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Supplementary Figure 1. STEM-EDX analysis for Zn distribution in an indicated area 

shown in Figure 4b. For the STEM-EDX characterization experiments, the BKZn crystals 

were firstly cleaved into flakes with thicknesses from 100 to 400 nm, and the as-prepared 

BKZn flakes were crushed and dispersed in ethanol before dropped onto a carbon film 

supported TEM grid. High angle annular dark field scanning transmission electron 

microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy (EDX) were 

performed using a FEI Titan "cubed" microscope, equipped with an aberration corrector for 

the probe-forming lens and a Super-X EDX detector, operated at 200 kV. The convergence 

semi-angle was approximately 21.3 mrad. 
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Supplementary Figure 2. (a) Resistance R vs temperature T  for the undoped 

Ba0.5K0.5Fe2As2 microbridge and nanobridge BK-N1 (W = 340 nm, h = 105 nm). (b) 

Current-voltage characteristics (IVCs) of the nanobridge BK-N1, measured at variable T in 

zero magnetic field. The shape of the IVCs in the voltage state is typical for a flux-flow 

process, and switching from the superconducting to the voltage state yields critical current 

densities Jc=20.06, 17.19, and 14.23 MA/cm2, for T = 33.0, 33.5 and 34.0 K, respectively. 

These values are in accordance with the depairing current density of BK microbridges [1]. 

The IVCs are monotonic with absence of any intermediate state.  

 

 

 
Supplementary Figure 3. Temperature-dependent magnetoresistance R for the nanobridge 

BKZn-N3 with cross-section of 165×244 nm2. The magnetic field is ranging from 0 to 8 T 

and applied in the ab-plane for (a) and along the c-axis for (b). The bias currents were 10 μA 

for all measurements. The Rab(T, H) shows slightly anisotropic Tc suppression. 
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Supplementary Figure 4. Temperature-dependent 2cH  and   for nanobridge BKZn-N3. 

Here the 2cH  is defined from the resistivity transition points at 90% of ρn(29 K) in 

Supplementary Figure 3, and ab  is estimated by the Ginzburg-Landau formula for an 

anisotropic three-dimensional superconductor    THT c
cab 20 2  . We also fit  Tc  

by Ginzburg-Landau (GL) theory,      TTHT ab
ab
cc  20 2  as shown by the orange line. 

Hence, we can roughly estimate ab (0 K) = 2.15 nm and c (0) = 1.20 nm. 
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Supplementary Figure 5. Temperature-dependent magnetoresistance for a 

Ba0.5K0.5Fe1.94Zn0.06As2 microbridge with thickness of 221 nm. The magnetic pulsed field is 

up to 52 T, and applied along the c-axis. The bias currents were 100 μA for all measurements. 
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Supplementary Figure 6. Temperature dependence of R for Ba0.5K0.5Fe1.94Zn0.06As2 

microbridges with thicknesses h of 49.2, 141.4, 371.8, 415.5, and 479.5 nm. For the relatively 

large h of 479.5 nm, the Tc-onset is 28 K and the transition width ΔTc is ~0.5 K, suggesting a 

bulk-like property. For h = 371.8 and 415.5 nm, the R(T) curves demonstrate a weak step 

after the sharp drop from Tc -onset. When h is reduced to 141.4 nm, a pronounced 

plateau-like step is observed at 90% of the normal state resistance Rn, and the width of the 

plateau is as long as 3.5 K. Further reducing h till 49.2 nm, one can obtain about seven steps. 
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Supplementary Figure 7. Current density dependent voltage characteristics (JVCs) for the 

microbridges with width of 2 μm, and h of 141.4 nm for (a) and 49.2 nm for (b). The colored 

arrows indicate current bias increasing and decreasing process.  

 

 
Supplementary Figure 8. Order parameter distribution, with axes on the left, and electrical 

potential, with axes on the right, along the one dimensional domain, corresponding to j = 

0.4j0. 
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Supplementary Figure 9. Electrical potential as function of the applied current for a one 

dimensional superconductor with length, L = 150ξ0. Right to left (left to right) arrows indicate 

that the I-V curve below the arrows was taken starting at a high (low) value of current, 

slightly above critical current (much below critical current). 

