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Supplementary Figure 1. Thermodynamical processes can
be used to physically implement abstract logical processes.
a. An isothermal compression implements the logical process
corresponding to randomizing the position of the particles,
within half the original volume. b. In this logical process, the
X positions of the particles are mapped to half their value.
This can be implemented by introducing many separators,
resolving the position of the particles to a good enough pre-
cision, and then performing isothermal compression of each
slice of gas. This procedure has same optimal work cost as
the previous one, even though the logical processes are differ-
ent. c. A single particle gas can be used to model an and
gate. The particle is supposed to be brought in output region
A if it was originally in regions I, II or III, and to region B
otherwise. The work cost fluctuates because of the proba-
bilistic nature of the input state. d. If the probabilities that
the particle initially resides within the different regions are
not equal, the same amount of work as in the previous case
is needed. However, if only the correct output state is to be
reproduced, less work is required in some situations.

a. b.

Supplementary Figure 2. Examples of large, non-typical
distributions. a. The probability distribution (given by the
spectrum of the state) of a classical system of one random
qubit, along with n other qubits that are all 0 if the first
qubit is 0, or uniformly random otherwise. b. Two different
operations on this system may have the same input and out-
put state, yet their work cost may differ arbitrarily. The first
operation copies its input to its output (identity map), which
costs no work. The second destroys the input and reproduces
a fresh system at the output.

UNITARY

a.

b.

Supplementary Figure 3. a. Lambda-Majorization cor-
responds to absorbing a certain amount of randomness from
an ancilla during a unitary operation. The system X starts
in state σ, and the ancilla A in a state with λ1 fully mixed
qubits with the remaining qubits pure. The goal is to devise
a global unitary that will bring the system X to the state
ρ, while leaving the least possible number λ2 of fully mixed
qubits in A. The difference λ = λ1 − λ2, is the work ex-
tracted by the process; if the value is negative, it corresponds
to a work cost. b. Our main result gives a fundamental lower
bound on the work cost W of a process transforming a state
σX (purified by a fictitious |σ〉XR) into a new state ρX′R ob-
tained by applying a process EX→X . We optimize the work
cost of lambda-majorization operations that perform the pro-
cess E . The lower bound to the work cost is then given by
the entropy of the information E that the process E has to
discard (which purifies the state ρX′R), as measured by the
Rényi-zero conditional entropy H0 (E|X ′)ρ.
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SUPPLEMENTARY NOTE 1 – MOTIVATION.
RELATION OF OUR RESULT TO PREVIOUS

WORK.

The relation between thermodynamics and informa-
tion, and in particular between the statistical Gibbs en-
tropy and the information-theoretic entropy has been ex-
tensively studied from various perspectives. We give a
short overview in this section; for a rather comprehen-
sive discussion we suggest Ref. [1].

The fundamental question was raised by Maxwell in
the 19th century, who imagined a perpetuum mobile on
a gas divided into two chambers, whose net effect was
the reduction of entropy of an isolated system: a small
being could have knowledge of the microscopic degrees of
freedom of the gas and operate a trap door in the split-
ting wall, which he could use to filter the cold molecules
from the hot molecules. Szilard [2] realized that the cru-
cial part of the problem was that the demon accessed
microscopic degrees of freedom, which are not accessi-
ble normally in thermodynamics. He devised a thought
experiment, the Szilard box (see main text), which illus-
trated the reversible conversion of kT ln 2 work from or
into well-defined accessible information. This suggested
that the demon had to perform work to compensate for
the entropy decrease of the gas. Scientists at the time
were then led to believing that the measurement itself
was a process that had to cost work, and some thought
models were developed [3, 4]. It was Landauer in 1961 [5]
who first associated work cost to the logical irreversibil-
ity of an operation, and who stated that the erasure of
1 bit of information had to cost kT ln 2 work, and stud-
ied in particular the example of a particle in a double-V
shaped potential [5, 6]. Bennett showed that computa-
tions can be made completely reversible and devised an
explicit measurement apparatus which required no work.
On the other hand, resetting the demon’s memory back
to its original state does cost work, effectively exorcising
Maxwell’s demon [7–11]. Landauer’s principle has been
criticized [12, 13], but became widely accepted as alter-
native proofs were proposed [14, 15] (cf. also [16]) and
its conceptual importance clarified [9]. Various physical
computational models were explored [17–20], while gen-
eral considerations relating information and physics were
discussed [21–24]. These efforts were lead in parallel to
Jaynes showing the relevance of information theory for
statistical mechanics and thermodynamics [25–28].

With the development of quantum information in the
last decades, importance was given to generalizing Lan-
dauer’s principle to the quantum regime [29–34], result-
ing in replacing the Gibbs, or Shannon, entropy with the
quantum von Neumann entropy as relevant measure of
information-theoretic entropy. These studies were moti-
vated by the important technological advances making it
possible to construct microscopic thermodevices [35–43].
Efforts were also undertaken to understand the laws of
thermodynamics from an information-theoretic point of
view [44–50].

While most information-theoretic approaches had
studied averages over many independent repetitions of
the same experiment, known as the i.i.d. regime, some ef-
fort was made to focus on single instances of information-
theoretic tasks [51], where the natural entropy measures
to consider are the smooth entropies [51–53]. In this
regime, information erasure is also characterized using
the smooth entropy framework [54–59].

The frameworks that have been considered for the
study of the thermodynamics of information processing
are extremely varying. While some studies have focused
on explicit construction of physical systems, such as Szi-
lard boxes [2, 55, 59], others have considered for example
systems described by general Hamiltonians that are inter-
acting, or for which we allow the modification of individ-
ual levels [14, 30, 46, 54, 56, 60–63]. Another very promis-
ing approach, from which the framework in this paper is
largely inspired, is based on a resource theory of thermal
operations, where the Gibbs states are for free [33, 57, 64–
66]. The two approaches are equivalent [65].

Our result adds to the effort of relating information
theory to thermodynamics, in the form of a general for-
mula for the minimal work requirement of a logical pro-
cess. The logical process can be any quantum physical
evolution. This result may be seen as an information-
theoretic result, which expresses the minimal size of an
ancillary system needed to store the information dis-
carded by the logical process, with a natural direct ap-
plication to thermodynamics.

As a special case, our result allows us to study the
work cost of quantum measurements. We start by not-
ing that in the literature discussed above there is a slight
ambiguity as to what a measurement is exactly, and, in
particular, whether the memory register of the apparatus
starts in a well-defined pure state or first needs initializa-
tion. If we include the memory initialization process, the
measurement does cost work, whereas with a pure mem-
ory, the act of transferring information to the memory
costs no work. This fact was also emphasized by Sagawa
and Ueda [60, 67, 68], cf. also [69].

SUPPLEMENTARY NOTE 2 – SOME INITIAL
REMARKS AND CLARIFICATIONS.

We wish to emphasize that in this entire work, and
unless otherwise stated, by “process” we mean to denote
a logical process, and not a thermodynamical process.
Thermodynamical processes will come to play via the
operations allowed by our framework.

Logical processes, or computations, are an abstract
mathematical mapping of input states to output states.
For example, and and gate maps logical states 00, 01
and 10 to the logical state 0 and 11 to the logical state 1.
Logical processes are defined completely independently of
their physical implementation, in the same spirit of Shan-
non’s abstraction of the unit of information. In the most
general case, a logical process is specified by a completely
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positive, trace-preserving map E .

On the other hand, the logical information has to be
stored on a physical system, and any logical operations
have to be implemented through an appropriate time evo-
lution of the physical system in interaction with a ther-
mal bath and some control system(s). The specification
of a logical process E contains no information about how
much work was actually used to perform it—different
strategies, different thermodynamical process or different
levels of noise, losses or friction might cause the physical
procedure use up very different amounts of work.

However, there is a fundamental limit on how much
work will be required for the implementation of a logi-
cal process, or one could build a thermodynamic cycle
with net work gain. In usual thermodynamics, this can
simply be calculated as the difference in free energies be-
tween the final state and the initial state. In other words,
the free energy, a state function, acts as a potential from
which one can derive the minimal amount of work one
needs in order to perform a transition from one thermo-
dynamic state to another.

We derive the fundamental work requirement of imple-
menting a logical process on the microscopic level. This
is again the work cost of the best possible thermodynamic
process that succeeds in implementing the given logical
process. As mentioned in the main text, one of our main
conclusions is that this minimal work requirement can
no longer be given by a state function. In other words,
it is not possible to define a “generalized free energy”, a
state function which would have the property of giving
the minimal work requirement of a process as a difference
between initial and final states of the computation. This
is also in line with the conclusions of Lieb and Yngva-
son [70] as well as Horodecki et al . [57].

We wish to draw the attention of the reader to the
fact that our conclusions have nothing to do with the
statement that thermodynamic work itself is not a state
function. Indeed, in standard thermodynamics and as
mentioned above, the minimal work requirement for go-
ing from one state to another is still given by a state
function, namely the free energy.

In order to further clarify the relation between logical
and thermodynamical processes, consider an ideal gas of
N particles in a box of volume 2V , at temperature T .
Let’s consider bringing this gas to a new state with half
the volume, given by the parameters (T, V,N) (see Sup-
plementary Figure 1). The specification of a logical pro-
cess goes beyond specifying the input and output states:
indeed, one can require for example that the position of
each particle be completely randomized at the end of the
process (Supplementary Figure 1a), with no correlations
between input and output; one can also require for ex-
ample that a particle located at a position (x, y, z) be
located at (x/2, y, z) at the output (Supplementary Fig-
ure 1b). Both these logical processes have the same input
and output state.

The first logical process can be physically implemented
with a simple isothermal thermodynamical compression.

The second logical process can be implemented similarly,
by using a trick: first, we insert many separators in the
box, resolving the positions of the particles to some ac-
ceptable precision, and then we perform an isothermal
compression of each of those slices of the gas indepen-
dently. Then each particle originally located at position
x on the X-axis is now located at x/2 at the output and
kT ln 2 work was expended per particle. (Should the y
and z coordinates also be required to be correlated be-
tween input and output, a grid of separators along the
other axis should also be inserted, while the compression
is performed in the X direction.) In these simple exam-
ples, both logical processes have the same minimal work
cost (it is easy to see that the thermodynamical processes
given above are optimal, for example using our main re-
sult). This is the illustration of our main result in the
thermodynamic limit: in an i.i.d. setting, the minimal
work requirement is simply given by the difference be-
tween final and initial entropy, regardless of the specific
logical process. (Note that here entropy corresponds to
free energy, since there is no change in internal energy.)

Note that both logical processes could have been per-
formed with an irreversible thermodynamic process, for
example a fast compression followed by a thermalization
(of the whole gas in Supplementary Figure 1a, or of each
slice in Supplementary Figure 1b). Then additional, ir-
reversible work is required. However these irreversible
processes are not the optimal thermodynamical processes
that carry out the requested logical processes. The ex-
pression in our main result is given by the optimal ther-
modynamic implementation of a given logical process.

We further note that, in general, logically irreversible
processes can be implemented in a thermodynamically re-
versible way: a Szilard box in a completely mixed state,
for example, can be reset to a pure state by a simple re-
versible isothermal process. While the thermodynamic
transformation is reversible, meaning that we can re-
cover the initial mixed state and get back all the work
invested in the erasure, the precise logical state the mem-
ory initially was in (whether the particle was on the left
or the right side of the box) is irreversibly lost in the
heat bath.(This reasoning does not contradict the results
by Ladyman et al . [24], because the thermodynamical
processes they show to be irreversible are the thermody-
namic processes px “conditioned” on the particular initial
logical state x of the device (using their notation).)

Consider now the example depicted in Supplementary
Figure 1c: a single particle is in the box, and three par-
titions are inserted, subdividing the box into four even
regions I, II, III and IV. We wish to perform the logi-
cal process that maps a particle in regions I, II and III
to output region A, and input region IV to region B.
(Upon appropriate relabeling of the regions, this is noth-
ing else than an and gate.) A thermodynamical oper-
ation that would carry out this logical mapping is an
isothermal compression of the joint three first regions to
one-third of their initial volume (removing the two inter-
mediary separators). The work cost of doing so depends
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on whether the particle is located in one of the regions
I, II, III or not: with probability 3/4, kT ln 2 · log2 3 work
is expended. (We assume that the isothermal process
is done infinitely slowly, i.e. quasi-statically, such that
the fluctuations have been reduced to zero; the fluctu-
ations of the work cost of the logical process explained
here are solely due to the probabilistic nature of the input
state or the logical process, and not due to fluctuations of
the thermodynamical process.) However, with probabil-
ity 1/4, no work is expended as those regions are empty.
In this case, the work cost is fluctuating due to the proba-
bilistic nature of the input state. This procedure is again
the best strategy we can devise if we require the process
to succeed with almost certain probability (this is a con-
sequence of our main result), and its worst-case work cost
is kT ln 2 · log2 3.

