔𝜀𝑖𝑗𝑘𝑠𝑗𝑛𝑘 − 𝜈(𝛿𝑖𝑗

− 𝑠𝑖𝑠𝑗)𝑛𝑘

∂𝑢𝑗

∂𝑥𝑘
 

(1) 

where n is a normal unit vector perpendicular 

to the surface.  Here we have invoked the 

linear superposition of Stokes flow to 

superimpose the flow-induced rotation and 

the swimming induced rotation.  We consider 

s lying with the xy-plane in a Cartesian 

coordinate system with z perpendicular to the 

surface so that 

𝒔 = cos 𝜃 𝒙̂ + sin𝜃 𝒚̂, 

and ∇𝒖 = 𝐳̂𝒙̂𝛾 where  is the wall shear rate.  

Thus, 

𝑠̇𝑥 = −sin 𝜃
𝑑𝜃

𝑑𝑡
= 𝜔 sin𝜃 + 𝛾𝜈 sin2 𝜃, 

which yields  

𝑑𝜃

𝑑𝑡
= −𝜔 − 𝛾𝜈 sin𝜃. (2) 

  

A2. Calculation of the rotational 

parameter  from the hydrodynamic 

interaction of a simple model of the 

microswimmer with the wall 

In the previous subsection we used symmetry 

arguments and the linearity of Stokes flow to 

demonstrate that Eq. (2) describes the 

rotation of any axisymmetric swimmer 

without front-back symmetric which is 

interacting hydrodynamically with a wall in a 

shear flow.  In this section we will calculate 

the rotation rate for a specific simple model 

of a front-back asymmetric swimmer.  This 

calculation will provide a more direct 

physical picture of the forces and torques that 

lead to the rotational motion and will also 

give a crude estimate of the rotational 

parameter . 

To study the upstream alignment of a sperm 

cell in a shear flow we model the cell body as 

a spherical head of radius 𝑎 and the flagella 

as a cylindrical tail of radius 𝑟0 and length 2𝑙 
attached by rigid body constraint to the cell 

body. The gap-width between the sperm head 

and wall is ℎ and the sperm cell makes an 

angle 𝜃  with the flow axis ( 𝑥 ) and its 

projection on the vorticity-gradient plane 

makes an angle 𝜙 with the vorticity axis (𝑦) 
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(see SFig. 1). Thus the orientation of the 

sperm cell is denoted by   𝒔 =

(cos 𝜃 , sin 𝜃 cos𝜙, sin𝜃  sin𝜙). 

The sperm head has a lubrication interaction 

with the wall, while the flagellar tail modeled 

with slender-body theory (SBT) has a much 

weaker hydrodynamic reflection. As a result 

the mobility of the tail is larger and it is 

rotated behind the head resulting in upstream 

orientation. Using a lubrication-SBT 

composite analysis we will obtain the 

upstream orientation and calculate the 

rotation coefficient as a function of shear-rate 

(𝛾), 𝑙, 𝑎, ℎ and the aspect ratio of the tail (𝜅 =

𝑙/𝑟0). 

Under the lubrication approximation (ℎ/𝑎 ≪

1) the forces (𝐹𝑖
𝐻) and torques (𝐿𝑖

𝐻) on the 

sperm head are given by the following 

resistance matrix formulation,  

[
 
 
 
 
 
 
𝐹𝑥

𝐻

𝐹𝑦
𝐻

𝐹𝑧
𝐻

𝐿𝑥
𝐻

𝐿𝑦
𝐻

𝐿𝑧
𝐻 ]
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
   𝑅𝑥𝑥

𝐹𝑈 0

0 𝑅𝑦𝑦
𝐹𝑈

0 0
0 −𝑅𝑦𝑥

𝐹𝛺
𝑅𝑥𝑦

𝐹Ω     0

0       0

    0 0
    0    −𝑅𝑥𝑦

𝐿𝑈
𝑅𝑧𝑧

𝐹𝑈 0

0  𝑅𝑥𝑥
𝐿Ω    

0       0
0       0

𝑅𝑦𝑥
𝐿𝑈 0

0 0

0        0
0        0

𝑅𝑦𝑦
𝐿Ω      0

0   𝑅𝑧𝑧
𝐿Ω]

 
 
 
 
 
 

[
 
 
 
 
 
𝑈𝑥

𝑈𝑦

𝑈𝑧

Ω𝑥

Ω𝑦

Ω𝑧]
 
 
 
 
 

+ 𝛾

[
 
 
 
 
 
   𝑅𝑥𝑥

𝐹𝑆 𝑑
0
0
0

   𝑅𝑦𝑥
𝐿𝑆

0 ]
 
 
 
 
 

        

where ( 𝑈𝑖 , Ω𝑖 ) are the translational and 

angular velocities of the head respectively 

and 𝑑 = ℎ + 𝑎 is the separation of the centre 

of sperm head from the wall. The resistance 

matrix helps in calculating the forces and 

torques from various translational and 

rotational degrees of freedom [5]. Diagonal 

terms like 𝑅𝑥𝑥
𝐹𝑈 and 𝑅𝑧𝑧

𝐿Ω allow for finding the 

force in the 𝑥  direction for uniform 

translational motion along 𝑥  and 𝑧 -torque 

due to rotation along 𝑧 -axis. Off-diagonal 

terms account for coupling of translational 

and rotational degrees of freedom and arise 

purely due to hydrodynamic interactions with 

the wall - 𝑅𝑥𝑦
𝐹Ω  helps in calculating the drag 

along 𝑥-axis due to a rotation along 𝑦-axis. 

