

Supporting Information © Wiley-VCH 2014

69451 Weinheim, Germany

Phosphide Delivery to a Cyclotrisilene**

Thomas P. Robinson, Michael J. Cowley, David Scheschkewitz,* and Jose M. Goicoechea*

anie_201409908_sm_miscellaneous_information.pdf

Supporting Information

Contents

- 1. Experimental section
- 2. Single crystal X-ray diffraction data
- 3. NMR spectra
- 4. ESI-MS spectra
- 5. UV-Vis spectra
- 6. IR spectrum
- 7. Computation details and MO-plots
- 8. References

1. Experimental section

<u>General synthetic methods.</u> All reactions and product manipulations were carried out under an inert atmosphere of argon or dinitrogen using standard Schlenk-line or glovebox techniques (MBraun UNIIab glovebox maintained at < 0.1 ppm H₂O and < 0.1 ppm O₂). [K(18-crown-6)][PCO] and $cSi_3(Tip)_4$ were synthesized according to a previously reported synthetic procedure.^[1,2] 2,2,2-crypt (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]hexacosane; VWR, 99%) was used as received after careful drying under vacuum. Hexane (hex; Sigma Aldrich HPLC grade), pentane (pent; Sigma Aldrich HPLC grade) benzene (Rathburn, HPLC grade), toluene (Sigma Aldrich HPLC grade) were purified using an MBraun SPS-800 solvent system. Tetrahydrofuran (THF; \geq 99.9%, Sigma Aldrich) was distilled over a sodium metal/benzophenone mixture. [D₈]-THF (Euriostop, 99.5%) and [D₈]tol (Sigma Aldrich, 99.6%) were dried over CaH₂ and vacuum distilled before use. All dry solvents were stored under argon in gas-tight ampoules. Additionally hexane, pentane, benzene, toluene and THF were stored over activated 3 Å molecular sieves.

Synthesis of $[K(2,2,2-crypt)][Si_3Tip_4PCO] ([K(2,2,2-crypt)][1])$. [K(18-crown-6)][PCO] (150 mg, 0.414 mmol) and 2,2,2-crypt (156 mg, 0.414 mmol) were combined in a Schlenk tube and dissolved in THF (5 mL). A solution of $cSi_3(Tip)_4$ (372 mg, 0.414 mmol) in THF (10 mL) was subsequently added. The resulting dark orange mixture was stirred for two hours after which all volatiles were removed *in vacuo*. The residue was washed with cold hexanes (3 × 5 mL). The remaining solid was extracted into toluene and filtered *via* cannula. The toluene was removed *in vacuo* and the oily residue extracted into hot hexane and filtered immediately. Upon standing at room temperature an orange precipitate of [K(2,2,2-crypt)][1] formed, which was isolated by decanting the supernatant solution. The product was purified by crystallisation from hot benzene. Yield: 208 mg (37%). Calculated for C₇₉H₁₂₈KN₂O₇PSi₃: C 69.17, H 9.40, N 2.04. Observed: C 66.99, H 9.02, N 2.08. Samples were found to be recurrently and reproducibly deficient in carbon. ³¹P{¹H} (202.38 MHz, [D₈]-THF, 298 K): δ (ppm) $-323.0 ({}^{1}J_{P-Si} \text{ satellites} = 97.9 \text{ Hz}). {}^{29}Si\{{}^{1}H\}$ (99.3 MHz, [D₈]-THF, 298 K,): δ (ppm) -1.8 (d, ${}^{2}J_{\text{Si-P}} = 19.6$ Hz), -10.9 (d, ${}^{1}J_{\text{Si-P}} = 97.9$ Hz), -16.1 (d, ${}^{1}J_{\text{Si-P}} = 94.9$ Hz). 1 H NMR (500 MHz, [D₈]THF, 298 K): δ (ppm) 7.05 (d, ${}^{4}J_{H-H} = 1.73$ Hz, 1H; Ar-CH), 6.90 (br s, 2H; Ar-CH), 6.84 (v br s, 2H; Ar-CH), 6.71 (d, ${}^{4}J_{H-H} = 1.46$ Hz, 1H; Ar-CH), 6.63 (d, ${}^{4}J_{H-H} =$ 1.73 Hz, 1H; Ar-CH), 6.57 (d, ${}^{4}J_{H-H} = 1.63$ Hz, 1H; Ar-CH), 4.99 (v br s, 1H; *i*Pr-CH), 4.63 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 4.49 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 4.05 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 3.56 (sept, ${}^{3}J_{H-H} = 6.7$ Hz, 1H; *i*Pr-CH), 3.45 (s, 12H; 2,2,2crypt), 3.42–3.40 (m, 12H; 2,2,2-crypt), 3.31 (sept, ${}^{3}J_{H-H} = 6.7$ Hz, 1H; *i*Pr-CH), 3.12 (sept, ${}^{3}J_{\text{H-H}} = 6.7$ Hz, 1H; *i*Pr-CH), 2.80–2.63 (m, 4H; 5 × *i*Pr-CH), 2.43–2.41 (m, 12H; 2,2,2crypt), 1.75 (d, ${}^{3}J_{H-H} = 6.7$ Hz, 3H; *i*Pr-CH₃), 1.54 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 1.51 (d, ${}^{3}J_{\text{H-H}} = 6.7$ Hz, 3H; *i*Pr-CH₃), 1.31 (v br s, 6H; 2 × *i*Pr-CH₃), 1.28 (d, ${}^{3}J_{\text{H-H}} = 6.7$ Hz, 3H; *i*Pr-CH₃), 1.25 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 1.18–1.10 (m, 30H; 10 × *i*Pr-CH₃), 1.04 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 0.56 (d, ${}^{3}J_{H-H} = 6.7$ Hz, 3H; *i*Pr-CH₃), 0.47 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 0.34 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 0.23 (v br s, 3H; *i*Pr-CH₃), 0.09 (d, ${}^{3}J_{H-H}$ = 6.4 Hz, 3H; *i*Pr-CH₃), -0.01 (d, ${}^{3}J_{H-H}$ = 6.4 Hz, 3H; *i*Pr-CH₃). ¹H NMR (499.9 MHz, [D₈]-THF, 253 K): δ (ppm) 7.04 (s, 1H; Ar-CH), 6.92 (s, 1H; Ar-CH), 6.90 (s, 2H; Ar-CH), 6.74 (s, 1H; Ar-CH), 6.71 (s, 1H; Ar-CH), 6.64 (s, 1H; Ar-CH), 6.57 (s, 1H; Ar-CH), 4.98 (br sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 4.60 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 4.48 (sept, ${}^{3}J_{H-H} = 6.7$ Hz; 1H, *i*Pr-CH), 4.01 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 3.50 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 3.44 (s, 12H; 2,2,2-crypt), 3.40–3.39 (m, 12H; 2,2,2-crypt), 3.29 (sept, ${}^{3}J_{H-H} = 6.7$ Hz, 1H; *i*Pr-CH), 3.09 (sept, ${}^{3}J_{H-H} = 6.4$ Hz, 1H; *i*Pr-CH), 2.78–2.62 (m, 4H; 5 × *i*Pr-CH), 2.40 (br s, 12H; 2,2,2-crypt), 1.74 (d, 3H; *i*Pr-CH₃, obscured by solvent), 1.55 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 1.49 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 1.41 (d, ${}^{3}J_{H-H} = 6.1$ Hz, 3H; *i*Pr-CH₃), 1.33 (d, ${}^{3}J_{H-H} = 6.1$ Hz, 3H; *i*Pr-CH₃), 1.26 (d, ${}^{3}J_{H-H} = 6.7$ Hz, 3H; *i*Pr-CH₃), 1.24–1.20 (m,