If we had considered a large number of particles, then
with large probability 3/4 of the particles would be in
regions I, II, III, and thus the work yield would almost
deterministically be the average value 3/4·kT ln 2·log2 3 ≈
1.2 kT ln 2, which one can check to be equal to the dif-
ference between initial and final Shannon entropy. This
is again in agreement with our main result in the i.i.d.
regime.

Now, let’s consider again the and gate with the one-
particle gas, but where the particle has different prob-
abilities of being in the different regions, as shown in
Supplementary Figure 1d. Specifically, consider the ex-
ample where the particle resides in region II or III with
the same probability as it would be found in region IV,
i.e. pII + pIII = pIV. Again, we are required to perform
the logical process mapping a particle in regions I, II or
III to the region A, and mapping a particle in region
IV to region B. Then, one can convince oneself that the
optimal procedure is still to isothermally compress re-
gions I, II, and III into the volume of region A, as before.
However, as explained in the main text, it is possible
to devise a strategy that will still reproduce the correct
output state, pA = pI+pII+pIII, pB = pIV, that will actu-
ally only cost kT ln 2 work. This strategy corresponds to
isothermally compressing regions II and III and merging
them to region B, and isothermally compressing regions
I and IV and merging them to region A (permuting re-
gions and moving regions around does not cost any work,
as these are unitary, reversible logical operations). This
illustrates that the minimal work requirement of a logical
process is not fully specified by the initial and final state.
In particular, it cannot be given by a state function (such
as the free energy in standard thermodynamics).

The important fact is that in macroscopic thermody-
namics, one does not care about correlations between the
input and the output, simply because for large i.i.d. sys-
tems (e.g. many independent particles, or large weakly
interacting systems such as an ideal gas) those correla-
tions do not matter. This is due to the system being in
a typical microstate with overwhelming probability (see
main text). We determine, for single quantum systems,
the minimal work requirement of a logical process; our

formula shows that this requirement is not simply given
by a function of state. The key point is that if one goes
to the thermodynamic limit, then our formula for the
work cost of a logical process does become a function
of state. This shows that our result is of a fundamen-
tally different nature to the work loss of a process which
is thermodynamically irreversible, which persists in the
thermodynamical limit and is due to some avoidable ir-
reversibility.

SUPPLEMENTARY NOTE 3 – THE SMOOTH
ENTROPY FRAMEWORK.

The literature about information-theoretic tasks, pio-
neered by Shannon [71] has largely focused in the past on
average resource costs of asymptotically many indepen-
dent repetitions of a given task, such as the average com-
munication rate needed to send the information output
by a source generating independent messages according
to a certain distribution.

Recently, frameworks were developed in order to char-
acterize single instances of these tasks, such as determin-
ing how many bits are needed to compress a single mes-
sage distributed according to some known distribution.
The two major approaches are the information spec-
trum [72, 73] and the smooth entropy framework [51, 53],
the two approaches being closely related [74].

We will focus here on the definition of some of the
smooth entropies that are needed in this work and some
of their properties. More information and proofs can be
found in Refs. [51, 53, 75, 76].

In the remainder of this section, let A, B, C be quan-
tum systems and let |ρ〉ABC be a pure tripartite state.
We say that two states ρ1 and ρ2 are ε-close, denoted
by ρ1 ≈ε ρ2, if their purified distance as defined in
Ref. [53, 75] is less than or equal to ε (for normal-
ized states, the purified distance is defined via their fi-
delity [77]). We refer the reader to these papers for pre-
cise definitions of the purified distance, and for compre-
hensive discussions about optimization ranges over sub-
normalized states which will not be particularly relevant
here.

Min and Max Entropies. The central quantities of
the smooth entropy framework are the so-called min-
and max-entropies. The conditional smooth min-entropy
Hε

min (A|B)ρ is defined as follows:

Hmin (A|B)ρ|σ = max
{
λ : 2−λ1A ⊗ σB > ρAB

}
; (1a)

Hmin (A|B)ρ = max
σB>0

trσB=1

Hmin (A|B)ρ|σ ; (1b)

Hε
min (A|B)ρ = max

ρ̂AB≈ερAB
Hmin (A|B)ρ̂ . (1c)

Similarly, the smooth conditional max-entropy
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Hε
max (A|C)ρ is defined by:

Hmax (A|C)ρ|σ = logF 2 (ρAC ,1A ⊗ σC) ; (2a)

Hmax (A|C)ρ = max
σC>0

trσC=1

Hmax (A|C)ρ|σ ; (2b)

Hε
max (A|C)ρ = min

ρ̂AC≈ερAC
Hmax (A|C)ρ̂ . (2c)

The conditional smooth entropies are invariant under lo-
cal isometries. They also have clear operational interpre-
tations [78]. For example, the min-entropy Hmin (A|B)
quantifies how many bits in A can be extracted that
are uniformly random and uncorrelated to B; the max-
entropy Hmax (A|C) corresponds to the amount of bits
needed to send to a third party who has access to C in
order to reconstruct A.

Duality Relation. The min- and max-entropy obey the
so-called duality relation. For ρABC pure, one has

Hε
min (A|B)ρ = −Hε

max (A|C)ρ . (3)

(The max-entropy may also be defined first by the du-
ality relation, as originally done [78], and then (2) be-
comes a theorem.)

Classical-Quantum states. A state ρAB is classical-
quantum (c-q) if it can be written in the form

ρAB =
∑
i

pi |i〉〈i|A ⊗ ρ(i)
B ,

for positive operators ρ
(i)
B satisfying

∑
i tr ρ

(i)
B = 1.

For such states, the conditional smooth entropies
Hε

min (A|B)ρ and Hε
max (A|B) are always positive.

Rényi-Zero Entropy. An additional entropy measure
that will appear naturally in our calculations is the
Rényi entropy of order zero, or the Rényi-zero entropy
H0 (A|C)ρ [51, 79]. It is defined by

H0 (A|C)ρ = max
σC

tr [ΠAC σC ] = ‖trA ΠAC‖∞ , (4)

where ΠAC is the projector onto the support of the state
ρAC .

The Rényi-zero entropy is dual to a specific variant of
the min-entropy: for ρABC pure, one has

H0 (A|C)ρ = −Hmin (A|B)ρ|ρ . (5)

The Rényi-zero entropy and this variant of the min-
entropy have also been termed alternative max-entropy
and alternative min-entropy, respectively [76].

When smoothed, the Rényi-zero entropy is closely re-
lated to the max entropy [76]. We have on one hand

Hε
0 (A|C)ρ := min

ρ̂≈ερ
H0 (A|C)ρ̂ > Hε

max (A|C)ρ , (6)

and the two quantities are almost equal, up to an er-
ror term and a small adjustment f(ε) to the smoothing
parameter ε:

H
f(ε)
0 (A|C)ρ 6 Hε

max (A|C)ρ +O
(
log 1

ε

)
. (7)

Von Neumann entropy. Recall that the von Neumann
entropy is defined as

H (X)ρ = − tr (ρX log ρX) ; (8a)

H (A|B)ρ = H (AB)ρ −H (B)ρ . (8b)

Asymptotic Equipartition Property. The smooth
entropies all converge to the von Neumann entropy in
the i.i.d. limit, a property which is known as asymp-
totic equipartition [52]. When considering n independent
copies of the same state ρ, and consider large n, we have:

lim
ε→0

lim
n→∞

1

n
Hε

min (An|Bn)ρ⊗n = H (A|B) ; (9a)

lim
ε→0

lim
n→∞

1

n
Hε

max (An|Bn)ρ⊗n = H (A|B) . (9b)

In particular, any terms of order log 1
ε disappear when

taking the limit n → ∞, such that the quantities
Hε

0 (A|B)ρ and Hε
min (A|B)ρ|ρ also obey the asymptotic

equipartition property.

SUPPLEMENTARY NOTE 4 – ADDITIONAL
COMMENTS. APPLICATIONS OF OUR MAIN

RESULT.

Our main result states that in our framework, the work
cost of a physical process implementing the computation
E exactly is lower bounded by the quantity W ε=0

(bound) =

kT ln 2 · H0 (E|X ′)ρ. In the case where we consider an
ε-approximation is tolerated, the bound takes the value
W ε

(bound) = kT ln 2 ·H ε̄
max (E|X ′)ρ, with ε̄ =

√
2ε.

In the following sections, we further discuss the impli-
cations of our result and provide some examples.

In a slight abuse of notation, but in an effort to disen-
cumber the mathematical expressions, a generic super-
script ε on a work cost W or on an entropy measure will
be understood to represent a “smoothing” of the quan-
tity, in order to account for very unlikely events. It is
understood that some expressions should actually con-
tain variants of this quantity such as

√
2ε to be techni-

cally correct, but our calculations being relatively simple,
a technically complete version should be straightforward
to obtain.

A. On the Tightness of the Minimal Work Bound.

Since the bound W ε=0
(bound) was obtained through a

chain of equivalences from our original framework to the
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expression of the bound, we know there exists a unital
map over an “information battery” A and the system X
which achieves this bound. However, it is not clear how to
physically carry out a general unital operation at no work
cost (remember: unital operations were precisely chosen
for their being a very permissive framework, in order to
obtain a more general bound). A convenient special case
of unital operations are noisy operations [64]: these con-
sist of a sequence of bringing in a maximally mixed an-
cilla, performing a global joint unitary, then tracing out
the ancilla. However not all unital operations are of this
kind [80, 81]. So this leaves open the question of whether
our bound is tight.

We have seen in the main text that using the method
proposed by del Rio et al . [54], we can construct an ex-
plicit process that carries out the required transforma-
tion, which fails with probability less than ε, and which
costs work kT ln(2) ·

[
Hε

max (E|X ′)ρ + ∆(ε)
]
, where ∆(ε)

is an error term of the order of log (1/ε). That is, we are
capable of achieving the bound up to an error term of
order log (1/ε).

In some interesting regimes, such as information cod-
ing, the error term may be negligible. Indeed, if we want
to reset 1 MB of data with a smoothing parameter of
at most ε = 10−10, then the error term is of order of
log (1/ε) ≈ 30 bits, which is small compared to the orig-
inal ∼ 107 bits. However, this error term can become
overwhelming when considering small systems consisting
of several qubits.

It is an open question to understand the significance
of this gap, and to determine whether the bound can
be exactly achieved. However, this type of error terms,
which are clearly sublinear in the number of systems,
are widespread in information and coding theory, and
are typically associated with overheads such as encoding
the word length itself, or the overhead of adapting the
coding scheme. More specifically, they invariantly appear
in random constructions of protocols, such as the one
used in [54], on which our tightness proof is based.

B. Simple examples: the AND and XOR gates.

Consider the classical and and xor gates presented in
the main text. We would now like to calculate how much
work the best implementation of these gates would re-
quire. We can apply our main result, as given by Eq. (3)
of the main text, to obtain

W
(bound)
and = kT ln 2 · log2 3 ≈ 1.6 kT ln 2 ; (10a)

W
(bound)
xor = kT ln 2 . (10b)

(Several quantum descriptions of these classical gates are
possible in quantum mechanics; we assume for this ex-
ample those which measure the input and prepare the
appropriate output.)

As long as the input distribution does not have very

small eigenvalues, no eigenvalues will be comparably
small to ε, and all distributions that are ε-close to the
initial one will have same rank. Thus the values (10)
are exact also for not too large ε. (Note however that
this differs with the expression in Eq. (1) of the main
text, because the latter was obtained with an additional
relaxation of H0 to Hmax for purposes of presentation.)

As mentioned in the main text, these gates illustrate
the dependence of the minimal work requirement on the
specific computation, and not only on the input and out-
put states. More generally, it is worth noting that, al-
though a specific input state is given, the observer can
still distinguish the different possible logical processes,
even though they give the same output state. Indeed,
the observer can prepare a bipartite pure state on X and
a reference R, with the reduced state on X matching the
required input state. By keeping this way a purification
of the input state, the observer can determine exactly
which logical process was performed by appropriate mea-
surements on the joint state ρX′R of the output and the
reference (note that ρX′R is then the Choi-Jamio lkowski
state of the logical process).

Observe also that the value (10a) differs from the av-
erage work requirement of the and gate, which is given
by the difference in von Neumann entropy between the
input state and the output state (most previous work
has focused on this regime). Assuming that the input is
uniformly random, i.e. ρX = 1

41, then one obtains

Wand, avg. = kT ln 2 · [H (X)−H (X ′)] ≈ 1.2 kT ln 2 .

Additionally, the value (10b) happens to coincide with
the average work requirement (calculated similarly) for a
uniformly random input; however, if a different input is
given, the two values will differ.

C. Arbitrarily large dependence on the
computation, with same input and output states.

Consider the example provided in Supplementary Fig-
ure 2a,

ρ =
1

2

[
|0〉〈0| ⊗ |0 . . . 0〉〈0 . . . 0|+ |1〉〈1| ⊗ 12n

2n
]
.

Consider also the two logical processes depicted
schematically in Supplementary Figure 2b. The first logi-
cal process E1 is the identity map, E1 = idX→X′ (σ) = σ.
The second logical process E2 resets its input and pre-
pares a fresh copy of ρ, i.e. E2 (σ) = tr (σ) ρ.