𝑅𝑦𝑥
𝐿𝑆  and 𝑅𝑥𝑥

𝐹𝑆  are yield the force and torque 

resulting directly from the imposed shear 

flow. The leading order form of the various 

resistivities (𝑅𝑥𝑥
𝐹𝑈, 𝑅𝑥𝑥

𝐿Ω, 𝑅𝑥𝑦
𝐹Ω, ⋯ ) are given as 

[6,7] 

𝑅𝑥𝑥
𝐹𝑈 = 𝑅𝑦𝑦

𝐹𝑈 = −6𝜋𝜇𝑎 [
8

15
log (

𝑎

ℎ
) + 0.96]         

𝑅𝑧𝑧
𝐹𝑈 = −

6𝜋𝜇𝑎2

ℎ
                                          

𝑅𝑥𝑥
𝐿Ω = 𝑅𝑦𝑦

𝐿Ω = −8𝜋𝜇𝑎3 [
2

5
log (

𝑎

ℎ
) + 0.38]  

𝑅𝑧𝑧
𝐿Ω = −8𝜋𝜇𝑎3 × 1.202                              

𝑅𝑥𝑦
𝐿𝑈 = 𝑅𝑦𝑥

𝐿𝑈 = 8𝜋𝜇𝑎2 [
1

10
log (

𝑎

ℎ
) − 0.19]  

𝑅𝑥𝑦
𝐹Ω = 𝑅𝑦𝑥

𝐹Ω = 6𝜋𝜇𝑎2 [
2

15
log (

𝑎

ℎ
) − 0.25] 

𝑅𝑥𝑥
𝐹𝑆 = 6𝜋𝜇𝑎 × 1.7005                                  

𝑅𝑦𝑥
𝐿𝑆 = 4𝜋𝜇𝑎3 × 0.944                                  

where 𝜇  is the fluid viscosity. The 

resistivities account for strong hydrodynamic 

interactions of the cell body with the wall and 

through a thin lubrication gap. The 

hydrodynamic interactions of the tail with the 

wall and the tail with the head are weaker by 

a factor of at least 1/lnand we ignore these 

interactions compared with the head-wall 

interactions; this approximation was used 

previously by Ref. [8] in a study of bacteria 

swimming near a wall. This approximation 

captures the basic physics of upstream 

rotation which relies on the strong lubrication 

interaction of the head with the wall which 
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allows the tail to pivot about the head while 

being swept downstream. 

The tail and head form a rigid body and hence 

the translational and angular velocities of the 

tail are ( 𝑈𝑖 − (𝑙 + 𝑎)𝜖𝑖𝑗𝑘Ω𝑗𝑠𝑘, Ω𝑖 ) in 

accordance with the rigid body constraint. 

From the leading order approximation of 

SBT, the force per unit length on the tail is 

given as in Ref. [9], 

𝑓𝑖 = −
4𝜋𝜇

log2𝜅
(𝑈𝑚

𝑇 + 𝜖𝑚𝑗𝑘Ω𝑗𝜁𝑠𝑘 −

𝑢𝑚
∞ (𝜁𝒔)) (𝛿𝑖𝑚 −

1

2
𝑠𝑖𝑠𝑚)  

where the ambient shear flow is 𝒖∞(𝜁𝒔) =

𝛾(𝑑 + 𝜁𝑠𝑧)𝒙̂,  with −𝑙 ≤ 𝜁 ≤ 𝑙  being the 

coordinate along the tail. As previously 

mentioned the translational velocity of the 

tail is 𝑈𝑚
𝑇 = 𝑈𝑚 − (𝑙 + 𝑎)𝜖𝑚𝑗𝑘Ω𝑗𝑠𝑘.  