6H; $2 \times i$ Pr-CH₃), 1.20–1.08 (m, 27H; $10 \times i$ Pr-CH₃), 1.02 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 0.54 (d, ${}^{3}J_{H-H} = 6.7$ Hz, 3H; *i*Pr-CH₃), 0.45 (d, ${}^{3}J_{H-H} = 6.7$ Hz, 3H; *i*Pr-CH₃), 0.32 (d, ${}^{3}J_{H-H} =$ 6.7 Hz, 3H; *i*Pr-CH₃), 0.20 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃), 0.05 (d, ${}^{3}J_{H-H} = 6.7$ Hz, 3H; *i*Pr-CH₃), -0.06 (d, ${}^{3}J_{H-H} = 6.4$ Hz, 3H; *i*Pr-CH₃). ${}^{13}C{}^{1}H{}$ (125.8 MHz, [D₈]-THF, 298 K): δ (ppm) 222.7 (d, ${}^{2}J_{C-P} = 15.7$ Hz; C=O), 156.7 (br; Tip-C), 156.3 (Tip-C), 156.2 (Tip-C), 155.7 (Tip-C), 154.7 (Tip-C), 153.2 (Tip-C), 152.3 (Tip-C), 148.1 (Tip-C), 147.6 (Tip-C), 147.4 (Tip-C), 146.7 (Tip-C), 142.2 (Tip-C), 138.5 (Tip-C), 137.6 (d, ^{ts}J_{C-P} = 6.5 Hz; Tip-C), 135.8 (Tip-C), 122.0 (Tip-CH), 121.9 (Tip-CH), 121.5 (Tip-CH), 120.4 (Tip-CH), 120.2 (Tip-CH), 118.9 (Tip-CH), 71.0 (2,2,2-crypt), 68.2 (2,2,2-crypt), 54.5 (2,2,2-crypt), 39.3 (*i*Pr-CH), 36.3 (iPr-CH), 35.9 (br, iPr-CH), 35.8 (iPr-CH), 35.2 (iPr-CH), 35.1 (iPr-CH), 35.1 (*i*Pr-CH), 35.0 (*i*Pr-CH), 35.0 (*i*Pr-CH), 34.2 (*i*Pr-CH), 30.8 (d, ${}^{ts}J_{C-P} = 11.4$ Hz; *i*Pr-CH₃), 29.6 (*i*Pr-CH₃), 29.4 (d, ^{ts} $J_{C-P} = 11.4$ Hz; ^{*i*}Pr-CH₃), 28.8 (v br; ^{*i*}Pr-CH₃), 27.7 (*i*Pr-CH₃), 25.4* (iPr-CH₃), 24.7 (iPr-CH₃), 24.5 (iPr-CH₃), 24.4 (iPr-CH₃), 24.3 (iPr-CH₃), 24.2 (iPr-CH₃), 24.1 (*i*Pr-CH₃), 23.4 (*i*Pr-CH₃), 21.3 (*i*Pr-CH₃). (* Obscured by solvent). IR (Nujol): $v(CO) = 1584 \text{ cm}^{-1}$. UV-Vis (THF): $\lambda_{max}(\varepsilon) = 490 \text{ nm}$ (1462), 348 nm (10147), 282 nm (32930). ESI-MS (THF, negative mode): m/z 927.75 [Si₃Tip₄P]⁻ (18%), 955.80 $[Si_3Tip_4PCO]^-$ (100%*). No mass envelopes observed in the positive mode.