First note that both computations have exactly the
same input and output states. The minimal work require-
ment of the identity mapping is zero, obviously, because
it can be implemented by doing nothing, or also, because
it is logically reversible. However, the analysis is different
for E2. If we did nothing as for E1, then high correlations
would remain between the input and the output, and
we would not be implementing the computation E2 but
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rather E1. Now the minimal work requirement that will
be needed, if we want to be almost certain that the pro-
cess succeeds, can be intuitively understood as follows:
in the worst case, which happens with probability 1/2,
the input is in the state that is almost fully mixed, and
one will first have to reset ∼n bits, costing ∼nkT ln 2
work. When preparing the output, we can decide ran-
domly on whether to prepare the pure or the mixed state
by extracting 1 bit of work from a Szilard box. However,
in the worst case with probability 1/2, we have to pre-
pare the state |0 . . . 0〉, and at worst only one bit of work
can be extracted. The total worst-case work cost of this
strategy is

W ε≈0(E2, ρ) ≈ nkT ln 2 . (11)

This value can be calculated exactly as our example is
a special case of subsection 4 G below; it turns out to
be optimal. The approximation we made above (where
we note ‘∼’ and ‘≈’) is simply that log(2n + 1) ≈ n and
n+ 1 ≈ n. Also, we have assumed that (1− ε)n ≈ n.

Note that the quantity (11) can become arbitrarily
large, as it scales with the number of qubits n.

This distribution might seem very artificially con-
structed. We however provide here an example of a phys-
ical system which exhibits such behavior. Consider a par-
ticle detector, which we model in the following way: as
long as no particle has shown up, the detector is initial-
ized in a state |0〉. Once a particle hits the device, the
state of the detector is changed to a very disordered state
τ , which we may for the sake of the example choose as
a uniformly mixed state of rank d: τ = 1

d1d. Suppose
we wish to describe the state of the device, not knowing
whether a particle has hit it or not. If the probability
that a particle was detected is 1/2, then the state of the
detector is precisely ρ (with d = 2n).

“Erasure” here simply means resetting the device to
its initialized state: the logical process maps the distri-
bution ρ to the pure state |0〉. The first logical processes
given in Supplementary Figure 2b corresponds to not
doing anything to the detector. The second logical pro-
cess corresponds to resetting the detector, and then again
sending a new particle in with probability 1/2. Note that
in this case, by looking at the detector after the process,
we may not know the state of the detector at the input
of the process.

D. Erasure of a Quantum System Using a
Quantum Memory.

This scenario was studied in the main text; we repeat
this derivation in more detail here.

Consider the setting proposed in [54], where a system
S is correlated with a system M in a joint state σSM ,
and where our task is to erase S while preserving the
reduced state on M and any possible correlations of M
with other systems. Formally, given a purification σSMR

of σSM , we are looking for a process that will bring this
state to the state ρSMR = |0〉〈0|S ⊗ σMR, i.e. we require
the process to preserve σMR. In [54] a process is proposed
that performs this task at work cost

kT ln(2)Hε
max (S|M)σ +O

(
log 1

ε

)
,

where Hε
max is the smooth max entropy [53, 75, 78].

The full process that is eventually performed can be
written as

E(erasure)
SM→SM (σ) = |0〉〈0|S ⊗ trS (σ) . (12)

(It is straightforward to verify that this process preserves
the reduced state σMR.) We can now apply our main
result to this particular mapping, simply by considering
X to be the joint system of S and the memory M , HX =
HS ⊗HM . Note that we have ρSMR = |0〉〈0|S ⊗ σMR,
purified by |ρ〉SMRE = |0〉S ⊗ |ρ〉MRE , where |ρ〉MRE =
US→E |σ〉SMR and US→E is an isometry from S to E.

Then the bound on the work cost, including a smooth-
ing parameter ε, is

W > Hε
max(E|SM)ρ · kT ln(2)

= Hε
max(E|M)ρ · kT ln(2)

= Hε
max(S|M)σ · kT ln(2) , (13)

where the first equality follows because ρ is pure on S
and the second by reversing the isometry U . We can
immediately conclude that, within our framework, any
process that performs this erasure has to cost at least
kT ln(2)Hε

max(S|M)σ work. Thus, the process proposed
by del Rio et al . is optimal up to logarithmic factors
in ε. Note that if we take the memory M to be trivial
i.e. a pure state, then we are in the standard scenario of
Landauer erasure on a single system, and we have W >
Hε

max(S) which is achievable, recovering the result of [55].

E. Coherent Preparation of a State on a System
with a Memory. “Reverse” of a Logical Process.

One may also wonder which process is the “reverse
process” of erasure with a quantum memory. Specifically,
starting off with a pure system S and some state ρM on
a memory M , one might ask how much work is needed
to prepare a given bipartite state σSM on these systems.

The process as such is not clearly defined, as we have
not specified which correlations between the initial and
final state on M are to be preserved, or, equivalently,
which completely positive map E is to be applied for this
preparation.

Let us first study the erasure mapping (12) a bit more
closely. The output state of the erasure including the
reference system R is given by the state ρX′R = |0〉〈0|S⊗
ρMR, where HX′ = HS⊗HM is the total output system.
As mentioned earlier, the joint state on X ′ and R may be
interpreted as the process matrix of the operation E on
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σ: it can be thought of as a joint probability distribution
giving the probability that we had |k〉 at the input and
got |k′〉 at the output; also, ρX′ is the output state and ρR
is the input state. This consideration gives us a natural
way of reversing any process: a natural “reverse” process
to the process ρX′R is simply given by swapping the two
systems, i.e. considering R as the output and X ′ as a
purification of the input. Let us return to the case of the
erasure. First, consider the purification of σSM into a
system HR = HRS ⊗HRM explicitly as

|σ〉SMRSRM = σ
1/2
SM |Φ〉SM |RSRM , (14)

where |Φ〉SM |RSRM =
∑
kl|k〉S |k〉RS |l〉M |l〉RM . Now ap-

plying the erasure process on SM gives us:

ρSMRSRM = E(erasure)
SM→SM (σSMRSRM )

= |0〉〈0|S ⊗ trS (σSMRSRM ) . (15)

It is thus natural, for the preparation scenario, to con-
sider the process matrix

ρ
(prep)
SMRSRM

= |0〉〈0|RS ⊗ trRS (σSMRSRM ) . (16)

(Recall that the input state is pure on S.)

This is obviously purified by a system E which con-
tains the traced out information, i.e. given an isometry
URS→E ,

|ρ(prep)〉SMRSRME = |0〉RS ⊗ (URS→E |σ〉SMRSRM ) .
(17)

If we then calculate the minimal work cost of perform-
ing this process according to our main result, we obtain

W (prep) = kT ln 2 ·Hε
max (E|SM)ρ(prep)

= kT ln 2 ·Hε
max (RS |SM)σ

= −kT ln 2 ·Hε
min (RS |RM )σ

= −kT ln 2 ·Hε
min (S|M)σ . (18)

(We have used the fact that σ and ρ are related by an
isometry between RS and E, as well as the duality be-
tween min- and max-entropies.)

We notice that kT ln 2 ·Hmin (S|M)σ work can be ex-
tracted in the reverse process of the original erasure pro-
cess, which required kT ln 2 ·Hmax (S|M)σ work. These
values can be arbitrarily different; this gap is expected as
we require both processes to succeed with high probabil-
ity. We find that the gap is exactly the difference between
the min- and the max-entropy, similarly to the single-
shot irreversibility between distillation rate and forma-
tion rate of entangled pairs with LOCC operations [82–
85].

F. The Minimal Work Cost of a Quantum
Measurement.

Quantum measurements are special cases of quantum
processes, and so may also be plugged into our main re-
sult. Note that first, we consider the measurement pro-
cess to be given access to a pure memory register to store
the measurement result. We then consider the minimal
work cost of preparing the register in its pure state again
for a future measurement.

The Measurement Process and its Work Cost.—Suppose
that on the system S, in the state σ, we perform a mea-
surement described by a POVM {Qk}. Each outcome,
labeled by the index k, occurs with probability tr (Qkσ).
The completely positive map associated with this mea-
surement is,

ES→S′C (σ) =
∑
k

|k〉〈k|C ⊗ E(k)
S→S′

(
σ
)
, (19)

where C is a classical register containing the out-
come of the measurement (initially in a pure state),

and E(k)
S→S′ (·) =

∑
iE

(k)
i (·) E(k) †

i are trace-decreasing
maps that map σ to its post-measurement state for the
outcome k, which occurs with probability tr (Qkσ) =

tr E(k)
S→S′ (σ). The Kraus operators E

(k)
i are related

to the POVM elements Qk by
∑
iE

(k) †
i E

(k)
i = Qk.

Equation (19) simply expresses that the output state
of the measurement is a mixture of the possible post-
measurement states corresponding to the different out-
comes k. We emphasize that the register C must start
off in a pure state; if this is not the case (as in a purity
resource framework, for example), it should be initialized
first, causing some work cost, before performing the map
E .

We first need to calculate the Stinespring dilation
of the process E , which is given by ES→CS′ (·) =
trE VS→ECS′ (·)V †, where the isometry VS→ECS′ can be
read off the operator-sum representation of (19), that is

ES→CS′ =
∑
k,i

(
|k〉C ⊗ E(k)

i

)
σ
(
〈k|C ⊗ E(k) †

i

)
, (20)

as V =
∑
k,i|k, i〉E ⊗ |k〉C ⊗ E

(k)
i . This yields the post-

measurement state including E

ρECS′ = VS→ECS′ σS V
† .

For convenience, let R be a purifying system for σS , i.e.
let |σ〉SR such that trR |σ〉〈σ|SR = σS . This allows us to
write a full, pure, post-measurement state |ρ〉ECS′R as

|ρ〉ECS′R =
∑
k i

|k, i〉E ⊗ |k〉C ⊗
(
E

(k)
i |σ〉SR

)
. (21)

Our main result asserts that the minimal work cost of

8



the measurement (19) is simply given by the quantity,

W ε
meas,optimal ≈ kT ln 2 ·Hε

max (E|CS′) , (22)

where the entropy measure is evaluated for the state
ρECS′R given by (21). In the remainder of this section, all
entropy measures are implicitly evaluated on this state,
unless indicated otherwise. The ‘≈’ symbol recalls that
one can only actually approximately achieve the given
bound (see Section 4 A). In the remainder of this section,
when discussing optimal work costs, we will only consider
the value of our bound; it is understood that a success-
ful implementation is possible at a work cost close to the
discussed bound in the sense of Section 4 A. It is also im-
plied that all work costs are smoothed with a small but
finite ε parameter. In this spirit, denote the value of the
right-hand side of (22) by

Wmeas = kT ln 2 ·Hε
max (E|CS′) . (23)

As we will see from some simple examples, the quan-
tity (19) in its most general form as presented may take
any value, from a work cost to a work yield. However, we
will consider an important class of measurements: those
for which the collapse operators Ek don’t themselves need
work. In general, we know that those processes that don’t
need work are sub-unital, i.e. they satisfy E(k) (1) 6 1.
This is for example the case for projective measurements,
or more generally if the E(k)’s only have a single Kraus
operator. We also note that any general measurement in
the form (19) can be written as a combination of a mea-
surement with collapse superoperators that have each a
single Kraus operator, followed by a partial erasure on
the memory register C.

Proposition 1. Let ES→CS′ be a measurement process
of the form (19), and assume that for all k, E(k) (1) 6 1.
Then Wmeas as defined by (23), satisfies Wmeas 6 0.

Proof. Instead of proving that the entropic quantity (23)
is negative, we will show that the full measurement pro-
cess E itself is a sub-unital superoperator, which we know
from our framework costs no work. This is straightfor-
ward to see:

ES→CS′ (1S) =
∑
k

|k〉〈k|C ⊗ E(k)
S→S′ (1S)

6
∑
k

|k〉〈k|C ⊗ 1S′ 6 1CS′ .

Resetting the Memory Register Containing the Measure-
ment Outcome.—Let us now consider the task of reset-
ting C to a pure state, after having performed the mea-
surement process above. This resetting can obviously be
performed directly, with a cost given by Landauer’s prin-
ciple as Hε

max (C)ρ, which in turn depends on the number

of possible outcomes the measurement had (if ε > 0, we
would only consider the measurements that are not ex-
tremely unlikely). This procedure, however, is not opti-

mal if we are allowed access for example the information
contained in the post-measurement state on S′. Indeed,
in the latter case, we may use the system S′ as a mem-
ory as discussed in Sec. 4 D, and the optimal work cost
is then

Wreset C|S′ = kT ln 2 ·Hε
max (C|S′)ρ . (24)

This work cost is always positive, or at best, zero, because
ρCS′ is classical-quantum (c-q).

We will see that this work cost may be both less and
larger than Wmeas with some examples. Of course, this
does not constitute a violation of the second law, as we
will discuss.