The force and torque acting on the tail are, 

𝐹𝑖
𝑇 = ∫𝑓𝑖(𝜁)𝑑𝜁

𝑙

−𝑙

= −
4𝜋𝜇𝑙

log 2𝜅
(𝑈𝑚

𝑇

− 𝛾𝑑 𝑥)(2𝛿𝑖𝑚

− 𝑠𝑖𝑠𝑚) 

(S5) 

 

𝐿𝑖
𝑇 = ∫ 𝜖𝑖𝑗𝑘𝜁𝑠𝑗𝑓𝑘(𝜁)𝑑𝜁 = −

8𝜋𝜇𝑙3

3log2𝜅
[Ω𝑖 −

𝑙

−𝑙

𝑠𝑖Ω𝑚𝑠𝑚 + 𝛾𝑠𝑧(𝑠𝑦𝑧̂ − 𝑠𝑧𝑦̂)]  

For the sperm cell to be force-free and torque-

free we combine the lubrication analysis for 

the sperm head with the SBT calculation for 

the tail. We thus have 

𝐹𝑖
𝐻 + 𝐹𝑖

𝑇 = 0 

𝐿𝑖
𝐻 + (𝑙 + 𝑎)𝜖𝑖𝑗𝑘𝑠𝑗𝐹𝑖

𝐻 + 𝐿𝑖
𝑇 = 0 

where we have defined the torque relative to 

the center of the spherical head.  

We consider the sperm tail oriented parallel 

to the wall (𝜙 → 0 ⇒ 𝑠𝑧 → 0)  and thus at 

leading order we need to only consider torque 

balance in the 𝑧  direction to calculate the 

rotation rate from the equation 

𝐿3
𝐻 + 𝐿3

𝑇 + (𝑙 + 𝑎)(𝑠𝑦𝐹𝑥
𝑇 − 𝑠𝑥𝐹𝑦

𝑇)

= 0 
(S6) 

As   ℎ/𝑎 → 0 , 𝑅𝑥𝑥
𝐹𝑈, 𝑅𝑦𝑦

𝐹𝑈, 𝑅𝑥𝑦
𝐹Ω  and 𝑅𝑦𝑥

𝐹Ω 

diverges as 𝑂(log(𝑎/ℎ)) and thus 𝑈1, 𝑈2 →

0. Thus the forces acting on the sperm tail in 

the flow-vorticity plane, according to SBT 

(Eq. S5), would be independent of 𝑈𝑖  at 

leading order. We have, 

𝐹𝑥
𝑇 = −

4𝜋𝜇𝑙

log 2𝜅
[2(𝑙 + 𝑎)Ω𝑧𝑠𝑦

− 𝛾𝑎(2 − 𝑠𝑥
2)] 

(S7) 

𝐹𝑦
𝑇 = −

4𝜋𝜇𝑙

log 2𝜅
[−2(𝑙 + 𝑎)Ω𝑧𝑠𝑥

+ 𝛾𝑎𝑠𝑥𝑠𝑦] 

(S8) 

and substituting (S7) and (S8) in the torque-

free condition (S6) we obtain the rotation-

rate  

Ω𝑧

=
𝑎𝑙(𝑙 + 𝑎)

1.202 𝑎3 log 2𝜅 + 𝑙3/3 + 𝑙(𝑙 + 𝑎)2
𝛾 sin𝜃 

Since 𝑑𝑠𝑦/𝑑𝑡 = Ω𝑧𝑠𝑥, 

𝑑𝜃

𝑑𝑡
= 𝜈𝛾 sin 𝜃       

⇒ 𝜃(𝑡) = 2 cot−1[exp(𝑐1 − 𝜈𝛾𝑡)]         

where 

                                                          

𝜈 =
𝑎𝑙(𝑙 + 𝑎)

1.202 𝑎3 log 2𝜅 + 𝑙3/3 + 𝑙(𝑙 + 𝑎)2
 

is the rotation coefficient. 

Thus for long times, 𝜃(𝑡 → ∞) → 𝜋 

denoting upstream alignment of the sperm 

cell. To obtain a characteristic value of the 

rotation coefficient we need to consider 

realistic values for 𝑙, 𝑎 and 𝜅. The bull sperm 

studied in experiments has a paddle-shape 
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head, with approximate dimensions of 10 𝜇𝑚 

long, 5 𝜇𝑚  wide, and roughly 1 𝜇𝑚  thick.  

The head is directly connected to a single 

flagellum that is about 50 - 60 𝜇𝑚 long and 

tapers from 1 𝜇𝑚  in diameter at the 

connection to 200 𝑛𝑚  at the tail end. We 

consider the paddle-shaped head to be a 

triaxial ellipsoid and we choose the spherical 

head in the theoretical model to have the 

same surface area so that they have 

comparable resistance - a 5.16 𝜇𝑚 spherical 

head. Thus for a 50 − 60 𝜇𝑚  tail of 1 𝜇𝑚 

cross-section size the rotation coefficient 

obtained theoretically varies as   𝜈 ≈

0.0731 − 0.0616 . The experimentally 

observed value of 𝜈  is  0.118 ± 0.005 . 

Without using any fitting parameters we have 

thus obtained comparable values for the 

rotation coefficient by using a very simple 

model for sperm cell. Our model captures the 

essential physics necessary for upstream 

alignment –the cell body having a strong 

lubrication interaction with the wall and the 

flagella pivoting about the head due to the 

imposed shear flow and being rotated 

downstream. 