Note: The ¹H NMR spectrum reveals a dynamic process for the two Tip groups of the $Si(Tip)_2$ centre, not unlike the one previously reported for $cSi_3(Tip)_4$. This fluxional behaviour was resolved at 253 K (however extensive overlap of resonances in the VT ¹H NMR spectra precludes the calculation of activation parameters).

<u>Synthesis of $[K(18\text{-}crown-6)][Si_3Tip_4P]$ ([K(18-crown-6)][2]).</u> [K(18-crown-6)][PCO] (75 mg, 0.207 mmol) and $cSi_3(Tip)_4$ (185 mg, 0.207 mmol) were combined in an air-tight ampoule and toluene (15 mL) was added at -30 °C. The solution was maintained at -30 °C

for 2 hours after which it was slowly warmed to room temperature and stirred for a further 12 hours. The resulting blue/green solution contains a mixture of compounds 1 and 2 in a ratio of ca. 1:4. To completely drive the reaction towards the formation of 2, the solution was irradiated using a 600 W broadband UV lamp for *ca*. 6 hours with progress monitored by ³¹P NMR spectroscopy. When conversion was complete the solution was filtered via cannula and all volatiles were removed in vacuo affording a green/blue oil. The oil was dissolved in pentane (10 mL) with minimal stirring and left to stand at room temperature for 12 hours yielding dark blue crystals of [K(18-crown-6)][Si₃Tip₄P], which were isolated by decanting the supernatant solution. Yield = 115 mg (45%). Diffraction quality single-crystals were grown from toluene at -35 °C. Calculated for C₇₂H₁₁₆KO₆PSi₃: C 70.19, H 9.49, N 0.00. Observed: C 70.06, H 9.35, N 0.00. ³¹P{¹H} (202.4 Hz, [D₈]-THF, 298 K,): δ (ppm) -56.6 $({}^{1}J_{P-Si} \text{ satellites} = 138.2 \text{ Hz}, {}^{1}J_{P-Si} \text{ satellites} = 72.5 \text{ Hz}). {}^{29}Si\{{}^{1}H\}$ (99.3 MHz, [D₈]-THF, 298 K): δ 193.1 (d, ${}^{1}J_{\text{Si-P}} = 138.2 \text{ Hz}$), -14.9 (d, ${}^{1}J_{\text{Si-P}} = 72.5 \text{ Hz}$), -39.9 (d, ${}^{2}J_{\text{Si-P}} = 35.4 \text{ Hz}$). ³¹P{¹H} (202.4 Hz, [D₈]-Tol, 298 K): δ (ppm) -93.9 (¹J_{P-Si} = 129.2 Hz, ¹J_{P-Si} = 65.6 Hz). ²⁹Si{¹H} (99.3 MHz, [D₈]-Tol, 298 K): δ (ppm) 187.7 (d, ¹J_{Si-P} = 128.8 Hz), -13.9 (d, ¹J_{Si-P}) = 65.1 Hz), -22.6 (d, ${}^{2}J_{\text{Si-P}}$ = 38.2 Hz). ¹H NMR (499.9 MHz, [D₈]-THF, 298 K): δ (ppm) 7.00 (br, 1H; Ar-CH), 6.90 (br, 1H; Ar-CH), 6.83 (s, 2H; Ar-CH), 6.65 (br s, 4H; Ar-CH), 6.48 (br, 1H; Ar-CH), 5.91 (br, 1H; *i*Pr-CH), 4.79 (v br, 2H; *i*Pr-CH), 4.71 (sept, ${}^{3}J_{H-H} = 6.7$ Hz, 2H; iPr-CH), 4.18 (br, 1H; iPr-CH), 3.53 (v br, 2H; iPr-CH), 3.51 (s, 24H; 18-crown-6), 2.74 (sept, ${}^{3}J_{H-H} = 6.9$ Hz, 1H; *i*Pr-CH), 2.67 (br sept, 2H; *i*Pr-CH), 2.62 (sept, ${}^{3}J_{H-H} = 6.9$ Hz, 1H; *i*Pr-CH), 1.50–1.21 (br, 3H; *i*Pr-CH₃), 1.43 (br, 6H; *i*Pr-CH₃), 1.36 (br, 6H; *i*Pr-CH₃), 1.28 (br, 12H; *i*Pr-CH₃), 1.21–0.99 (br, 9H; *i*Pr-CH₃), 1.18 (d, ${}^{3}J_{H-H} = 6.9$ Hz, 6H; *i*Pr-CH₃), 1.14 (br, d, 12H; *i*Pr-CH₃), 1.08 (d, ${}^{3}J_{H-H} = 6.9$ Hz, 6H; *i*Pr-CH₃), 0.76 (v br, 3H; *i*Pr-CH₃), 0.30 (br, 3H; *i*Pr-CH₃), 0.20 (br, 3H; *i*Pr-CH₃), 0.03 (br, 3H, *i*Pr-CH₃). ¹H NMR (499.9 MHz, [D₈]-THF, 233 K): δ (ppm) 7.00 (s, 1H; Tip-CH), 6.89 (s, 1H; Tip-CH), 6.83 (s, 2H; TipCH), 6.74 (broad s, 1H; Tip-CH), 6.63 (s, 2H; Tip-CH), 6.54 (broad s, 1H; Tip-CH), 6.46 (s, 1H; Tip-CH), 5.88 (sept, ${}^{3}J_{H-H} = 6.5$ Hz, 1H; *i*Pr-CH), 5.46 (broad s, 1H; *i*Pr-CH), 4.69 (broad m, 2H; *i*Pr-CH), 4.17 (sept, ${}^{3}J_{H-H} = 6.5$ Hz, 1H; *i*Pr-CH), 4.08 (broad s, 1H; *i*Pr-CH), 3.56–3.43 (m, 2H, *i*Pr-CH), 3.51 (s, 24H, 18-crown-6), 2.74 (sept, ${}^{3}J_{H-H} = 6.9$ Hz, 1H; *i*Pr-CH), 2.71–2.62 (m, 2H; *i*Pr-CH), 2.62 (sept, ${}^{3}J_{H-H} = 6.9$ Hz, 1H; *i*Pr-CH), 1.42 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 6H; *i*Pr-CH₃), 1.36–1.33 (m, 6H; *i*Pr-CH₃), 1.31 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 6H; *i*Pr-CH₃), 1.26 (d, ${}^{3}J_{H-H} = 6.9$ Hz, 6H; *i*Pr-CH₃), 1.17 (d, ${}^{3}J_{H-H} = 6.9$ Hz, 6H; *i*Pr-CH₃), 1.16–1.04 (m, 27H; *i*Pr-CH₃), 0.85 (br s, 3H; *i*Pr-CH₃), 0.27 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 3H; *i*Pr-CH₃), 0.16 (d, ${}^{3}J_{H-H} = 6.5$ Hz, 3H; *i*Pr-CH₃), 0.14 (broad s, 3H; *i*Pr-CH₃), -0.02 (d, ${}^{3}J_{H-H} = 6.45$ Hz, 3H; *i*Pr-CH₃). ¹³C{¹H} (125.8 MHz, [D₈]-THF, 238 K): δ (ppm) 156.0 (br, Tip-C), 155.8 (Tip-C), 154.1 (Tip-C), 153.9 (Tip-C), 153.4 (Tip-C), 153.2(Tip-C), 148.1 (Tip-C), 147.0 (Tip-C), 146.9 (Tip-C), 145.7 (d, J_{C-P} = 7.0 Hz, Tip-C), 145.4 (Tip-C), 145.2 (Tip-C), 144.5 (Tip-C), 141.9 (Tip-C), 122.3 (Tip-CH), 120.6 (Tip-CH), 120.5 (br, Tip-CH), 120.2 (Tip-CH), 119.9 (Tip-CH), 119.8 (Tip-CH), 70.9 (crown-CH), 37.4 (br, iPr-CH), 35.7 (iPr-CH), 35.5 (iPr-CH), 35.2 (*i*Pr-*C*H), 35.1 (br, *i*Pr-*C*H), 35.1 (*i*Pr-*C*H), 34.1 (*i*Pr-*C*H), 33.9 (*i*Pr-*C*H), 31.4 (d, J_{C-P} = 10.8 Hz), 28.0 (iPr-CH₃), 27.0 (iPr-CH₃), 26.5 (iPr-CH₃), 26.3 (iPr-CH₃), 26.2 (iPr-CH₃), 26.1 (*i*Pr-CH₃), 25.4* (*i*Pr-CH₃), 24.9 (*i*Pr-CH₃), 24.9 (*i*Pr-CH₃), 24.7 (*i*Pr-CH₃), 24.6–24.5 (m, *i*Pr-CH₃), 24.5 (*i*Pr-CH₃), 24.2 (*i*Pr-CH₃), 23.9 (*i*Pr-CH₃), 23.5 (*i*Pr-CH₃), 22.3 (*i*Pr-CH₃) (* Obscured by solvent). UV-Vis (THF): $\lambda_{max}(\epsilon) = 594$ nm (4697), 362 nm (7556). ESI-MS (THF, negative mode): m/z 928.11 [Si₃Tip₄P]⁻ (100%*).