Additionally, we could imagine a scenario where we
have kept a purification of the input state |σ〉SR on an
ancilla system R, in order to “remember” the state of the
initial system S. We may then of course use this system
also to reduce the work cost of erasing C, the latter being

Wreset C|R = kT ln 2 ·Hε
max (C|R) .

It turns out that, if the collapse operators E(k) all
have a single Kraus operator, this work cost is always
greater than the work yield of performing the measure-
ment (−Wmeas), and that the difference between both is
precisely the difference between the max and min-entropy
of the system C conditioned on R.

Proposition 2. Let ES→CS′ be a measurement process

of the form (19), with for all k, E(k) (·) = Ek (·)E†k. Let
ρECS′R be defined as in (21). Then

Wmeas +Wreset C|R

= kT ln 2 · [−Hε
min (C|R) +Hε

max (C|R)]

Additionally, if ε is not too large (such that Hε
max >

Hε
min [86]), this expression is always positive,

Wmeas +Wreset C|R > 0 .

Proof. First notice that the state ρECS′R takes the form

|ρ〉ECS′R =
∑
k

|k〉E |k〉C (Ek|σ〉SR) ,

and in particular, ρ is invariant under interchange of E
and C systems. Then, using duality of the smooth en-
tropies [75] (see Section 3), we have Hε

max (E|CS′) =
−Hε

min (E|R) = −Hε
min (C|R) and thus Wmeas =

−kT ln 2 · Hε
min (C|R). Then recall that Wreset C|R =

kT ln 2 ·Hε
max (C|R) and that the max-entropy is larger

than the min-entropy for small ε.

The final (pure) state on E, C, S′ and R, which is the
output of the Stinespring isometry V applied on the S
system of |σ〉SR, is still given by the expression (21).

Some Examples of Measurement Processes.—Let us now
focus on some examples of measurement processes, which
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are all special cases of (19).

(I) Measurement in the computational basis |0〉, |1〉 of
a single qubit in a maximally mixed state 12/2. The
measurement process then simply yields the output
state

ρCS′ =
1

2
|0〉〈0|C ⊗ |0〉〈0|S′ +

1

2
|1〉〈1|C ⊗ |1〉〈1|S′ .

The input state on S is purified by a fully entangled
state |φ〉SR on R. The system E also purifies the
measurement process, and as given by (21),

|ρ〉ECS′R =
∑
k

|k〉E |k〉C (|k〉〈k|S |φ〉SR)

=
1√
2

[|0〉C |0〉E |00〉SR + |1〉C |1〉E |11〉SR] .

It is then evident that

Wmeas = kT ln 2 ·Hε
max (E|CS′) = 0 ;

Wreset C|S′ = kT ln 2 ·Hε
max (C|S′) = 0 ;

Wreset C|R = kT ln 2 ·Hε
max (C|R) = 0 ,

as the corresponding reduced states are all classi-
cally correlated.

(II) Measurement of a trivial noisy POVM. Consider a
POVM in the extreme case where the state is left
untouched, but a random outcome is generated ac-
cording to a distribution {pk}. The POVM effects
are simply Qk = pk1 and the post-measurement
operators E(k) (σ) = pkσ are simply the identity
superoperator weighted by the probability pk.

Intuitively, this should be no different than rolling
a die, or more generally, generating a random out-
come with a specific distribution, which is a process
that can yield work. Indeed, based on the explicit
expression of the final state

|ρ〉ECS′R =
(∑

k

√
pk |k〉E |k〉C

)
⊗ |σ〉S′R , (25)

we may express of the work cost of the measure-
ment using some basic properties of the smooth
entropies, presented in Section 3. Using the duality
of the min- and max-entropies,

Wmeas/(kT ln 2) = Hε
max (E|CS′) = −Hε

min (E|R)

= −Hε
min (E) = −Hε

min (C) 6 log ‖ρC‖∞ 6 0 ,

because R is not correlated to E, and ρ is invariant
under exchange of E and C (both these statements
can be seen in (25)), and by definition the min-
entropy of C is given by Hmin (C) = − log ‖ρC‖∞.
Also, smoothing the min-entropy can only increase
the quantity by its definition (1c).

One can also calculate, because C is uncorrelated
to both S′ and R,

Wreset C|S′ = kT ln 2 ·Hε
max (C|S′) = kT ln 2 ·Hε

max (C) ;

Wreset C|R = kT ln 2 ·Hε
max (C|R) = kT ln 2 ·Hε

max (C) .

This means that the work we need to invest to re-
set C is always larger than what we gain from gen-
erating the random outcome. In fact, the gap is
precisely the difference between the max- and the
min-entropy, which is the same kind of irreversibil-
ity that is observed between the single-shot entan-
glement distillation and formation cost between two
parties [87].

(III) Projective measurement of a pure superposition
state. One may think that intuitively, for the mea-
surement to yield work, the POVM must be noisy.
Surprisingly enough, this is not the case. Even
projective measurements can yield work for spe-
cific input states. For example, consider the state
|σ〉S = |+〉 := 1√

2
(|0〉+ |1〉). Here R is a trivial

system since σ is already pure. Now consider the
usual projective measurement that measures σ in
the computational basis |0〉, |1〉. The final state is

|ρ〉ECS′ =
1√
2

(|0〉E |0〉C |0〉S′ + |1〉E |1〉C |1〉S′) .

We then evidently have

Wmeas = kT ln 2 ·Hε
max (E|CS′) = −kT ln 2 ;

Wreset C|S′ = kT ln 2 ·Hε
max (C|S′) = 0 ;

Wreset C|R = kT ln 2 ·Hε
max (C|R)

= kT ln 2 ·Hε
max (C) = kT ln 2 .

We conclude that it is possible to extract one bit of
work while performing the measurement, and that
resetting the memory register can be done at no
work cost using S′ but needs one bit of work if we
use the (trivial) reference system R.

Note that resetting the measurement register C us-
ing S′ costs no work. This is not in violation of
the second law of thermodynamics: we have not
returned the post-measurement state back to the
initial state, but rather we have consumed its pu-
rity.

(IV) Measurement with erasure collapse operators. It
was noted above that if the collapse operators E(k)

were themselves maps that cost work, e.g. erasure
channels, then the measurement would also possi-
bly cost work. It is sufficient to consider the follow-
ing extreme example: take a single-outcome mea-
surement, i.e. a trivial measurement, with a the
single collapse operator Ek=0 (·) = tr (·) |0〉〈0| being
an erasure channel. Obviously this operation has to
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cost work: performing operation ES→CS′ is exactly
the same as performing just the erasure Ek=0, which
costs work according to our main result (which is
of course also in line with Landauer’s principle).

(V) Information Gain of a Measurement. Existing
literature [88–91] has studied and identified the
amount of information that a quantum measure-
ment provides about a system being measured.
With the notation above, the information gain in
the asymptotic, i.i.d. regime is defined in [90] as

ι (σS , E) = I (R : C)ρ := H (R)−H (R|C) . (26)

In our framework, information contained in a quan-
tum system is represented by how much work we
need in order to erase that system. Bearing this
in mind, the natural way of defining the amount
of information gained about the system using the
measurement is then the difference in work costs of
erasing S before and after the measurement. Since
S was consumed by the measurement, this state-
ment doesn’t fully make sense, so we will rather
consider erasing the system R instead, which is a
purification of S. Our take at the information gain
of the measurement is then

ι′ = Hε
max (R)−Hε

max (R|C) .

Notice that in the i.i.d. regime where the entropies
converge to the von Neumann entropy, this defini-
tion coincides with the previous one (26).

G. State Transformation while Decoupling from
the Reference System.

Let’s return to another special case that we can de-
rive as a corollary from our main result. Consider the
process that erases its input and prepares the required
output independently. This would occur if we required
the output state to be completely uncorrelated to the ref-
erence system R: ρX′R = ρX′ ⊗ ρR. This corresponds to
a replacement map. Any third party R that would have
been correlated to the input is now completely uncorre-
lated to the output.

Again, we may simply apply our main result with the
additional condition that ρX′R = ρX′ ⊗ ρR. In this case,
the purification of ρX′R, ρX′RE , takes a special form due
to the tensor product structure, with the E system split
into two ER and EX′ systems (E = ER ⊗ EX′),

|ρ〉X′RE = |ψ〉X′EX′ ⊗ |φ〉RER , (27)

where |ψ〉X′EX′ and |φ〉RER are purifications of ρX′ and
ρR, respectively.

The (smooth) lower bound on the minimal work cost

W , given by our main result, then reads

W > kT ln 2 ·Hε
max (E|X ′)ρ

= kT ln 2 ·Hε
max (ER)|φ〉 + kT ln 2 ·Hε

max (EX′ |X ′)|ψ〉 .

Now, the spectrum of ρER is exactly the same as the spec-
trum of ρR by the Schmidt decomposition of |φ〉. This in
turn has the same spectrum as σX also by the Schmidt
decomposition of σXR and because ρR = σR. It follows
that Hε

max(ER)ρ = Hε
max(X)σ. Also, by duality of the

min- and max-entropies, we have Hε
max (EX′ |X ′)|ψ〉 =

−Hε
min (EX′)ρ = −Hε

min (X ′)ρ. In consequence,

W > kT ln 2 ·
[
Hε

max (X)σ −H
ε
min (X)ρ

]
. (28)

That is, to transform a state σ to ρ while completely
decorrelating ρ from the input, then one has to erase σ
to a pure state (at cost Hε

max (X)σ), and then prepare ρ
(extracting work Hε

min (X ′)ρ).

H. Example: Erasing Part of a W State. Again,
the Importance of Correlations Between the Input

and the Output.

Consider the W state on a system S, a memory M and
a reference system R given by

|W 〉SMR =
1√
3

[|001〉+ |010〉+ |100〉]SMR . (29)

The reduced states on SM and M are respectively given
by σSM = 1

3 |00〉〈00| + 2
3 |Ψ

+〉〈Ψ+| and σM = 2
3 |0〉〈0| +

1
3 |1〉〈1|, where |Ψ+〉 = 1√

2
(|01〉+ |10〉). By symmetry of

the W state, the reduced state on any two or one qubit(s)
have the same form.

By actions on S and M , we would like to erase S,
leading to the final state on S and M given by ρSM =
|0〉〈0| ⊗ σM . Let us consider two processes that achieve
this goal: the first one will preserve correlations with R
but will cost work, the second will not cost work but will
modify those correlations.

We may directly apply the special case above concern-
ing the erasure of a system conditioned on a memory:
the fundamental work cost of such an erasure, if one pre-
serves correlations with a reference system R, is given by
H0 (S|M)σ. In this case we have H0 (S|M)σ = log 2

3 ≈
0.59 (which we calculate below) and thus this process
must cost at least this amount of work. Because of the
small system size, we may not assert the achievability of
this erasure at this work cost (the error terms discussed
in Section 4 A become overwhelming). However we can
safely exclude the possibility of performing this opera-
tion at no work cost, a statement which suffices for our
purposes here.

Observe now that both σSM and σM have the same
spectrum {2/3, 1/3}. This means that there exists a uni-
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tary U that performs the erasure simply as |0〉〈0|⊗σM =
UσSMU

†, and this unitary process by definition does not
cost any work. Note though that the correlations with
R are not preserved. Indeed, the unitary sends |00〉 to
|01〉 and |Ψ+〉 to |00〉, so one explicitly calculates that the
state after the process is given by ρSMR = UσSMRU

† =
1√
3

[
|011〉+

√
2|000〉

]
= |0〉⊗ 1√

3

[
|11〉+

√
2|00〉

]
. We no-

tice that the reduced state on M and R is now pure
and differs from initial one, given by σMR = 1

3 |00〉〈00|+
2
3 |Ψ

+〉〈Ψ+|.
As before, this is an example where one can transform

the input state into the output state at no work cost a
priori, but if correlations are to be preserved between
the memory and a reference system or, equivalently, if
the exact erasure process (12) is to be performed, then a
physical implementation of this operation would require
work.

It remains to calculate H0 (S|M)σ. Written out explic-
itly in the basis {|0〉, |1〉}, the state σSM and the projector
ΠSM on its support take the form

σSM =


1/3

1/3 1/3
1/3 1/3

0

 ; ΠSM =

1
1/2 1/2
1/2 1/2

0

 .

(Empty entries are zero.) We then see that

trS ΠSM =

(
3/2

1/2

)
,

such that

H0 (S|M)σ = log ‖trS ΠSM‖∞ = log
3

2
.

SUPPLEMENTARY NOTE 5 – ALTERNATIVE
PROOF USING LAMBDA-MAJORIZATION.

For completeness, we provide an alternative proof of
our main result, based on techniques of majorization and
semidefinite programming. This proof (historically, the
original one) ventures via the study of possible state tran-
sitions, regardless of the logical process, but then imposes
that the resulting logical process be the one required.

A. The Framework. Work cost or yield as
generating or absorbing randomness.

Framework.—Consider a quantum mechanical system X
in an initial state described by the density operator σ.
Our task is to bring the system X to another state ρ,
while attempting to maximize some kind of notion of
“extracted” work in the process.