 

A3. Solving the Fokker-Planck 

equation 

Fokker Planck equation provides us with  

𝜕𝑝

𝜕𝑡
= −

𝜕

𝜕𝜃
(𝜃̇𝑝) +

𝜕

𝜕𝜃
𝐷𝑟

𝜕𝑝

𝜕𝜃
, (S9) 

where 𝑝(𝜃) is the probability distribution of 

the sperm head orientation 𝜃 , 𝐷𝑟  is the 

rotational diffusion coefficient of the 

microswimmer, and 𝜃̇  is described in 

equation (2).  The relative contribution of the 

circling motion and the angular fluctuation to 

sperm swimming dynamics is determined by 

a Péclet number, Pe = 𝜔/𝐷𝑟 .  In our 

experimental situation, the measured Pe = 3.1.   

At steady state ∂p/ ∂t = 0 , equation (S9) 

provides 

𝜕

𝜕𝜃
(𝐷𝑟

𝜕𝑝

𝜕𝜃
− 𝜃̇𝑝) = 0, 

therefore  

𝐷𝑟

𝑑𝑝

𝑑𝜃
− (−𝜔 − 𝛾𝜈 sin𝜃)𝑝 = 𝐶. (S10) 

Equation (S5) is a first-order differential 

equation with integrating factor  

𝜇 = 𝑒
∫

1
𝐷𝑟

(𝜔+𝛾𝜈 sin𝜃)𝑑𝜃
, 

and   

𝑝(𝜃) =
∫𝜇

𝐶
𝐷𝑟

𝑑𝜃′

𝜇

= 𝑒
−∫

1
𝐷𝑟

(𝜔+𝛾𝜈sin𝜃′)𝑑𝜃′𝜃

0 [∫ 𝑒
∫

1
𝐷𝑟

(𝜔+𝛾𝜈sin𝜃")𝑑𝜃"
𝜃′

0 𝐶1𝑑𝜃′
𝜃

0

+ 𝐶2]. 

(S11) 

We next numerically integrate  

𝐼2 = 𝑒
−∫

1
𝐷𝑟

(𝜔+𝛾𝜈sin 𝜃′)𝑑𝜃′𝜃

0  

and  

𝐼1

= 𝑒
−∫

1
𝐷𝑟

(𝜔+𝛾𝜈sin𝜃′)𝑑𝜃′
𝜃

0 [∫ 𝑒
∫

1
𝐷𝑟

(𝜔+𝛾𝜈sin 𝜃")𝑑𝜃"
𝜃′
0 𝑑𝜃′

𝜃

0

] 

separately, with  step size is 0.01 rad, as 

𝑝(𝜃) = 𝐶1𝐼1 + 𝐶2𝐼2.  The ratio of C1/C2 was 

next determined by the periodic boundary 

condition, p(0) = p(2), and then the 

magnitude of the constants determined by the 

normalization ∫ 𝑝(𝜃)𝑑𝜃
2𝜋

0
= 1. 

 

A4. Langevin simulation 

In Langevin simulation, the dynamics 

equation (2) can be written as 
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𝑑𝜃

𝑑𝑡
= (−𝜔 − 𝛾𝜈 sin𝜃) + 𝜉′, (S12) 

where ’ is a random number that 

corresponds to the rotational diffusivity.  To 

solve the stochastic dynamic equation (S12), 

the time evolution of  follows 

𝜃𝑖+1 − 𝜃𝑖 = −𝜔Δ𝑡

− 𝛾𝜈 sin𝜃𝑖Δ𝑡

+ 𝜉, 

(S13) 

 where  is a random number chosen between 

[-0.088942,0.088942].  This range is 

consistent with √2𝐷𝑟Δ𝑡𝑋 , where X is a 

random number with a unit standard 

deviation.  The initial t=0 was chosen 

randomly between [0,2].  The range of  was 

confirmed by diffusion coefficient calculated 

from 400 traces of random walks 𝛥𝜃 = 𝜉.  t 
time step is 0.0112 s.  In SFig. 5, it can be 

shown that the Langevin simulation using 

this  range yields results comparable to 

Fokker-Planck calculation.  400 traces were 

simulated using equation (S13) for 1 min, and 

the last  were used to calculate 〈𝑠𝑥〉. 

To understand the discrepancy of the 

predicted transition curve from Fokker-

Planck equation and the experimental value, 

we took into account the wiggling motion of 

the sperm due to the beating of the flagellum 

using the Laugevin model.  The wiggling of 

the sperm head is measured with an 

amplitude A = 0.45 rad and frequency f = 18.6 

Hz.  We then used a sinusoidal function to 

approximate the wiggling, therefore  

𝑑𝜃

𝑑𝑡
= (−𝜔 − 𝛾𝜈 sin 𝜃) + 2𝜋𝑓𝐴 cos 2𝜋𝑓𝑡. 