Single crystal X-ray structure determination: Single-crystal X-ray diffraction data were collected using either an Oxford Diffraction Supernova dual-source diffractometer equipped with a 135 mm Atlas CCD area detector. Crystals were selected under Paratone-N oil, mounted on micromount loops and quench-cooled using an Oxford Cryosystems open flow

 N_2 cooling device. Data were collected at 150 K using mirror monochromated Cu K_a radiation ($\lambda = 1.5418$ Å; Oxford Diffraction Supernova) and processed using the CrysAlisPro package, including unit cell parameter refinement and inter-frame scaling (which was carried out using SCALE3 ABSPACK within CrysAlisPro).^[3] Equivalent reflections were merged and diffraction patterns processed with the CrysAlisPro suite. Structures were subsequently solved using direct methods and refined on F^2 using the SHELXL 2014-3 package.^[4]

Additional characterization techniques: ¹H, ¹³C, ³¹P and ²⁹Si NMR spectra were acquired at 499.9, 125.8, 202.4 and 99.2 MHz, respectively, on a Bruker AVIII 500 MHz NMR Spectrometer. ¹H and ¹³C NMR spectra were referenced to the most downfield solvent resonance (¹H NMR [D₈]-THF: δ = 3.58 ppm; ¹³C NMR [D₈]THF: δ = 67.2 ppm). ³¹P and ²⁹Si spectra were externally referenced to an 85% solution of H₃PO₄ in H₂O (δ = 0 ppm) and TMS (δ = 0 ppm), respectively.