We postulate a restricted set of operations as possible
physical processes which we may carry out. Throughout

this paper we assume that the system starts and ends
with a fully degenerate Hamlitonian upon each applica-
tion of an allowed operation. There is no further re-
striction, however, on how each of the allowed operations
themselves are implemented—they might require a time-
dependent Hamiltonian for example.

We first postulate two basic operations of thermody-
namical nature, involving a heat bath at temperature T :
the erasure of a single qubit to a pure state at kT ln(2)
work cost, and the corresponding reverse process which
extracts kT ln(2) work by transforming a pure state into
a fully mixed state. Here k is the Boltzmann constant.
These operations are motivated by the variety of explicit
physical thermodynamical frameworks in which they can
be performed, for example using Szilard boxes [2, 55] or
by isothermally manipulating energy levels of Hamilto-
nians [30, 54, 56]. Crucially, we assume the second law
of thermodynamics, and require that there exist no op-
eration that would allow us to form a cycle for which the
net effect would be the extraction of work. This justifies
that no other work extraction procedure can yield more
work than kT ln(2) from a pure qubit, or else a cycle with
net work gain could be formed by appending an erasure
process, itself only costing kT ln(2).

Apart from this constraint on the set of allowed opera-
tions, it is natural to also allow usual quantum informa-
tion processing. Since our Hamiltonians are degenerate,
we can allow all global unitaries and they cost no work.
We do not need to use the fact that these unitaries are im-
plementable by a device operating in contact with a heat
bath, since expanding the class of allowable operations
actually strengthens the bound we derive. In practice,
one has very crude local control over the operations, and
the acting agent does not know which unitary is being im-
plemented, however, this is actually not an obstacle for
implementation [65, 92]. In addition to unitaries, we will
allow pure ancillas to be added to the system, which per-
mits more general computation. Crucially, ancillas will
have to be exactly restored to their initial pure state, so
that it is not possible to “hide” a work cost in an ancilla
that was left in a mixed state.

The following framework is motivated by the above
considerations. The processes we allow are (finite) com-
binations of the following elementary operations:

(a) Bring n qubits (of the system X or an ancilla A)
from any state to a pure state (‘erasure’) at cost
nkT ln 2 work;

(b) Bring n qubits (of the system X or an ancilla A)
from a pure state to a fully mixed state while ex-
tracting nkT ln 2 work;

(c) Add and remove ancillas in a pure state at no work
cost, as long as all the ancillas have been restored
to their initial pure state when they are restored;

(d) Perform arbitrary unitaries (over X and any added
ancillas) at no work cost.

Operations (a) and (b) are those of thermodynamical
nature, and may be carried out in a wide range of existing
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frameworks as mentioned above. One may view these
operations as defining a quantity which we call “work”.
We note that these operations can be performed quasi-
statically in a thermodynamically reversible fashion (as
long as operation (a) acts on a fully mixed state, which
in fact will turn out to be sufficient for our purposes).

On the other hand, operations (c) and (d) are purely
information-theoretical. They allow us to perform any
quantum information processing circuit, since we allow
pure ancillas to be added. However, there is the condi-
tion that “randomness” may not be disposed of for free,
namely that ancillas have to be restored to their initial
pure states at the end of the process.

We emphasize that these operations are allowed oper-
ations, but they are not necessarily always optimal. For
example, a pure state need not require nkT ln 2 for its
erasure, as given by operation (a). However, any at-
tempt to allow operation (a) for any state (or even just
for a mixed state) at any lower cost than nkT ln 2 would
result in a macroscopic violation of the second law of
thermodynamics.

Lambda-Majorization.—We will now provide a simple
mathematical characterization of all operations allowed
in our framework.

First, note that the operations (a)–(d) allow the use
of so-called noisy operations [64], which correspond to
adding an ancilla system N in a fully mixed state, per-
forming a joint unitary, and removing the ancilla. Specif-
ically, a noisy operation is composed in our framework of
first an operation of type (c) (adding a pure ancilla of n
qubits), followed by an operation of type (b) (extracting
nkT ln 2 work from the ancilla making it fully mixed),
then one of type (d) (performing the necessary unitary
to carry out the noisy operation), and finally an oper-
ation of type (a) (erasing the ancilla back to its pure
state at a work cost nkT ln 2). (It can be assumed with-
out loss of generality that the ancilla is left in a fully
mixed state after the noisy operation; indeed, this is the
case for the construction of the noisy operation given by
Ref. [64], which is capable of performing an equivalent
transformation to any other noisy operation.) The to-
tal process has a work balance of zero. This means that
we may thus carry out noisy operations for free within
our framework and use them as building blocks for more
complex processes. In the following, we deal implicitly
with the ancilla N and it should not be confused with
further ancillas that will be added.

The following result by Horodecki et al . [64] relates
noisy operations to the mathematical notion of majoriza-
tion [93–95].

Noisy Operations and Majorization. The transition
on system X from state σ to state ρ is possible by noisy
operation if and only if σ � ρ.

Majorization between two (normalized) states σ � ρ
captures the fact that ρ is “more mixed” than σ, or that
the eigenvalues of ρ can be written as a “mixture” of the

eigenvalues of σ. Formally, majorization can be charac-
terized by the existence of a unital, trace-preserving com-
pletely positive map that brings σ to ρ [96–99]. A map E
is trace-preserving if E† (1) = 1 and unital if E (1) = 1.

Proposition 3. Two positive matrices σ and ρ satisfy
σ � ρ if and only if there exists a trace-preserving, unital,
completely positive map E satisfying E (σ) = ρ.

The notion of majorization is discussed in more detail
in Section 6.

We will now provide some background insight for our
new concept of lambda-majorization, which is a gener-
alization of majorization inspired by other majorization
variants [57, 59, 100–103]. The idea is to characterize
“how well” a state σ majorizes a state ρ. Suppose that
we have a systemX in state σX and we want to bring it to
the state ρX , where σX � ρX . In this case, one can sim-
ply carry out a noisy operation as described above. Sup-
pose now that we have an ancilla A that is in a fully mixed
state, 1A

|A| , and suppose that we are fortunate enough for

σX ⊗ 1A

|A| � ρX ⊗|0〉〈0|A to also hold (for some pure state

|0〉A on A). Then by applying a joint noisy operation on
both systems, this would correspond to actually erasing
the system A “for free” during the transition σ → ρ. We
could then say that the randomness of the ancilla A was
“transferred” into system X. We will view this type of
transition as work extraction on system X during a tran-
sition σX → ρX . Indeed, work can be extracted in an
initial stage of the process by starting with a pure ancilla
and making it maximally mixed; the operation described
above costs no work and the ancilla can then be restored
in its pure final state.

In another situation, it might be that σX � ρX . How-
ever, in that case, for a large enough ancilla A the ma-
jorization σX ⊗ |0〉〈0|A � ρX ⊗ 1A

|A| will hold. The cor-

responding noisy operation then leaves us with a mixed
ancilla that started off pure and thus requires work to
restore; we will view such a transition on system X as
costing work.

Such operations can be performed within our frame-
work, using operations (a)–(d). In particular, the rela-
tion to work is given by elementary erasure and work
extraction (operations (a) and (b)) applied to the ancilla
A after the transition to restore it to its initial state.

In general, the ancilla A may start with λ1 mixed
qubits and end up with λ2 mixed qubits after a noisy
operation; we consider in this case to have extracted
(λ1 − λ2) kT ln(2) amount of work. This situation is de-
picted in Supplementary Figure 3a. Both considerations
above about work cost and work extraction are encom-
passed, simply because we count the difference in the
“amount of randomness” present in the ancilla before and
after the process. This is the idea behind the concept of
lambda-majorization, whose definition we can now state.

Lambda-Majorization. For two density operators σX ,
ρY on two systems X and Y , we will say that σX λ-

majorizes ρY , denoted by σX
λ−→ ρY , if there exists a
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(large enough) ancilla system A, as well as λ1, λ2 > 0
with λ = λ1 − λ2, such that

2−λ112λ1 ⊗ σX � 2−λ212λ2 ⊗ ρX ,

where 2−λ112λ1 and 2−λ212λ2 are fully mixed states on
λ1 (respectively λ2) qubits of A, and where the remaining
qubits of A in each case are pure.

An expression for “by how much” a state majorizes an-
other was originally introduced in [58] and used in [59], in
the context of work extraction games from Szilard boxes.
Their measure, the “relative mixedness” between σ and

ρ, corresponds to the optimal λ such that σ
λ−→ ρ.

Lambda-majorization captures all the possible pro-
cesses that are allowed in our framework. Indeed, if

σ
λ−→ ρ, then one has 2−λ112λ1 ⊗ σ � 2−λ212λ2 ⊗ ρ for

some λ1, λ2 with λ = λ1−λ2. Hence, there exists a noisy
operation (itself a combination of operations (a)–(d) with
zero total work cost) that performs the transition from
2−λ112λ1 ⊗σ to 2−λ212λ2 ⊗ ρ. The λ1 mixed qubits that
we have appended to σ can be created by appending a
large pure ancilla (operation (c)), and using operation
(b) to extract λ1 kT ln(2) work from λ1 qubits, render-
ing them fully mixed. At the end of the process, after
the noisy operation, we need to restore the ancilla in a
pure state; we thus need to erase (operation (a)) the re-
maining λ2 qubits, costing λ2 kT ln(2) work. The total
extracted work is then (λ1 − λ2) kT ln(2) = λ kT ln(2).
Conversely, each individual operation (a)–(d), individu-
ally transforming some state σ into a state ρ and costing

work W , implies the lambda-majorization σ
λ−→ ρ with

W = −λ kT ln(2). This is clear for operations (c) and
(d). For operations (a) and (b), this follows from results
derived in Section 6 C. Furthermore, the composition
of lambda-majorizations is again a lambda-majorization
(Section 6).

The ancilla system above may be viewed as some kind
of “information battery”, as was proposed by Bennett [7]
who suggested using a blank memory tape as “fuel” to
extract work. In this case, the ancilla can be used as a
storage of “purity” (or as a storage for “mixedness” or
“randomness” which we would like to get rid of), which
is increased or decreased by processes like the ones sug-
gested above. Equivalently, a two level system, or work
bit can be used [57].

It turns out that one can characterize lambda-
majorization by the existence of a completely positive
map satisfying some special normalization conditions,
analogously to Proposition 3.

Proposition 4. Let λ ∈ R. Two normalized density
matrices σX and ρY on two systems X and Y satisfy

σX
λ−→ ρY if and only if there exists a completely posi-

tive map TX→Y satisfying ρY = TX→Y (σX), such that

T †X→Y (1X) 6 1Y and TX→Y (1X) 6 2−λ1Y .

A map TX→Y that satisfies the two last conditions will
be referred to as a lambda-majorization map.

Furthermore, although the map T is not directly
a physical mapping (it can be, for example, trace-
decreasing), it can always be viewed as part of a unital
channel Ē , in the sense that T can be obtained by projec-
tion onto specific subspaces and tracing out the ancilla A
of the map Ē (see Section 6 B). In turn, unital channels
are a (strict [80]) superset of the noisy operations. Recall
that our task is to find a lower bound on the work cost
of all possible processes allowed in our framework, which
we will do by optimizing the work cost over all processes
that perform a given state transition. However, instead of
considering only the unital channels Ē that are noisy op-
erations, we will relax this last condition and consider all
unital maps Ē , and thus allow the optimization to range
over all T that satisfy the conditions of the above propo-
sition. This will make our lower bound even stronger, by
showing that the lower bound still holds even if we relax
somewhat the assumptions in our framework.

B. The Main Result.

1. Formulation and Proof Sketch.

Formulation of the Main Result.—We are now ready to
derive our main result. Consider a system X in the state
σX . This system can always be purified by a reference
system, R, in a pure joint state |σ〉XR.

Allowing actions defined by our framework on X, we
will study the transition of this state to a state ρXR, by
applying a process TX→X′ . The systems are depicted in
Supplementary Figure 3b.

The task we would like to solve is the following. Given
σX and a logical process EX→X′ , and given a purifica-
tion |σ〉XR of σX and an output state ρX′R = E (σXR),
we would like to find the least amount of work W one has
to pay for any process in our framework that implements
the action of E on σ. As we have seen in the previous
section, we can formulate within our framework all pos-
sible processes as lambda-majorizations, so our task is

actually to find the best λ such that σX
λ−→ ρX′ , with the

corresponding lambda-majorization map T from Prop. 4
satisfying T (σXR) = ρX′R.

Our main result gives an upper bound on the optimal
amount of work that can be extracted by this transition,
or equivalently, a lower bound on the minimum amount
of work that will have to be paid in order to perform the
transition. The main result follows directly from follow-
ing technical proposition.

We are given an input state σX and a process EX→X′ .
Let |σ〉XR be a purification of σX , and let ρX′R =
EX→X′ (σXR). Let also ρX′RE be a purification of ρX′R
in a system E.