 

Supplementary Note 1: phase-slips in superconducting BKZn microbridges 

At 21 K, the voltage state of the 141.4 nm thick microbridge (see Supplementary 

Figure 7(a)) is switched from the superconducting to the normal state directly with absence 

of flux-flow process, and the critical current density Jc shows a high value of 4.3 MA/cm2, 

which is close to the Ginzburg-Landau depairing current density GL
dpJ [1]. When the current is 

swept down, the voltage retraps from the normal to superconducting states, followed by a 

hysteretic resistance state. After slightly increasing T to 22 K, current sweep-up leads to  

voltage jumps from superconducting to the hysteretic resistance state with a slight flux-flow 

[4], and then to the normal state. The returning branch locates on the hysteretic resistance 

state as well. For the thinner microbridges with h = 49.2 nm, successive steps are observed 

for both current sweep-up and sweep-down processes as shown in Supplementary Figure 7(b). 

The single and multiple steps on the JVCs are consistent with that of the R(T) curves for each 

microbridge, indicating the presence of phase-slip center(s) or line(s). On the other hand, the 

pronounced hysteresis on JVCs exhibits the kinetics of the Joule heat liberated or absorbed 

processes, which dominate the instantaneous dissipations of local temperature of the 

mesoscopic system and result in heat-flow. Consequently, they can feed back to influence the 
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phase-slip kinetics (see Tinkham et al. [5] and Pekker et al. [6]). 

 

Supplementary Note 2: simulations on the phase-slips in superconducting nanowires 

A nanowire with the width (W) and height (h) of the order of ξ(T) and length L >> ξ, can 

be consider as nearly one-dimensional object. If we apply to it a current slightly below 

critical current we may obtain a phase slippage that can be observed as a jump in the I-V 

curves [7]. This is called a phase slip center since it is located on a point of the nearly 

one-dimensional nanowire [7]. In thicker nanowires, where W >> ξ(T), phase slips were also 

observed when W<< λeff [8] which present similar I-V curves to the ones of phase slip centers. 

These are phase slips lines along which the order parameter is zero. One of the most 

noticeable features of phase slips, when compared to other dissipation mechanisms, is the 

hysterical behavior in the I-V curves. For example, changes in conductivity due to fluctuation 

mechanisms, e.g. Aslamazov-Larkin and Maki-Thompson, do not present hysteric behavior 

in I-V curves since they are statistical corrections to the average value of conductivity that 

depend only on thermodynamical conditions [9], like temperature. 

In our samples, like BKZn-N1, the length is of the order of hundreds of ξ and the width 

and height are of the order of tenths of ξ. We are far from the thin nanowire regime, although 

λeff(T) >> W, in the BKZn-N1 case 2λ2(0)/h = 635 nm. As discussed before in this article and 

as proposed in Ref. [9] and corroborated with experimental evidences, the charge carriers 

around Zn impurities do not participate in the superconducting condensate. Considering that 

the order parameter has zero value in the point of each impurity and since the magnitude of 

the order parameter can only change within its characteristic length scale, we can exclude the 

spherical regions with radius ξ around each impurity from the superconducting condensate. 

This creates a geometry/topology that resembles a “Swiss cheese” which gave the name to 

this model. In case of an applied current, the superconducting electrical charges are 

transported along 1D percolation channels shaped by the impurities in the samples. 