Positive and negative ion mode electrospray ionization mass spectra were recorded on DMF solutions (10–20 μ M) on a Waters LCT Time of Flight mass spectrometer with a Z-spray source (150°C source temperature, 200°C desolvation temperature, 2.4 kV capillary voltage and 25 V cone voltage). The samples were made up inside a glovebox under an inert atmosphere and rapidly transferred to the spectrometer in an air-tight syringe. Samples were introduced directly with a 1 mL SGE syringe and a syringe pump at 0.6 mL h⁻¹.

Elemental analyses were carried out by Elemental Microanalyses Ltd. (Devon, U.K.). Samples (approx. 5 mg) were submitted in sealed Pyrex ampoules.

2. Single crystal X-ray diffraction data

Table	S1.	Selected	X-ray	data	collection	and	refinement	parameters	for	[K(2,2,2-
crypt)]	[1]·20	C ₆ H ₆ and [K(18-ci	rown-6	5))][2]·0.5C	7H8.				

	$[K(2,2,2-crypt)][1] \cdot 2C_6H_6$	[K(18-crown-6)][2]·0.5C ₇ H ₈
Formula	$C_{91}H_{140}KN_2O_7PSi_3$	C75.5H120KO6PSi3
$Fw [g mol^{-1}]$	1528.38	1278.05
crystal system	monoclinic	monoclinic
space group	$P2_{1}/c$	I 2/a
<i>a</i> (Å)	19.9221(9)	24.4411(10)
<i>b</i> (Å)	17.6488(7)	27.2214(4)
<i>c</i> (Å)	26.6643(8)	25.0883(17)
β (°)	102.440(3)	110.113(4)
$V(\text{\AA}^3)$	9155.1(6)	15673.8(13)
Ζ	4	8
radiation, λ (Å)	Cu <i>K</i> a	(1.54178)
<i>T</i> (K)	1:	50(2)
ρ_{calc} (g cm ⁻³)	1.109	1.083
μ (mm ⁻¹)	1.439	1.576
reflections collected	93580	128663
independent reflections	16124	16356
parameters	1041	834
R(int)	0.0458	0.0372
$R1/wR2$, ^[a] $I \ge 2\sigma I$ (%)	5.89/15.06	3.73/9.79
R1/wR2, ^[a] all data (%)	7.01/15.78	4.28/10.34
GOF	1.051	1.030

^[a] R1 = $[\Sigma ||F_o| - |F_c||] / \Sigma |F_o|$; wR2 = { $[\Sigma w[(F_o)^2 - (F_c)^2]^2] / [\Sigma w(F_o^2)^2]$ }^{1/2}; w = $[\sigma^2(F_o)^2 + (AP)^2 + BP]^{-1}$, where P = $[(F_o)^2 + 2(F_c)^2] / 3$ and the A and B values are 0.0740 and 6.97 for $[K(2,2,2-crypt)][1] \cdot 2C_6H_6$ and 0.0512 and 11.68 for $[K(18-crown-6)][2] \cdot 0.5C_7H_8$.

3. NMR spectra

Figure S1. Room temperature ¹H NMR spectrum of [K(2,2,2-crypt)][1].

Figure S2. Variable temperature ¹H NMR spectra of [K(2,2,2-crypt)][1] ([D₈]-THF).

Figure S3. Room temperature ${}^{13}C{}^{1}H$ NMR spectrum of [K(2,2,2-crypt)][1].

Figure S4. Room temperature ³¹P{¹H} NMR spectrum of [K(2,2,2-crypt)][1].

Figure S5. Room temperature ²⁹Si{¹H} NMR spectrum of [K(2,2,2-crypt)][1].

Figure S6. Room temperature ¹H NMR spectrum of [K(18-crown-6)][2] ([D₈]-tol).

Figure S7. Room temperature ¹H NMR spectrum of [K(18-crown-6)][2] at $([D_8]\text{-}THF)$.

Figure S8. VT ¹H NMR spectra of [K(18-Crown-6)][**2**] ([D₈]-THF).

Figure S9. Room temperature ${}^{31}P{}^{1}H$ NMR spectrum of [K(18-crown-6)][**2**] ([D₈]-tol).

Figure S10. Room temperature ${}^{31}P{}^{1}H$ NMR spectrum of [K(18-crown-6)][2] ([D₈]-THF).

Figure S11. Room temperature ${}^{13}C{}^{1}H$ NMR spectrum of [K(18-crown-6)][2] ([D₈]-THF).

Figure S12. ¹³C{¹H} NMR spectrum of [K(18-crown-6)][**2**] at 238 K ([D₈]-THF).

Figure S13. ²⁹Si{¹H} NMR spectrum of [K(18-crown-6)][2] at 238 K ([D₈]-THF).

Figure S14. ²⁹Si{¹H} NMR spectrum of [K(18-crown-6)][2] at 238 K ([D₈]-THF).

4. ESI-MS spectra

Figure S15. Negative mode ESI-mass spectrum of [K(2,2,2-crypt)][1] in THF.

Figure S16. Negative mode ESI-mass spectrum of [K(18-crown-6)][2] in THF.

5. UV-Vis spectra

Figure S17. Electronic absorption spectra for [K(2,2,2-crypt)][1] (orange) and [K(18-crown-6)][2] (blue).