Proposition 5. The λ-majorization σX
λ−→ ρX′ holds,

with the corresponding map TX→X′ from Prop 4 satisfy-
ing T (σXR) = ρX′R, if and only if λ 6 −H0 (E|X ′)ρ.
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Main Result. Any procedure in our framework acting
on system X that implements the map E when given input
σX (or equivalently, that brings the state σXR to the state
ρX′R) has a work cost W which is at least

W > kT ln(2) ·H0 (E|X ′)ρ . (30)

In other words, the minimal work cost of a process E
mapping σ to ρ is given by the amount of (information-
theoretic) entropy discarded, and thus dumped into the
environment, conditioned on the output of the computa-
tion. This is precisely the quantitative generalization to
correlated quantum systems of the original Landauer’s
principle [5].

The Main Result follows from Prop. 5 because, as we
have noted above, lambda-majorization is equivalent to
our original framework of operations (a)–(d).

It is worth noting that instead of specifying the map E ,
we may also simply specify the output state ρX′R, which
completely determines the process (on the support of σX)
since it is the Choi-Jamio lkowski state corresponding to
E rescaled by σX (ρX′R = E (σXR)). One can thus under-
stand the input to the problem to actually be a bipartite
state ρX′R, such that ρX′ is the required output, ρR is
the input that will be fed into the process, and any cor-
relations between X ′ and R specify parts of the output
that we wish be preserved and not be modified, or ther-
malized, by the process.

We have kept above the notation X ′ consistently to re-
member that we are talking about the output of the com-
putation on X. However, X ′ could be a different system
entirely. It could even have a different dimension than X,
however in this case there are some clarifications needed:
whenever the system dimension increases, pure ancillas
have been brought in and haven’t necessarily been re-
stored to their pure state since they are part of the out-
put; however this operation need not have cost any work
(in contrast to other noisy operations resource theories,
where purity is costly [64, 65]). However, whenever the
system dimension decreases, then any ancilla that was
removed had to be reset to a pure state first before being
disposed of, which may have cost work. In other words,
we adhere to the convention where purity can be brought
in for free, but where disposing of randomness is costly;
this is equivalent to the other approach where purity is
costly but disposing of mixed states is done for free. Our
choice is a priori arbitrary but possesses the advantage
of well integrating into our mathematical framework with
simple mathematical descriptions in terms of subunital
maps and weak sub-majorization (see Section 6).

The full proof of Prop. 5 is provided in Section 5 B 2.
We provide the general idea of the proof in the following.

Proof Sketch of the Main Result.—The main idea of the
proof is to write the optimization problem as a semidef-
inite program for the variables α = 2−λ > 0, TXX′ > 0
(the Choi-Jamio lkowski representation of TX→X′). Let

(·)tX denote the partial transpose operation on X. Con-
sider the state transformation σ → ρ. An upper bound

on the extracted work λ in the lambda-majorization

σ
λ−→ ρ, while ensuring that the map T from Prop. 4

performs the same logical operation as E , is given by the
following semidefinite program (see [104, 105] for a intro-
duction to SDPs in a style similar to what we use here.):

Primal

minimize: α

subject to:

TX→X′ (1X) 6 α1X′

T †X←X′ (1X′) 6 1X

TX→X′(σXR) = ρX′R .

The optimal value α = 2H0(E|X′)ρ is achieved (see Sec-
tion 5 B 2) by the completely positive map TX→X′ =
trE

[
VX→X′E (·)V †

]
, where VX→X′E is the partial isom-

etry with minimal support relating σXR to ρX′ER (both
being purifications of the same σR = ρR).

While it is clear from the formulation of our problem
that T is already completely determined on the support
of σX (expressed by the condition T (σXR) = ρX′R), the
optimization over T is done in order to (at least formally)
find the optimal action on the complement of the support
of σX .

Also, the formulation of a lambda-majorization prob-
lem as a semidefinite program is a more general toolbox
that could be used in the case where the mapping is not
completely determined and where arbitrary additional
semidefinite conditions can be imposed at will. For exam-
ple, instead of fixing the process with T (σXR) = ρX′R,
one may have instead required that T (σX) = ρX′ for
given σX and ρX′ , not specifying and optimizing over
what happens to correlations between the input and the
output (or, equivalently, one could optimize over ρX′R
with fixed reductions ρX′ and ρR). In that case, the
semidefinite program can be used to obtain bounds to
the optimal value. This also implies that the “relative
mixedness” introduced in [59] can be formulated as a
semidefinite program. However it is not clear if the re-
sult in this case can be written in terms of an entropy
measure.

2. Proof of the Main Result. Formulation as a Semidefinite
Program.

Let HX be a quantum system in the state σX . Let
HR be an additional quantum system and let |σ〉XR be
a purification of σX .

Suppose we want to perform the computation EX→X′
on system X, bringing its initial state σXR into a given
state ρX′R with a lambda-majorization. Here ρX′R is not
necessarily pure; giving the joint state with R allows us
to specify which correlations we want to preserve, equiv-
alently specifying the computation E on the support of
σX . The task is then the following.
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Task. Find the best (maximal) λ, such that there exists
a completely positive, 2−λ-subunital, trace-nonincreasing
map TX→X′ satisfying TX→X′(σXR) = ρX′R.

In other words, we would like to find the trace non-
increasing map that satisfies TX→X′(σXR) = ρX′R, that
has the smallest possible ‖TX→X′ (1X)‖∞.

This problem can be formulated as a semidefinite
program in terms of the variables α > 0 (defined as
α = 2−λ) and TX→X′ (through its Choi-Jamio lkowski
map TXX′ > 0), and the dual variables ωX′ > 0, XX > 0

and ZX′R = Z†X′R.

Primal

minimize: α

subject to:

trX [TXX′ ] 6 α1X′ : ωX′ (32a)

trX′ [TXX′ ] 6 1X : XX (32b)

trX
[
TXX′σ

tX
XR

]
= ρX′R : ZX′R (32c)

Dual

maximize:

tr (ZX′R ρX′R)− trXX

subject to:

trωX′ 6 1 (33a)

trR
[
σtXXR ZX′R

]
6 1X ⊗ ωX′ +XX ⊗ 1X′ . (33b)

Note that since the map does not act on σR, we must
necessarily have σR = ρR. Let E be a system that pu-
rifies the output state as ρX′RE . As two purifications
with the same reduced state on R, the two states σXR
and ρX′RE must be related by an isometry VX→X′E as
ρX′RE = VX→X′E σXR V

†. Note that this is an equiva-
lent construction of the Stinespring dilation of the orig-
inal computation EX→X′ . We can choose here VX→X′E
to be a partial isometry such that V V † = Π̂X′E , the
projector on the support of ρX′E , and V †V = ΠX , the
projector on the support of σX .

Now, define T by its Stinespring dilation

TX→X′ (·) = trE
[
VX→X′E (·) V †

]
, (34)

and let α = ‖T (1X)‖∞. In fact, T is simply a projection
on the support of σX followed by the mapping E . We will
show that this choice of variables is feasible and optimal,
and will derive a more explicit value of α.

Condition (32a) is satisfied by definition and (32b)
because V is a partial isometry. Also, verifying condi-
tion (32c),

TX→X′ (σXR) = trE
[
VX→X′ σXRV

†] = trE ρX′RE

= ρX′R . (35)

Now calculate

α = ‖T (1X)‖∞ = ‖trE V V †‖∞ = ‖trE Π̂X′E‖∞

= max
τX′

tr
[
Π̂X′E τX′

]
= 2H0(E|X′)ρ . (36)

We will now show that this value is optimal by exhibit-
ing a solution to the dual problem that achieves the same
value. Let ωX′ = τX′ be the optimal τX′ for the defini-
tion of H0(E|X ′) as in (36), let ZX′R = σ−1

R ⊗ ωX′ and
let XX = 0. This choice is feasible since condition (33a)
is automatically satisfied and condition (33b) becomes

trR
[
σtXXR ZX′R

]
= trR

[
σtXXR · ρ

−1
R ⊗ ωX′

]
= trR

[
ΦtXX|R ⊗ ωX′

]
= ΠtX

X ⊗ ωX′ 6 1X ⊗ ωX′ , (37)

where ΦX|R is an unnormalized maximally entangled
state on the supports of σX and σR. Let ρX′RE and
VX→X′E be defined as before. The value achieved by
this choice of dual variables is then

tr [ZX′R ρX′R] = tr
[
σ−1
R ⊗ ωX′ · ρX′R

]
(38)

= tr
[
σ−1
R ⊗ ωX′ · VX→X′E σXRV

†] (39)

= tr
[
ωX′ · VX→X′E ΦX|RV

†]
= tr

[
ωX′Π̂X′E

]
= 2H0(E|X′)ρ . (40)

From this, we conclude that the optimal λ for this
problem is

λopt = −H0(E|X ′)ρ . (41)

where ρX′RE is a purification of ρX′R.

SUPPLEMENTARY NOTE 6 – FORMAL TOOLS
FROM MAJORIZATION AND

LAMBDA-MAJORIZATION

A. Preliminaries and Main Definition

Let HX , HY be two subspaces of a finite-dimensional
Hilbert space HZ , and let HA, HB be two subspaces of
a finite-dimensional Hilbert space HC . Let d(·) denote
the dimensions of the various Hilbert spaces H(·) and
specifically let d = dZ = dim HZ . Denote by L (H )
the set of linear hermitian operators on H , by P(H )
the set of positive semidefinite operators on H , and by
S=(H ) those operators in P(H ) that have unit trace.
Let also λi(ρ) denote the i-th eigenvalue of ρ (the order

doesn’t matter), and λ↓i (ρ) denote the i-th eigenvalue of
ρ taken in decreasing order.

Majorization is discussed in detail in Refs. [94, 95, 106].

Majorization. A matrix σ ∈ P(HZ) is said to ma-
jorize ρ ∈ P(HZ), denoted by σ � ρ, if for all k,
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∑k
i=1 λ

↓
i (σ) >

∑k
i=1 λ

↓
i (ρ), and if trσ = tr ρ.

The notion of majorization defines a (partial) order
relation on P(HZ). When considering the set of density
matrices S=(HZ), there is a “least” element: the fully
mixed state, 1

d1Z .

Weak Submajorization. A matrix σ ∈P(HX) is said
to weakly submajorize ρ ∈P(HY ), denoted by σ �w ρ,

if for all k,
∑k
i=1 λ

↓
i (σ) >

∑k
i=1 λ

↓
i (ρ).

Remark that if σ, ρ ∈ S=(HZ), then the concept of
weak submajorization is equivalent to regular majoriza-
tion simply because the traces of these matrices are al-
ready equal to unity.

Doubly Stochastic Matrix. A d×d matrix S is doubly
stochastic if S j

i > 0,
∑
i S

j
i = 1 ∀ j and

∑
j S

j
i = 1 ∀ i.

Doubly Substochastic Matrix. A n × m matrix B
is doubly substochastic if B j

i > 0,
∑
iB

j
i 6 1 ∀ j and∑

j B
j
i 6 1 ∀ i.

The following theorem is due to Hardy, Littlewood and
Pólya [93].

Theorem 6 (Hardy, Littlewood, and Pólya, 1929). Let
σ, ρ ∈ P(HZ). Then σ � ρ if and only if there exists

a d × d doubly stochastic matrix S j
i such that λi(ρ) =∑

j S
j
i λj(σ) .

A similar theorem is obtained for weak submajoriza-
tion and doubly substochastic matrices [94].

Proposition 7. Let σ ∈ P(HX) and ρ ∈ P(HY ).
Then σ �w ρ if and only if there exists a dY ×dX doubly
substochastic matrix B j

i such that λi(ρ) =
∑
j B

j
i λj(σ).

Majorization defines a partial order on states and has
a “smallest” element, the fully mixed state. Also, a pure
state majorizes any other state.

Proposition 8. Majorization is preserved by direct sums
and tensor products, i.e. if σ � ρ and σ′ � ρ′, then
σ ⊕ σ′ � ρ⊕ ρ′ and σ ⊗ σ′ � ρ⊗ ρ′. The same holds for
weak submajorization.

A proof for the direct sum of two vectors can be found
in [94, Cor. II.1.4]. We provide here an alternative proof
along with the tensor product case.

Proof. Let S ji and S′ ji be doubly stochastic matrices such

that λi(ρ) =
∑
j S

j
i λj(σ) and λi(ρ

′) =
∑
j S
′ j
i λj(σ

′).

Then S⊕S′ is also doubly stochastic and satisfies λi(ρ⊕
ρ′) =

∑
j(S ⊕ S′) ji λj(σ ⊕ σ′), because the vectors of

eigenvalues of the direct sum are simply the direct sums
of the individual vector of eigenvalues. This shows that
σ ⊕ σ′ � ρ⊕ ρ′.

Analogously, S ⊗ S′ satisfies λii′(ρ ⊗ ρ′) =

λi(ρ)λi′(ρ
′) =

∑
jj′ S

j
i λj(σ)S j

′

i′ λj′(σ
′) =

∑
jj′(S ⊗

S′) jj
′

ii′ λjj′(σ⊗σ′). S⊗S′ is doubly stochastic,
∑
ii′(S⊗

S′) jj
′

ii′ =
∑
ii′ S

j
i S

j′

i′ = 1 and
∑
jj′(S ⊗ S′) jj

′

ii′ =∑
jj′ S

j
i S

j′

i′ = 1.
The same proof holds for doubly substochastic matri-

ces, so majorization may be replaced by weak subma-
jorization in the proposition.