To study phase slips, we considering a similar model to the one presented in Ref. [10], 

that we will further describe. We solved the dimensionless generalized time dependent 

Ginzburg-Landau [11], 
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in a one-dimensional line of length L. In this equation Ψ is the order parameter, φ is the 

electrical potential, 

Ais the magnetic field, i is the imaginary constant, and γ and u are two 

phenomenological parameters related with the electron-phonon relaxation time and the 

cleanness/dirtiness of the sample, respectively. The generalized time-dependent 

Ginzburg-Landau equation is complemented by the equation for the electric field: 
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In these equations the length is given in units of  (0)  8k
B
T

c
D , where, T in units of Tc, 

Ψ in units of (0)  4k
B
T

c
u , (bulk value at zero temperature), φ in units of 


0
  2e

GL
0   , 


A  in units of 

0
2 0   , the current j is in units of 

j
0


n
 2e

GL
(0) (0), where kB, Tc,  ,

GL
(0) , σn are the Boltzmann constant, the critical 

temperature of the superconductor condensate, the Planck constant, the diffusion constant, the 

Ginzburg-Landau relaxation time at zero temperature and the normal state conductivity, 

respectively. Since are considering a one-dimensional geometry and λeff(T) >> W we can 

neglect the presence of magnetic field induced by the superconducting currents, i.e. 

A  0. 

Additionally “bridge” boundary conditions were applied to the ends of the one-dimensional 

line, i.e.  

 L / 2,t   1T  

 L,t  dt    L / 2,t ei L/2,t dt
 

 

and initial conditions were set  x,0   1T  and (x,0)  0. 

Simulations were made for parameters, L = 150ξ0, u = 5.79, T = 0, γ= 40. The value of γ 

is correlated with the relaxation time of the pairing mechanism. For this iron-based 

superconductor γ = 40 corresponds to a realistic order of magnitude for this parameter. 

Supplementary Figure 8 presents a snapshot the order parameter distribution and the 

electrical potential along the domain. The order parameter is highly depleted in a fix number 

of points, and as times passes the value of the order parameter in these points diminishes until 

it reaches zero. At this time a phase slip center is formed and later the value of the order 

parameter becomes finite and increases until it reaches a maximum value, marking the end of 

another periodic cycle. In Supplementary Figure 9, we can observe I-V curves taken from 

simulation for a fixed applied current. We note that in these units jc = 0.38j0. If we apply a 

current above critical current the order parameter starts to be spatially modulated and then 

later phase slips centers nucleate in the middle of the sample (due to symmetry reasons), and 

afterwards these centers become equally spaced and appear periodically in time. As we 

decrease current the period of oscillation becomes longer and the number of phase slips 

becomes lower until it reaches a critical value where all the phase slips disappear. However, 

 L / 2,t   0
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if we start by applying a low current (much below critical current) no signs of phase slips are 

shown and as we increase current, at some critical value, phase slip centers start to nucleate 

near the boundary of the sample. As the phase slip centers enter the sample a sudden increase 

on voltage is observed, as in an avalanche process, in opposition to what is observed in the 

process going from high to lower currents where the voltage drop with the current decrease is 

a much smoother process. We also experimented coupling the set of equations to the 

temperature diffusion equation, 
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in order to observe the influence of the thermal conductivity. In these equations,  
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where hc is the heat transfer coefficient, T0 is the applied temperature, Cs, Cf, ks and kf are the 

heat capacity and heat conductivity of the substrate and of the sample, respectively. The 

initial and boundary conditions applied to this equation were T(x, 0) = T0 and T(±L/2, t) = T0. 

In preliminary results, we observed an increase in the jumps when considering this equation. 

Furthermore, ref. [10] and Ref. [12] present studies on the behavior of phase slip centers 

when considering: coupling with the heat diffusion equation, non-uniform values of Tc and of 

width of the wire, the presence of defected. Fluctuation processes, such as thermal 

fluctuations, should be also taken into account on later studies, yet it is expected that they 

help nucleate phase slips centers that are, then, maintained by the applied electrical current. 

Comparing the theoretical study with the experimental curves, we conclude that the hysteretic 

and stair like behavior presented in the experimental I - V curves are watermark indications 

for phase slips centers/lines. However, from the simulation we could not reproduced the big 

steps in the I - V curves of Figure 2 of the main text. These big steps in the low to higher 

current and high to lower current curves are likely related to pinning of phase slip centers that 

increase the step characteristic of the I - V (with higher steps and larger plateaus) due the 

avalanche process of entering and leaving of phase slip centers. 
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