6. IR spectrum

Figure S17. Infrared spectrum of [K(2,2,2-crypt)][1] recorded as a Nujol mull.

7. Computational details

Complete reference [22]:

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.

Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.

Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.

Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R.

Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,

M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.

W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

$\underline{\mathbf{1}}_{calc}$ at $\omega B97XD/6-311g(d,p)$

Frequencies not calculated

<u> </u>	0 0100077000	0 0100141001	0 001000000
SI	0.01920//289	0.0192141221	0.0213898383
Si	-1.6427488617	-1.4365851868	0.8215780658
Si	-1.6378655538	1.1235794961	1.3202390434
С	-2.8761158156	0.0326790213	0.2880103461
Ρ	-1.787990859	-0.5061106979	2.8478689785
0	-3.969853988	0.1241211257	-0.2160711871
С	0.4613895081	-1.9054314771	-6.6465919103
С	2.4006528151	-0.2836971744	-6.5482167344
С	0.937167935	-0.5290483207	-6.1663529789
С	0.7061318515	-0.3643254952	-4.6779713115
С	-0.2023835273	0.5614505881	-4.1924323204
С	1.3614485883	-1.1678321073	-3.7543931225
С	-2.0277551452	-2.5627236512	-3.4632597981
С	-1.1211222766	3.1698558852	-2.8917901364
С	-2.8824932768	1.3772217336	-2.9536700762
С	-0.4534621375	0.7152725916	-2.8287436306
С	-1.4919441112	1.7554247308	-2.431648575

С	1.1281009124	-1.0598292674	-2.3872591202
С	2.5179730061	2.3829541908	-2.1444163618
С	-4.1266127604	-2.4152554232	-2.073936695
C	-2 5935466415	-2 4391200588	-2 0459055207
C	0 2205261020	-0.0962507507	-1 0016000715
	1 5014020507	-0.0803397307	-1.0910909713
C	1.5914038587	-3.4909746072	-1.8205148584
С	3.3865839159	-1.7278751104	-1.4905251058
С	1.8827454908	-2.0248420206	-1.4804627623
С	-2.0707805422	-4.8341138175	-1.5590521582
С	1.8091971779	2.4851785728	-0.7880430805
С	-1.5930299857	-7.2994810515	-1.3040200488
С	-2.5174269276	-8.2703579204	-0.5616063502
C	-2.1162745062	-3.5213967514	-1.0886814636
C	-4 221519497	4 3793159099	-0.6688613521
C	1 7602220020	2 0252062767	-0.2022025460
	1.7093330930	5.9352002707	-0.2923923409
C	-1.685825261	-5.8910098152	-0./51154195/
С	-0.144167224	-7.8013897712	-1.2964830652
С	2.4343294268	1.5294102053	0.2217342953
С	-3.6439010521	3.374693521	0.3284136409
С	3.7352505947	1.8218532932	0.6280981797
С	-1.7743984288	-3.2464082553	0.2518782873
С	1.7719734647	0.3848057452	0.7242602946
C	-1 3698228726	-5 6168566136	0 5753199321
C	-1 7389922506	2 8952309668	1 2017285518
C	A A10712710A	1 0420007110	1 5506767605
	4.412/13/104	1.0429007119	1.0010004001
C	-1.4128/68582	-4.3259894645	1.0919804021
С	-2.4468615396	3.883320986	1.1208135604
С	2.4587070803	-0.4069497553	1.6712999452
С	5.8128992872	1.4028766508	2.003550075
С	6.8133748376	0.2827452348	1.6985294387
С	-1.561165308	2.9717459242	1.7284335587
С	-2.2642699895	5.2504333069	1.3188732483
С	3.7492945255	-0.0616544609	2.0642204576
C	2 6868636062	-2 9054078641	2 0557779922
C	1 8580517691	-1 6/35030839	2 3200830187
C	0 2551022652		1 5556072616
	1 10(70007	1.0/031/011/	1.5556975616
C	-1.126/32600/	-4.114/940//	2.5/18669/45
С	-0.5459/3986/	3.4598481365	2.5/8//39158
С	-1.241839001	5.7436762704	2.1205579735
С	5.8349284477	1.7767499202	3.4902182673
С	1.8129128675	2.9819027243	3.4820399253
С	-0.4075537514	4.8336368915	2.7580749626
С	-0.1729799892	-5.1447938611	3.1821584857
С	0.3593122633	2.5191164658	3.3621855846
C	-1 0300465353	7 2377731092	2 2691493972
C	-2 1136878979	-1 08/3268218	3 3591610317
C	1 6594051174	1 4225515255	2 0 2 4 0 2 7 1 2 0 7
Ĉ	1.0504951174	-1.4355515555	5.02402/159/
С	-1.0239038476	7.6843871399	3./3461913/3
С	-0.2410206858	2.2691393493	4.7513016624
Н	0.5622789139	-1.9982957583	-7.7328791553
Н	2.5375680126	-0.3501164693	-7.6324224806
Н	0.3294688623	0.2293664662	-6.6738900409
Н	-0.5845016063	-2.0712937848	-6.3767615921
Н	2.7295180957	0.7043784154	-6.2167538928
Н	3.0558304675	-1.0262449616	-6.0826030375
 Н	1 0520388304	-2 7020009807	-6 1835204253
11	T.0220300304	2.1020000001	0.1000294200