We are now all set for a formal definition of lambda-
majorization.

Let λ ∈ R and let λ1, λ2 > 0 such that λ = λ1−λ2 and
2λ1 , 2λ2 are integers. (The case when 2λ is irrational will
be discussed later.) Take HC of size greater than both
2λ1 and 2λ2 and let HA and HB be subspaces of HC of
respective dimensions 2λ1 and 2λ2 .

Lambda-Majorization. For σ ∈ P(HX) and ρ ∈
P(HY ), we say that σ λ-majorizes ρ, denoted by σ

λ−→ ρ,
if there exists such λ1, λ2 such that 2−λ11A ⊗ σ �w
2−λ21B ⊗ ρ. Here 1A, 1B are the projectors onto the
respective subspaces HA and HB embedded in HC , of
respective dimensions 2λ1 , 2λ2 . Likewise, σ and ρ are
considered as living in HZ by padding them with zero
eigenvalues as necessary.

We have assumed here that 2λ is rational. If 2λ is
irrational, we say that σ λ-majorizes ρ if for all rational

2λ
′

with λ′ < λ, then σ
λ′−→ ρ.

The following proposition guarantees that the defini-
tion above does not depend on the exact values of λ1

and λ2 but only on their difference. This is the same as
saying that a fully mixed state cannot act as a catalyst.

Proposition 9. For any σ, ρ ∈P (HZ), and for any n,
we have σ �w ρ if and only if σ ⊗ 1n

n �w ρ⊗
1n

n .

Proof. If σ �w ρ, then the majorization passes over the
tensor product, and thus proves the claim. Conversely, if
σ ⊗ 1n

n �w ρ⊗
1n

n , then in particular, for any k 6 d,

n·k∑
i=1

λ↓i (
1n

n ⊗ σ) >
n·k∑
i=1

λ↓i (
1n

n ⊗ ρ) . (42)

(d is the maximum rank of σ or ρ.) But λ↓in(1nn ⊗ σ) =
1
nλ
↓
i (σ) and thus

k∑
i=1

λ↓i (σ) >
k∑
i=1

λ↓i (ρ) .

The following proposition is a direct consequence of the
definition of lambda-majorization, and just states that
you can move around randomness into or out of the an-
cillas in the definition of lambda-majorization.

Proposition 10. For any σ ∈ P(HX), ρ ∈ P(HY ),
and for any λ ∈ R, n > 0, we have

1
n1n ⊗ σ

λ−→ ρ ⇔ σ
λ+logn−−−−−→ ρ
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and

σ
λ−logn−−−−−→ ρ ⇔ σ

λ−→ 1
n1n ⊗ ρ .

Similarly to Thm. 6 and to Prop. 7, it is possible to
characterize lambda-majorization by the existence of a
matrix relating the vector of eigenvalues that satisfies
some specific normalization conditions.

Proposition 11. Let σ ∈ P(HX) and ρ ∈ P(HY ).

Then σ
λ−→ ρ if and only if there exists a dY × dX matrix

T k
i such that λi(ρ) =

∑
k T

k
i λk(σ), satisfying T k

i > 0,∑
i T

k
i 6 1, and

∑
k T

k
i 6 2−λ .

Proof of Prop. 11. Suppose 2−λ11A ⊗ σ �w 2−λ21B ⊗ ρ
with λ = λ1−λ2. Then there exists a doubly substochas-
tic matrix S ak

bi such that

λbi
(
2−λ21B ⊗ ρ

)
=
∑
ak

S ak
bi λak

(
2−λ11A ⊗ σ

)
,

with S ak
bi > 0,

∑
bi S

ak
bi 6 1 and

∑
ak S

ak
bi 6 1. (Indices

a and b refer to the mixed ancillas of respective sizes 2λ1

and 2λ2 . Since we are considering weak submajorization,
we can safely ignore all zero eigenvalues and consider only
the subspaces (of different sizes on the left and right hand
side of the majorization) on which σ, ρ, 1A and 1B have
support, as in Prop. 7.)

Now we have

λi
(
ρ
)

=
∑
b

λbi
(
2−λ21B ⊗ ρ

)
=
∑
a b k

S ak
bi λak

(
2−λ11A ⊗ σ

)
=
∑
k

(∑
ab

2−λ1 S ak
bi

)
λk (σ) ,

so one can define

T k
i =

∑
ab

2−λ1 S ak
bi ,

which fulfills λi
(
ρ
)

=
∑
k T

k
i λk

(
σ
)
. Because S is doubly

substochastic, and using the fact that indices a (resp. b)
range to 2λ1 (2λ2), the matrix T satisfies∑

i

T k
i =

∑
i a b

2−λ1S ak
bi =

∑
a

2−λ1

∑
bi

S ak
bi 6 1 ,

as well as∑
k

T k
i =

∑
k a b

2−λ1S ak
bi =

∑
b

2−λ1

∑
ak

S ak
bi

6
∑
b

2−λ1 = 2−λ .

Additionally, T k
i > 0 because S ak

bi > 0.
Conversely, suppose that a matrix T k

i exists, with

T k
i > 0,

∑
i T

k
i 6 1,

∑
k T

k
i 6 2−λ, and λi(ρ) =∑

k T
k
i λk(σ). Let λ1, λ2 such that λ = λ1 − λ2 and

such that 2λ1 , 2λ2 are integers. Then let S ak
bi = 2−λ2T k

i

for all a, b. Then S ak
bi > 0 and S satisfies∑

ak

S ak
bi = 2−λ2

∑
ak

T k
i 6 2−λ2

(∑
a

1
)

2−λ = 1 ,

as well as∑
bi

S ak
bi = 2−λ2

∑
bi

T k
i 6 2−λ2

(∑
b

1
)

= 1 .

The required weak submajorization for the desired
lambda-majorization is provided by this doubly sub-
stochastic matrix,

λbi
(
2−λ21B ⊗ ρ

)
= 2−λ2λi

(
ρ
)

= 2−λ2

∑
k

T k
i λk

(
σ
)

= 2−λ2

∑
k

T k
i

∑
a

λak
(
2−λ11A ⊗ σ

)
=
∑
ak

S ak
bi λak

(
2−λ11A ⊗ σ

)
.

B. Formulation of Lambda-Majorization in Terms
of Maps

Majorization can also be characterized in terms of uni-
tal, trace-preserving completely positive maps [96–99].

Proposition 12. Two positive semidefinite matrices σ
and ρ satisfy σ � ρ if and only if there exists a trace-
preserving, unital, completely positive map E satisfying
E (σ) = ρ.

Similarly, one can prove an analogous characterization
of weak submajorization. The proof of this proposition
will be given later.

Proposition 13. Let σ ∈ P(HX) and ρ ∈ P(HY ).
Then σ �w ρ if and only if there exists a completely
positive map EX→Y : L (HX) → L (HY ) such that
EX→Y (σ) = ρ, with E satisfying EX→Y (1X) 6 1Y and

E†X→Y (1Y ) 6 1X .

Let’s say that EX→Y is subunital if EX→Y (1X) 6 1Y .
Then the two conditions on the structure of the map
EX→Y in the above proposition require the map to be
subunital and trace-nonincreasing.

A subunital trace-nonincreasing completely positive
map can always be seen as part of a unital, trace-
preserving completely positive map on a larger Hilbert
space. This is analogous of the result that doubly sub-
stochastic matrices are submatrices of stochastic matri-
ces [94].

In the following, let 1X→Z (resp. 1Y→Z) denote the
canonical embedding isometry, and define 1Z→X (resp.
1Z→Y ) as the canonical projection partial isometry. Let
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also 1X (resp. 1Y ) be the projector onto the subspace
HX (resp. HY ) within HZ .

Proposition 14. Let EZ→Z be a unital, trace-preserving
completely positive map. Let HX and HY be two
subspaces of HZ . Then the map E ′X→Y (·) =
1Z→Y EZ→Z (1X→Z (·)1Z→X)1Y→Z is subunital and
trace-nonincreasing.

Conversely, let HX and HY be two finite-dimensional
Hilbert spaces and let E ′X→Y be any trace-nonincreasing,
subunital completely positive map. Then there exists
a finite-dimensional Hilbert space HZ with isometries
1X→Z , 1Y→Z and partial isometries 1Z→X , 1Z→Y , and
a completely positive, unital, trace-preserving map EZ→Z ,
such that

E ′X→Y (·) = 1Z→Y EZ→Z (1X→Z (·)1Z→X)1Y→Z .
(43)

The space HZ and map EZ→Z may be chosen as HZ =
HX ⊕HY and

EZ→Z (·) =

1Y→Z E ′X→Y (1Z→X (·)1X→Z)1Z→Y

+ 1X→Z E ′† (1Z→Y (·)1Y→Z)1Z→X

+ 1Y→Z
√
GY 1Z→Y (·)1Y→Z

√
GY 1Z→Y

+ 1X→Z
√
HX 1Z→X (·)1X→Z

√
HX 1Z→X , (44)

where GY = 1Y −E ′X→Y (1X) and HX = 1X −E ′† (1Y ).
The space HZ may also be chosen to be any space big-

ger than HX ⊕HY .

In order to generalize this concept to our lambda-
majorization, let’s introduce the concept of an α-
subunital map. These generalize the notion of subunital
maps to arbitrary normalizations.

α-subunital Maps. We’ll call a map TX→Y α-subunital
if it satisfies TX→Y (1X) 6 α1Y .

Proposition 15 (Composition of α-subunital maps).
Let HW ∈ HZ be another subspace of HZ in addition
to HX and HY , and let TX→Y , T ′Y→W be completely
positive, trace-nonincreasing maps. Assume that TX→Y
is α-subunital and that T ′Y→W is β-subunital. Then their
composition [T ′ ◦ T ]X→W is α · β -subunital.

Proof of Prop. 15. The composition of TX→Y and T ′Y→W
is trace-nonincreasing,

T †
(
T ′† (1W )

)
6 T † (1Y ) 6 1X .

Their composition is also α · β -subunital,

T ′Y→W (TX→Y (1X)) 6 T ′Y→W (α1Y ) 6 αβ 1W .

Remark 16. Let VX→Y be a partial isometry. Then the

map (·)X −→ VX→Y (·)X V
†
X←Y is trace-nonincreasing

and subunital.

In particular, if TZ→Z is a 2−λ-subunital, trace-
nonincreasing map, then TX→Y , defined by TX→Y (·) =
1Z→Y TZ→Z (1X→Z (·)1Z→X)1Y→Z , is also a trace-
nonincreasing 2−λ-subunital map.

Proof of Prop. 14. The remark proves the first part of
the proposition. To prove the converse, we will show
that the expression (44) satisfies the conditions of the
claim. Notice first that the channel EZ→Z is equal to its

own adjoint, i.e. EZ→Z = E†Z→Z . Moreover, the map is
unital:

EZ→Z (1Z) = 1Y→Z (1Y −GY )1Z→Y

+ 1X→Z (1X −HX)1Z→X

+ 1Y→Z GY 1Z→Y

+ 1X→Z HX 1Z→X

= 1Y + 1X = 1Z , (45)

which makes it automatically trace-preserving, the map
being its own adjoint. Condition (43) follows from the
definition of EZ→Z in (44).

If we choose HZ to be any space larger than HX⊕HY ,
we can adapt the definition of EZ→Z in (44) and add a
term 1

⊥
X⊕Y (·) 1⊥X⊕Y (the operator 1⊥X⊕Y projects onto

the orthogonal subspace to HX⊕HY in HZ). In this case
EZ→Z would still satisfy all the required properties.

We now have all the necessary tools to prove Proposi-
tion I of the Main Text.

Proposition 17 (Proposition I of the Main Text). Let
HK and HL be finite dimensional Hilbert spaces, and let
E ′K→L be a completely positive, trace-nonincreasing, sub-
unital map. Then there exists finite dimensional Hilbert
spaces HQ and HQ′ , and a completely positive, trace-
preserving, unital map EKQ→LQ′ such that

E ′K→L (·) = (1L ⊗ 〈f|Q′) ·
EKQ→LQ′ [(1K ⊗ |i〉Q) (·) (1K ⊗ 〈i|Q)]

· (1L ⊗ |f〉Q′) , (46)

for some pure states |i〉Q, |f〉Q′ . In addition,
dim (HK ⊗HQ) = dim (HL ⊗HQ′).