For each step t,  

𝜃𝑖+1 − 𝜃𝑖

= (−𝜔 − 𝛾𝜈 sin 𝜃)Δ𝑡

+ 2𝜋𝑓𝐴 cos 2𝜋𝑓𝑡Δ𝑡 + 𝜉, 

(S14) 

where  is the same random number 

uniformly chosen between [-

0.088942,0.088942], and the initial condition 

t=0 was randomly chosen between [0, 2].  

The solution is shown as dashed line in Fig. 

4(a). 

 

B. Discussion 

B1. Brief summary of the comparison 

of our work with that of Kantsler et al. 

(2014) (Ref. [3] here or Ref. [7] in the 

main text) 

The experiments and theory of Ref. [3] like 

those in our Letter show that sperm can swim 

upstream in an imposed flow field.  However, 

there are two important insights that our work 

provides that are not elucidated in Ref. [3].  

First, by considering the competition 

between the circling swimming motion of the 

cells and the rotation induced by the flow, we 

have identified experimentally and 

theoretically a critical shear rate needed for 

upstream swimming to occur. The theory of 

Ref. [3] considered the rotational swimming 

to be random and did not lead to a transition 

from circling to directed upstream swimming.  

Second, the physical mechanism for the flow-

induced rotation of the cells was not clearly 

explained in Ref. [3] and this omission made 

it unclear how general the result would be.  In 

the text of the Ref. [3], this rotation is 

discussed in terms of the collision of a cell 

with the wall.  However, in the supplemental 

materials, it is noted that such a collision for 

a simple model of a swimmer that rotates in 

the Jeffery rotation for an axisymmetric 

particle in the absence of a wall does not lead 

to a net rotation toward the upstream 

direction.  The authors then developed in the 

supplemental material a detailed model 

considered a spiral flagellum with the origin 

of the spiral constrained to be at a fixed point 

on the wall.  No physical mechanism was 

mentioned for the constraint placed on the 

flagellum’s origin.  The resultant calculation 

leads to a rotation rate of the form of Eq. (2) 

in the limit of a tight spiral where chiral 

effects are small.  Our derivations clarify the 

critical role of the cell-wall hydrodynamic 
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interaction in creating upstream rotation.  It 

also demonstrates that the hydrodynamically 

induced rotation occurs for any front-back 

asymmetric body interacting 

hydrodynamically with a wall and thereby 

shows that upstream swimming would be a 

general phenomenon. 

In addition, the hydrodynamic bifurcation 

theory proposed here (and the resulting 

scaling law and onset point) is important for 

the following two reasons: (i) it provides a 

simple and robust mechanism for explaining 

upstream swimming behavior. Adler 

equation proposed here links the problem of 

upstream swimmer to a large class of 

problem. All front-back asymmetric 

microswimmers that swim near surface and 

in circles will swim upstream. (ii) From 

biological side, it elucidates the importance 

of criticality in regulating biological function. 

Previously, it has been suggested that 

biological systems are fine-tuned by 

evolution to operate near critical transition 

points in order to optimize sensitivity to 

changes in environmental stimuli [10]. 

However, this is the first time that fluid flow 

is suggested as a driving force to regulate 

micro-swimmers at a critical point.    

 

By reading Ref. [3] carefully, using data from 

1 mPa s medium and human sperm data for 

example, we found that their lowest flow 

shear rate is 1.07 ± 0.06 1/s.   Further, in 1 

mPa s medium, human sperm have mean 

radius of curvature of 1790 ± 415 m and 

average speed of 54 ± 3 m/s, which provide 

 = 0.030 ± 0.007 rad/s.  According to our 

theory, assuming the two share similar , this 

provides 𝛾𝑐  = 0.24 ±  0.06 1/s, which is 

significantly smaller than the minimal flow 

shear (1.07 1/s) they applied in the 1 mPa s 

medium.  Since they did not provide 

curvature data for their bull sperm, we are not 

able to calculate the corresponding critical 

shear for their experiment. 

 

In low viscosity fluid, the right hand chiral 

trajectories observed in our work and those of 

Ref. [3] are similar.  In high viscosity fluid, 

Ref. [3] reported a mean left hand chiral 

trajectory, which is consistent with our 

observation as well as current literature [11]. 

In this case, sperm uses a very different 

swimming strategy, they swim via the planar 

beating of the flagellum (instead of self-

rolling as in the case of low viscosity fluid) 

[11,12].  It has been established that a sperm 

sample consists two subpopulations with 

opposite handedness [12-15].  The right hand 

chiral swimmers are found to be more motile 

in low viscous medium, and the left hand 

ones are more motile in high viscous medium 

[For detailed discussions, please see  Ref. 

[12].  The exact mechanism for these two 

different motility patterns remains unknown. 

This is a very interesting question, and it is an 

ongoing research project of our lab. 