Н	-0.7410959389	1.1825811088	-4.9036827995
Н	-1.0982018493	3.2402752066	-3.9842170899
Н	2.0651398427	-1.9161952288	-4.1085911349
Н	-2.9044348692	1.3905342371	-4.0488957737
н	-2 2596755428	-1 6538440418	-4 02563691
ч	-2 4633905377	-3 4080076544	-4 0068221052
11 LJ	-0.9420142646	-2 6742017240	-2 1562250500
	-0.9420143040	2.0745017549	2 0011502014
п	2.0206137644	1 (225520(21	-2.0911393044
H	-4.4834056354	-1.6335528621	-2./514/85924
H	-0.1448251468	3.4/5141156/	-2.513/53/685
Н	-1.861//0645/	3.8860927284	-2.5268654462
Η	1.9319809946	-3.7510321675	-2.8282231757
Н	-3.6310114264	2.0870630783	-2.5900867476
Н	2.5156008515	1.3557268532	-2.5148646696
Н	-3.1812316391	0.3873220891	-2.6095335
Н	3.8068069426	-1.8775060329	-2.4909071394
Н	-4.5129615637	-3.380092992	-2.4226964171
Н	3.5580906687	2.7165329174	-2.0631317512
н	-2.3315970087	-5.0364469685	-2.5936165594
н	-1 9251993812	-7 2584603201	-2 347976057
и П	-2 2536639476	-1 4754038229	-1 6635010176
и П	0 5224264135	-3 70/3008877	-1 7522950036
п тт	2 5510710020	-3.7043990077	-1.7522950050
H	-3.5510719926	-7.9162090745	-0.5813194782
H	-1.5415106685	1.//39/661/9	-1.3408/5/3/8
Н	-4.9639341978	3.8818231001	-1.299045684/
Н	-4.5315734015	-2.2010786622	-1.084698928
Η	3.5855079575	-0.6981396426	-1.1842064181
Н	-2.4824546813	-9.2655813352	-1.0167385104
Η	1.2953322977	4.5739953134	-1.0446348176
Н	2.1083345681	-4.1500597134	-1.1154964653
Н	-3.4489545222	4.798230766	-1.3194936878
Н	0.7690440892	2.1946607309	-0.9315971274
Н	3.9179050619	-2.3905673381	-0.8007671512
н	-0.0720527061	-8.7976224062	-1.745259143
н	1 5268806906	-1 8826065067	-0 4598248134
ч	-4 7262722076	5 2099783114	-0 1638219836
и П	2 7720906247	1 3337583008	-0.1076434439
п тт	0 5048880001	7 1011674126	1 0525502026
п	0.3048880901	-/.12110/4130	-1.0555562956
H	4.233/510/43	2.6976306022	0.2212212696
Н	-3.331/916/31	2.4988///263	-0.245539731
Н	-2.21954/988/	-8.3716195142	0.4865592142
Н	1.1874946917	4.0229553611	0.6264562208
Η	-5.5803905261	2.4798878929	0.7318888586
Η	0.2392746545	-7.8637712882	-0.2733529502
Н	6.1200202687	2.2879926523	1.4339052022
Н	2.7562585174	-3.1261370633	0.9888373255
Н	6.8067735778	0.0340723948	0.6343266121
Н	-5.0937173714	3.7300644975	1.9069401283
н	-1.0763496339	-6.4357886584	1.2234652648
н	-2 9312025475	5 9589995016	0 8379698006
н	-4 3670806855	2 1116182542	1 9555941208
ц	0 8673335656	-1 7063370700	1 999907564
п II	U.00/3333000 7 0000500570	-1.1903312103	1,000029/304
H	1.8289528573	U.J/864//182	1.901004/100
H	0.2343258991	/.38356106/	0.50313/3648
Н	3.7055890618	-2.8086675101	2.4449946857
Н	2.2413977957	3.2227601569	2.5081994944

Н	1.1293787115	7.2040819582	2.0143829547
Н	2.2257622264	-3.7646739447	2.5482108187
Н	4.2525699533	-0.680618092	2.801663119
Н	6.5627810077	-0.6268074259	2.2531355822
Н	5.1331670724	2.5885292799	3.6971504491
Н	0.7110034353	-5.2978105511	2.5580598533
Н	-0.6623104129	-3.1316704998	2.6887806408
Н	0.3779077659	1.5563291476	2.8452541959
Н	-1.8729995021	7.734315543	1.774179832
Н	6.8361732751	2.0935351558	3.800273538
Н	-3.1106879207	-3.3077127858	2.981290798
Н	0.3849766278	8.7623760918	1.6136451637
Н	-0.6586386182	-6.1162903993	3.3247989991
Н	2.4141217565	2.1758294945	3.9127906711
Н	-2.9525990665	-5.0521150051	3.282111598
Н	5.5452393645	0.9219732611	4.1092340778
Н	1.9148010404	3.8563938887	4.1344938006
Н	0.3853150409	5.20155554	3.402043324
Н	1.0378097021	-0.5554365091	4.0071059232
Н	2.6190769416	-1.3176313679	4.339376073
Н	1.1378526873	-2.293553034	4.2573357727
Н	0.1583027092	-4.8006510199	4.1662158636
Н	-2.2532427511	-3.8709697333	4.4152996644
Н	-1.9367163393	7.3677196227	4.2451596203
Н	-1.2583004972	1.8804253543	4.674492216
Н	-0.9458574108	8.7740147453	3.807418094
Н	0.3572655536	1.5337691147	5.2982137362
Н	-0.1743095417	7.2543402336	4.2732015048
Н	-0.2630825919	3.1997684454	5.330281777