Proof. Apply the converse in Prop. 14 to dilate the sub-
unital map E ′K→L to a unital map EZ→Z (take HX = HK

and HY = HL).
We may choose HZ = HX ⊕HY ⊕HW , where HW is

a space whose dimension we haven’t yet fixed. We would
like the space HZ to factorize as both

HZ = HK ⊗HQ ; (47)

HZ = HL ⊗HQ′ , (48)

for some systems HQ and HQ′ . A necessary and suffi-
cient condition for that is

dim (HZ) = dim (HK)× dim (HQ) ; (49)

dim (HZ) = dim (HL)× dim (HQ′) , (50)
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where dim (HZ) = dim (HX) + dim (HY ) + dim (HW ).
We thus fix the dimension of HZ to be

dim (HZ) = m× lcm (dim (HK) ,dim (HL)) , (51)

where lcm (·, ·) designates the least common multiple of
its arguments and m is some integer chosen such that
dim (HZ) > dim (HK) + dim (HL). We have now fixed
dim (HZ), and this in turn implicitly fixes the dimension
of HW .

This choice of HZ = HK ⊗HQ = HL ⊗HQ′ fixes
the embedding isometries 1K→Z , 1L→Z , and projective
partial isometries 1Z→K , 1Z→L, as

1X→Z = 1X→K ⊗ |i〉Q ; 1Y→Z = 1Y→L ⊗ |f〉Q′ ;

1Z→X = 1K→X ⊗ 〈i|Q ; 1Z→Y = 1L→Y ⊗ 〈f|Q′ ,

for some fixed states |i〉Q, |f〉Q′ .
The right hand side of (46) is

(1L ⊗ 〈f|Q′) ·
EKQ→LQ′ [(1K ⊗ |i〉Q) (·) (1K ⊗ 〈i|Q)]

· (1L ⊗ |f〉Q′)
= 1Z→Y EZ→Z [1X→Z (·)1Z→X ] 1Y→Z

= E ′X→Y (·) .

We have used the above definition of the embedding and
projection (partial) isometries, and applied (43). This
proves condition (46).

Note that any choice of EKQ→LQ′ which would sat-
isfy the conditions of the Proposition would require that
dim (HK ⊗HQ) = dim (HL ⊗HQ′). Indeed, a unital,
trace-preserving completely positive map may only exist
if the dimensions of the input and output spaces match:
with E (1KQ) = 1LQ′ and E trace-preserving we have
that tr (1KQ) = tr1LQ′ and thus that the dimensions
are equal.

Proof of Prop. 13. By the weak submajorization condi-
tion, if tr ρ 6= trσ, we must have tr ρ < trσ. Consider an
extension space HY ′ ∈HZ (consider a larger HZ if nec-
essary) in which we extend ρ by many small eigenvalues
such that tr ρY⊕Y ′ = trσ, while still having σ �w ρY⊕Y ′ .
Now we have a (regular) majorization, σ � ρY⊕Y ′ , and
can apply Prop. 12.

The obtained map, EZ→Z , is then unital and trace-
preserving. It can be restricted by projecting the input
onto HX and the output onto HY ,

EX→Y (·) = 1Y EZ→Z
(
1X (·)1X

)
1Y .

This restricted operator, by Remark 16, is a valid trace-
nonincreasing subunital map (take λ = 0).

Conversely, if EX→Y is a subunital trace-nonincreasing
completely positive map with EX→Y (σ) = ρ, then
one can dilate it with Proposition 14 to a uni-
tal, trace-preserving completely positive map EZ→Z
such that 1Y EZ→Z (σ ⊕ 0Y )1Y = ρ. Note also

that the map (·) 7→ 1Y (·)1Y + 1X (·)1X is a
pinching [94, p. 50, Prob. II.5.5], so we have σ ⊕
0Y � EZ→Z (σ ⊕ 0Y ) � 1XEZ→Z (σ ⊕ 0Y )1X +
1Y EZ→Z (σ ⊕ 0Y )1Y �w 1XEZ→Z (σ ⊕ 0Y )1X = ρ.
The last weak submajorization is because some eigen-
values were left out.

In the same way as lambda majorization can be charac-
terized with differently normalized doubly substochastic
maps, it can also be characterized in terms of a differently
normalized subunital map.

Proposition 18. Let σ ∈ P(HX), ρ ∈ P(HY ) and

λ ∈ R. Then σ
λ−→ ρ if and only if there exists a

completely positive map TX→Y : L (HX) → L (HY )
such that TX→Y (σ) = ρ, that is 2−λ-subunital and trace-
nonincreasing.

Proof of Prop. 18. “⇒”. Assume first that 2−λ11A ⊗
σ �w 2−λ21B ⊗ ρ, with HA, HB (of respective sizes 2λ1

and 2λ2) being subsystems of an ancilla system HC , with
λ = λ1 − λ2.

By Prop. 13, there exists a subunital trace-
nonincreasing completely positive map EAX→BY , such
that

EAX→BY (2−λ11A ⊗ σ) = 2−λ21B ⊗ ρ . (52)

Now let the map T be defined by

TX→Y (·) = trB
[
EAX→BY

(
2−λ11A ⊗ (·)

)]
. (53)

This map is trace-nonincreasing,

T †X←Y (1Y ) = 2−λ1 trA

[
E†AX←BY (1BY )

]
6 2−λ1 trA (1AX) = 1X ,

and 2−λ-subunital,

TX→Y (1X) = 2−λ1 trB [E (1AX)] 6 2−λ1 trB 1BY

= 2−λ1Y .

The map T brings σ to ρ,

TX→Y (σX) = trB
[
E
(
2−λ11A ⊗ σX

)]
= trB

(
2−λ21B ⊗ ρY

)
= ρY ,

so that T satisfies all the claimed properties.
“⇐”. To prove the converse, assume that a trace-

nonincreasing, 2−λ-subunital map TX→Y exists, such
that TX→Y (σ) = ρ.

Choose λ1, λ2 such that λ = λ1 − λ2 and such that
2λ1 , 2λ2 , are integers. (Again, in case 2λ is irrational,

approximate 2λ arbitrarily well by rational numbers 2λ
′
.)

Choose HC large enough to contain two subspaces HA

and HB of respective dimensions 2λ1 and 2λ2 . Let

EAX→BY (·) = 2−λ21B ⊗ TX→Y (trA (·)) . (54)
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This map is trace-nonincreasing,

E† (1BY ) = 2−λ21A ⊗ T † (trB 1BY )

= 2−λ21A ⊗ T †
(
2λ21Y

)
6 1AX ,

and subunital,

E (1AX) = 2−λ21B ⊗ T (trA 1AX)

= 2−λ21B ⊗ T
(
2λ11X

)
6 1BY ,

since λ = λ1 − λ2 and T is 2−λ-subunital. Also,

E
(
2−λ11A ⊗ σX

)
= 2−λ21B ⊗T

(
trA

(
2−λ11A ⊗ σX

))
= 2−λ21B ⊗ T (σX) = 2−λ21B ⊗ ρY .

By Prop. 13, we eventually have

2−λ11A ⊗ σX �w 2−λ21B ⊗ ρY .

Remark 19. A trace-nonincreasing, 2−λ-subunital com-
pletely positive map TX→Y can always be written as in
Eq. (53) for a sub-unital trace-nonincreasing completely
positive map EAX→BY , which itself can always be written
as projections of a unital map ECZ→CZ (see text of the
previous proof, and Prop. 14).

Conversely, for any unital map ECZ→CZ with
E
(
2−λ11⊗ σX

)
= 2−λ21 ⊗ ρY , in particular for any

noisy operation in our framework, the map T obtained
by Eq. (53) is trace-nonincreasing and 2−λ-subunital.

In particular, for our purposes of optimizing λ over all
possible processes of our framework with an additional
condition to the map carrying out the process (namely
to preserve correlations between our system X and the
reference system R), we may impose that condition di-
rectly on the map T to obtain an upper bound on λ.

C. Properties for quantum states

We will consider in this section some useful properties
of lambda-majorization in the case where we consider
normalized states σ, ρ. Here, weak majorization auto-
matically implies (regular) majorization because trσ =
tr ρ = 1.

In this section, let σ ∈ S=(HX) and ρ ∈ S=(HY ).

Proposition 20 (Lambda-Majorizing a Pure State).

For any pure state |0〉 ∈ HZ , we have σ
λ−→ |0〉〈0| if and

only if rankσ 6 2−λ (obviously λ has to be negative or
zero). Equivalently, σ � 1

n1n if and only if rankσ 6 n.

Proof of Prop. 20. Assume first that σ
λ−→ |0〉〈0|. Here

HY is the one-dimensional space spanned by |0〉, and
take HX the subspace on which σ has its support. By
Prop. 11 there exists a single-row matrix T k

i satisfying
T k
i > 0,

∑
i T

k
i = T k

i=1 6 1 ∀k,
∑
k T

k
i 6 2−λ such

that 1 = λi=1(|0〉〈0|) =
∑
k T

k
i=1λk(σ). We also have

λk(σ) 6= 0 because σ has nonzero eigenvalues in HX .
Then

∑
k T

k
i=1λk(σ) = 1 =

∑
k λk(σ) implies T ki=1 =

1 ∀k. That is, the condition
∑
k T

k
i=1 6 2−λ forces T k

i=1

to have at most 2−λ elements, i.e. the rank of σ may not
exceed 2−λ.

The converse holds because any state majorizes a uni-
form state of the same rank.

Proposition 21 (Condition on Support Sizes for Lamb-

da-Majorization). If σ
λ−→ ρ, then rankσ 6 2−λ rank ρ.

Proof of Prop. 21. Notice that ρ � 1
rank ρ1rank ρ, and

thus σ
λ−→ 1

rank ρ1rank ρ. Then, by Prop. 10 we have

σ
λ−log rank ρ−−−−−−−−→ |0〉〈0| ;

it remains to apply Prop. 20.

Proposition 22 (Being Lambda-Majorized by a Pure
State). Let the state ρ have maximum eigenvalue

λmax(ρ). For any pure state |0〉, we have |0〉〈0| λ−→ ρ
if and only if λmax(ρ) 6 2−λ. Equivalently, 1

n1n � ρ if

and only if λmax(ρ) 6 1
n .

Proof of Prop. 22. Let T k
i be as in Prop. 11. Note here

k only takes value 1, because we consider HY being the
one-dimensional space spanned by |0〉. Then λi(ρ) =∑
k T

k
i λk(|0〉〈0|) = T k=1

i and thus T k
i = λi(ρ). Then

2−λ >
∑
k T

k
i = T k=1

i = λi(ρ) for all i. In particular,
2−λ > λmax(ρ).

Conversely, if λmax(ρ) 6 2−λ, then let T k=1
i = λi(ρ).

This matrix T satisfies the conditions in Prop. 11 and

thus |0〉〈0| λ−→ ρ.

D. Optimal Lambda Majorization for Normalized
States and Relation to Single-Shot Entropy

Measures

Define the absorbed randomness (or relative mixed-
ness [59]) of a transition from σ to ρ as the maximal
amount of randomness that you can get rid of, or the
minimal amount of randomness that you have to gener-
ate, in a noisy operation process:

R(σ → ρ) = sup
{
λ : σ

λ−→ ρ
}
. (55)

Recent work has shown that this measure is relevant
for the amount of extractable work of processes acting on
arrays of Szilard boxes [59].

The absorbed randomness has some tight relations
to single-shot entropy measures, which we present here.
These are reformulations of results shown in [55, 58].

Proposition 23. The absorbed randomness defined
above satisfies the following bounds.

Hmin(ρ)−H0(σ) 6 R(σ → ρ) 6 H0(ρ)−H0(σ) .
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Proposition 24. If |0〉 denotes any pure state, then the
following relations hold:

R(|0〉 → ρ) = Hmin(ρ) , (56)

R(σ → |0〉) = −H0(σ) . (57)

Similar explicit values can be obtained in the case
where either the initial state or the target state is mixed.

Proposition 25. If 1n

n denotes the fully mixed state on
log n qubits, then:

R(1nn → ρ) = Hmin(ρ)− log n , (58)

R(σ → 1n

n ) = log n−H0(σ) . (59)

Proof of Prop. 23. Lower bound: Let λ1 = Hmin(ρ) =
− log λmax(ρ) and λ2 = H0(σ) = log rankσ. By Propo-
sition 22, we have 2−λ112λ1 � ρ and by Proposition 20,
σ � 2−λ212λ2 . The majorization carries over to the ten-

sor product, 2−λ112λ1 ⊗ σ � 2−λ212λ2 ⊗ ρ, and λ1 − λ2

is a valid maximization candidate for (55).

Upper bound: Let λ = R(σ → ρ) satisfying σ
λ−→ ρ.

Proposition 21 immediately yields 2λ 6 rank ρ
rankσ , and

R(σ → ρ) = λ 6 log rank ρ− log rankσ .

Recalling the definition of the Rényi-0 entropy H0(σ) =
log rankσ yields the required upper bound.

Proof of Prop. 24. Equation (57) follows from the
bounds of Proposition 23, which become tight in this
special case. Equality (56) is a direct consequence of
Prop. 22.

Proof of Prop. 25. The bounds of Proposition 23 become
tight for (59). Equality (58) is again a consequence of
Prop. 22, recalling Prop. 10 which allows us to write

|0〉〈0| λ+logn−−−−−→ ρ instead of 1n

n

λ−→ ρ.
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