 

B2. An orientation disorder-to-order 

transition 

In addition to the emergence of sperm 

upstream swimming, there is also an 

orientational disorder-to-order transition, in 

which the orientation of the sperm head 

changes from random to alignment with 

respect to each other.  Here we define an 

order parameter, 𝑠𝑎 , which is the absolute 

value of 〈𝒔〉 , for the measure of the 

orientation ‘orderliness’ of the swimming 

pattern.  𝑠𝑎 = 0  when sperm heads are 

orientated randomly; and  𝑠𝑎 = 1  when all 

sperm heads are pointing to one direction, 

regardless of the swimming  direction with 

respect to the flow.  A similar order 

parameter has been defined in a work on 

phase transition in a system of self-driven 

particles [16], and serves as a nonequilibrium 

analogue of the ferromagnetic (XY) model in 

equilibrium system [17]. A power law of 

close to 0.5 is also found to be true for 𝑠𝑎 
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versus 𝛾 − 𝛾𝑐 (see SFig. 7).  Please note that 

the angle of the order phase is not 

spontaneously chosen, but follows 0 as 

described in SFig. 7. 

 

C. Materials and Methods 

C1. Microfluidic device fabrication 

The microfluidic device was fabricated using 

standard soft lithography technique. The 

silicon master was first made using a deep 

silicon etching process, and the final 

microfluidic device was replicated from the 

silicon master using the PDMS stamping 

technique. 

The fabrication of the negative silicon master 

mould was done at Cornell NanoScale 

Science & Technology Facility (CNF).  Deep 

silicon etching steps were masked by thick 

photoresist to achieve the 120 μm deep main 

channel.  The detailed procedures were as 

follows:  photoresist (Megaposit SPR2 20-

7.0, Shipley, Marlborough, MA, USA) was 

then spun onto a 100 mm silicon wafer 

(SEMI standard, SSP, 0.5 mm thick) (2500 

rpm for 40 s), soft baked at 115 °C for one 

min, and then exposed (1.05 J/cm2) on a 

contact aligner (Karl Suss MA/BA 6 aligner, 

Suss MicroTec, Garching, Germany, soft 

contact mode).  The resist was developed 90 

min after the exposure.  After developing the 

resist (60 s AZ 726 MIF development, 

HamaTech-Steag Wafer Processor, Santa 

Clara, CA, USA), the wafer was then etched 

by a Botsch deep silicon etching process 

(Unaxis 770 Deep Silicon Etcher, Oerlikon, 

Pfäffikon, Switzerland) for 120 m.  The 

resist was removed by two steps, first 

immersing the wafer in a hot bath (Resist Hot 

Strip Bath, with propylene glycol, NMP, 

TMAH heated at 60°C) for 90 min, followed 

by a 90 s oxygen plasma ashing (AURA 1000 

Resist Strip, GaSonics, San Jose, CA, USA), 

since some resist might have been hardened 

in the DRIE process.  After the thorough 

stripping processes, the wafer was next 

treated with (1H,1H,2H,2H-Perfluorooctyl) 

Trichlorosilane, or FOTS, using a single 

layer vapour deposition method (Molecular 

Vapor Deposition, Applied Microstructures, 

San Jose, CA, USA) to ensure the easy 

release of PDMS from the silicon master. 

We next prepared the PDMS piece, and 

bonded it onto a PDMS coated glass slide.  

9:1 base to curing agent PDMS (SYLGARD 

184 Silicone Elastomer Kit, Dow Corning, 

Midland, MI, USA) procedures were used for 

making a PDMS replica from the silicon 

master, and a PDMS coated glass slide from 

a flat glass surface.  After curing, one 2 mm 

hole and one 1 mm hole were punched using 

biopsy punches (Miltex Inc, York, PA, USA), 

in order to provide access to the channels.  

The PDMS piece and the PDMS coated glass 

slide were next treated with oxygen plasma 

for one min on a high power setting using a 

plasma cleaner (Harrick Plasma Cleaner 

PDC-001, Harrick Plasma, Ithaca, NY, USA).  

The PDMS device was next sandwiched 

between a Plexiglas manifold and the PDMS 

coated glass slide for 10 min to ensure the 

quality of bonding, with the PDMS coated 

side touching the structured side of the 

PDMS device.  The bonded device was then 

released from the Plexiglas manifold, and 

tubing (Weico Wire & Cable, ETT-24, 

Edgewood, NY, USA) was inserted into the 

1 mm hole to provide a flow.  The assembly 

was next wetted with de-ionized water, and 

autoclaved immersed in DI water to ensure 

sterile conditions, and remove air bubbles. 

 

C2. Flow control and measurement 
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Fluid flows within the microfluidic channels 

were generated by a syringe pump (KDS-230, 

KD Scientific, Holliston, MA, USA), and 1 

mL syringes (BD, Franklin Lakes, NJ, USA).  

The flows were measured using a particle 

tracking method with 0.51 μm diameter 

fluorescent beads (Dragon Green, Bangs 

Laboratories, Fishers, IN, USA).  Images of 

the fluorescent beads were taken with short 

exposure time (10 ms) at 30 frames/s with 

flow rates ranging from 0-5 μL/min.  We then 

tracked each bead’s location over time to 

obtain the flow speeds.   

Since the spatial resolution of particle 

tracking is limited by the optical resolution of 

the microscope, especially in the z direction, 

we used COMSOL Multiphysics 4.3 to 

obtain finer structures of the flow profiles, 

and compared with the experimental 

measurements.  The Navier-Stokes Equation 

was solved to calculate the flow field using a 

3D laminar flow model.   

 

C3. Imaging and data analysis 

Sperm images were taken by a NEO sCMOS 

camera (DC-152Q-C00-FI, Andor 

Technology, Belfast, UK) in conjunction 

with an inverted phase contrast microscope 

(Axiovert 35, Carl Zeiss Microscopy, 

Thornwood, NY, USA) with a 10X objective. 

The images were recorded using NIS 

Elements software (Nikon Instruments, Inc., 

Melville, NY, USA).  For motility and 

orientation analysis, the sperm were tracked 

using ImageJ.  A “Manual Cell Tracking” 

add-on was used for tracking, and the 

trajectories were analysed using GraphPad 

Prism and an in house MATLAB program.  

Lines were drawn from tails to heads for the 

orientation analysis, and the angles were 

measured by ImageJ.  To avoid over 

sampling the same cells, images were 

analysed with 3 s intervals, and all cells in the 

given frame were analysed until the total 

count exceeds 400.  

The swimming speed of sperm was computed 

using the displacement of the sperm between 

consecutive images (sampled at 8.17 Hz) and 

divided by time.  

 

C4. Reagents and media 

Chemicals used in this segment were 

purchased from Sigma-Aldrich unless 

otherwise noted.  Tyrode Albumin Lactate 

Pyruvate (TALP) [18], a modified Tyrode 

balanced salt solution, was used as sperm 

medium. TALP consisted of 99 mM NaCl, 

3.1 mM KCl, 25 mM NaHCO3, 0.39 mM 

NaH2PO4, 10 mM HEPES free acid, 2 mM 

CaCl2 , 1.1 mM MgCl2, 25.4 mM sodium 

lactate, 0.11 mg/mL sodium pyruvate, 5 

μg/mL gentamicin, and 6 mg/mL bovine 

serum albumin (Fraction V; Calbiochem, La 

Jolla, CA, USA), with a pH of 7.4 and 300 

mOsm/kg.  TALP was equilibrated in a 38.5 

°C incubator with 5% CO2 in humidified air 

before use. 

 

C5. Bull sperm sample preparation 

Semen samples frozen in plastic straws were 

kindly provided by Genex Cooperative, Inc. 

(Ithaca, NY, USA).  The straws had been 

diluted in egg yolk extender and frozen 

according to the standard procedures 

followed at Genex Cooperative, Inc., which 

are described in Ref. [19] Procedures to 

prepare the sperm from the frozen samples 

are described in Ref. [20] Briefly, the straws 

were first thawed in a 37°C water bath, and 

then seminal plasma, extender, and dead 
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sperm were removed from live sperm by 

density gradient centrifugation (300 x g for 

10 min) through two layers (40-80%) of 

BoviPure diluted in BoviDilute (Spectrum 

Technologies, Inc., Healdsburg, CA, USA).  

The sperm pellet was then washed in 3 mL 

TALP (300 x g, 3 min).  Sperm were 

resuspended in 20 μL of TALP, and kept in 

an incubator at 38.5 °C under 5% CO2 in 

humidified air until used.  Sperm 

concentration was determined using an 

improved Neubauer hemacytometer and 

adjusted to 108 cells/mL.   

 

C6. Experimental setup 

Prior to running the experiments, the devices 

were flushed with TALP medium to remove 

the water in the system.  The devices were 

then submerged under TALP, and 

equilibrated in a 38.5 °C incubator with 5% 

CO2 in humidified air overnight.  During the 

experiments, the microfluidic devices were 

kept at 38.5 °C by a temperature-controlled 

thermal plate (H401-T-BL-LOG, OkoLab, 

Ottaviano, NA, Italy) and heated stage (TRZ 

3700, Carl Zeiss).  Sperm suspensions were 

seeded through the 2 mm hole on the device, 

and sperm were allowed to swim in with no 

flow applied. A sperm concentration suitable 

for the experiments was established in the 

centre area within 3-5 min.  Next, different 

flow rates were applied in the experiments, 

and we compared sperm behaviours on flat 

surfaces with behaviours in the microgrooves.  

We waited 1 min before the video acquisition 

to ensure the stabilization of the flow.  A 

typical experiment lasted 1.5-2 hr. 

 

C7. Measurements of circling 

frequency  and rotational diffusion 

coefficient Dr 

The circling angular frequency 𝜔  and the 

rotational diffusion coefficient 𝐷𝑟  used to 

solve equation (S9 and S12) are determined 

by the experiments as shown in SFig. 4.  In 

SFig. 4(a)-(c), we have 50 traces of (t) - (0) 

versus time at different flow rates.  Clearly, 

sperm orientation display a random 

fluctuation superimposed on a CW circling 

motion.  We therefore fitted the angular mean 

squared displacement (MSD) to 𝜔2𝑡2 +

2𝐷𝑟𝑡 .  The fitted parameters provide the 

values of the rotational diffusion coefficient 

𝐷𝑟 and sperm circling angular frequency  as 

shown in SFigs. 4 (e) and (f).  The sperm 

rotational diffusion coefficient remain nearly 

constant for all the flow rates tested.  

However, the sperm circling frequency 

dropped significantly at the onset of upstream 

swimming.  For the theoretical analysis, Dr 

and  were taken from the no flow 

measurements. 

 

C8. Measurements of wiggling 

frequency f and amplitude A 

The wiggling motion of the sperm was 

characterized using video taken at 200 FPS.  

The number of frames of each period of 

wiggling was recorded, and then converted to 

frequency.  The amplitude was measured as 

the difference between the maximum and 

minimum angle  within one period.  Results 

are shown in SFig. 6. 

 

D. Movies 

SMovie 1 Sperm motility with a CCW self-

rotation.  Sperm roll in a CCW direction 
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when viewed from the front.  Video was 

recorded at 200 FPS, and replayed at 10 FPS.  

Scale bar: 20 m. 

SMovie 2 Sperm swim in circular traject-

ories when there was no flow. Video was 

recorded at 7.12 FPS, and replayed at 7 FPS.  

Scale bar: 100 m. 

SMovie 3 Sperm hits a side wall and stays 

along the side wall. Video was recorded at 

100 FPS, and replayed at 10 FPS.  Scale bar: 

20 m. 

SMovie 4 Sperm swim along a side wall. 

Video was recorded at 200 FPS, and replayed 

at 10 FPS.  Scale bar: 20 m. 

SMovie 5 Sperm swim in linear trajectories 

when their orientations were locked by an 

above critical flow ( 6.4   1/s) toward the 

left.  When their orientations were not at the 

preferred orientations, they were reoriented 

into the preferred orientation.  Video was 

recorded at 7.12 FPS, and replayed at 7 FPS.  

Scale bar: 100 m. 

 

E. Supplemental Figures 

 

SFIG. 1 Schematic of the theoretical model for upstream swimming of sperm cell. 

 

 

SFIG. 2 Determination of cq .  (a) 0  only 

emerges when cq q .  (b) cq  is determined 

by linear fit of 01/ sin .  

 

 

 

SFIG. 3 Sperm trajectories exhibit similar 

curvatures under a flow that has a shear rate 
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less than the critical shear rate.  Scale bar: 

100 m. 

 

SFIG. 4 Circling sperm with rotational diffusion.  (a)-(c) Time evolution of sperm swimming 

orientation 𝜃(𝑡) − 𝜃(0)  in the absence of a  flow (a), below critical flow rate (b), and above critical 

flow rate (c). 50 sperm tracks are depicted here.  (d)-(f) Angular mean squared displacements 

〈[𝜃(𝑡) − 𝜃(0)]2〉 versus time at three flow rates. Solid lines are fits to 𝜔2𝑡2 + 2𝐷𝑟𝑡, where 𝜔 is 

the sperm circling frequency and 𝐷𝑟 is the rotational diffusivity coefficient.  The fitted 𝐷𝑟 is shown 

in (e) and 𝜔 in (f) for various flow rates.  𝜔 = 0.36 ± 0.01 rad/s at no flow. 
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SFIG. 5 Validation of  in the Langevin model.  (a) Angular mean squared displacement (MSD) 

of a random walk 𝛥𝜃 = 𝜉  yields a diffusion coefficient of 0.122, similar to the experimentally 

measured value of 0.120.  (b)-(c) For both 〈𝑠𝑥〉 (b) and sa (c) the Langevin simulations with A = 0 

reproduced the results from solving Fokker-Planck model. 

 

 

 

 

SFIG. 6 Measurements of the wiggling 

motion of sperm migration.  (a) Tracking 

high frame rate videos of sperm movement 

shows the wiggling motion.  The videos were 

recorded and tracked at 200 FPS, and all 

tracks shown are 0.35 s long.  Scale bar: 20 

m.  (b)-(c) The frequency of the wiggling is 

found to be 18.6 ± 0.5 Hz, and the amplitude 

0.45 ± 0.02 rad.  Measurements taken from 

200 FPS videos. 

 

SFIG. 7 An orientation disorder-order transition.  (a) Experimentally measured 𝑠𝑎 = ‖〈𝒔〉‖ also 

shows significant increase after an onset.  (b) sa also scales with c as a power law with an 

exponent 0.51 ± 0.03.  (c) Another way to see the emergence of the overall order in orientation is 

the sharper Gaussian curves seen in SFig. 2.  Variance, or the standard deviation measured from 

the Gaussian fits, decreases as  increases, resulting in increasing overall orderliness at higher flow. 
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