Excerpt from TDDFT output for $\mathbf{1}_{calc}$

Excited State <s**2>=0.000 260 -> 26</s**2>	1: 4	Singlet-A 0.18852	2.8330 eV	437.64 nm	f=0.0033
261 -> 26 261 -> 26 261 -> 27	4 5 0	0.54062 0.20193 0.16270			
261 -> 27 262 -> 26	3 - 4 -	-0.13460 -0.15025			
This state fo	r optimiz	zation and/or se	cond-order	correction.	
Copying the e	E(TD-HF) xcited st	(TD-KS) = -3665 Tate density for	.023/0041 this state	as the 1-pa	article RhoCI
density.				1	
Excited State	2:	Singlet-A	3.0498 eV	406.53 nm	f=0.0101
261 -> 26	4	0.14980			
262 -> 26	4	0.59997			
262 -> 26	5	0.22267			
262 -> 21	0	0.1/131			
Excited State <s**2>=0.000</s**2>	3:	Singlet-A	3.8467 eV	322.31 nm	f=0.0046
262 -> 26	3-	-0.28065			
262 -> 26	5	0.36476			
262 -> 26	9 - 0 -	-0.11378			
262 = 27 262 = 27	1 -	-0.21894			
262 -> 27	2	0.34292			
262 -> 27	4	0.14618			
262 -> 27	7	0.18194			
Excited State <s**2>=0.000</s**2>	4:	Singlet-A	3.8982 eV	318.05 nm	f=0.0031
262 -> 26	3	0.60491			
262 -> 26	4 -	-0.11238			
262 -> 26	5	0.23110			
262 -> 27	2	0.12273			
Excited State <s**2>=0.000</s**2>	5:	Singlet-A	4.0587 eV	305.47 nm	f=0.0014
262 -> 26	4 -	-0.19793			
262 -> 26	5	0.44546			
262 -> 26	6 -	-0.13818			
262 -> 26	9	0.14931			
262 = 27 262 = 27	0 1	0.13100			
262 -> 27		-0.25343			
262 -> 27	4 -	-0.15512			
262 -> 28	6	0.11268			
Excited State <s**2>=0.000</s**2>	6:	Singlet-A	4.2390 eV	292.48 nm	f=0.2446
260 -> 26	4 -	-0.13867			
261 -> 26	3	0.62372			
261 -> 26	4	0.13717			

<u>GIAO calculations for 1_{calc} </u>

References at: SiMe₄ (²⁹Si : 355.4917, ¹³C: 190.2308);

PMe₃ (³¹P: 391.7033)

Atom	δ_{exp} ([D ₈]-THF)	δ_{calc} (scrf(cpcm,solvent=THF))
Si1	-1.8 ppm	+2.0 ppm
Si2	-10.9 ppm	-9.1 ppm
Si3	– 16.1 ppm	-4.4 ppm
C4	+222.7 ppm	+251.9 ppm
P5	+322.1 ppm	+330.4 ppm (vs. H ₃ PO ₄ , 85%)

Excerpt from Gaussian09/GIAO output

1	Si	Isot	ropic	= 353.5305	An	isotropy =	88.8292
XX=	351.0	0301	YX=	-63.0122	ZX=	31.1742	
XY=	-76.2	2070	YY=	329.1385	ZY=	61.0599	
XZ=	-14.0	0544	YZ=	-66.9644	ZZ =	380.4227	
Eigen	values	s:	269.51	96 378.321	9 43	12.7499	
2	Si	Isot	ropic	= 364.5824	An	isotropy =	91.7391
XX=	398.3	3232	YX=	19.5724	ZX=	-18.0476	
XY=	-51.2	1168	YY=	343.2255	ZY=	-63.6526	
XZ=	-65.	7642	YZ=	-37.3746	ZZ =	352.1984	
Eigen	values	s:	282.76	70 385.238	4 42	25.7418	
3	Si	Isot	ropic	= 359.8810	An	isotropy =	126.0777
XX=	421.9	9073	YX=	-61.4136	ZX=	26.7993	
XY=	47.8	8832	YY=	323.0199	ZY=	-16.6251	
XZ=	67.5	5103	YZ=	-17.0764	ZZ =	334.7156	
Eigen	values	s:	304.64	86 331.061	.5 4	43.9328	
4	С	Isot	ropic	= -61.6916	an:	isotropy =	127.4301
4 XX=	С -108.3	Isot 3243	ropic YX=	= -61.6916 6.6741	An: ZX=	isotropy = -7.0545	127.4301
4 XX= XY=	C -108.3 -1.9	Isot 3243 9012	ropic YX= YY=	= -61.6916 6.6741 -96.5810	5 An: ZX= ZY=	isotropy = -7.0545 -77.5878	127.4301
4 XX= XY= XZ=	C -108.3 -1.9 3.0	Isot 3243 9012 0552	ropic YX= YY= YZ=	= -61.6916 6.6741 -96.5810 37.2900	5 An: ZX= ZY= ZZ=	isotropy = -7.0545 -77.5878 19.8304	127.4301
4 XX= XY= XZ= Eigen	C -108.3 -1.9 3.0 values	Isot 3243 9012 0552 s: -	ropic YX= YY= YZ= 108.82	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508	5 An: ZX= ZY= ZZ= 25 2	isotropy = -7.0545 -77.5878 19.8304 23.2618	127.4301
4 XX= XY= XZ= Eigen: 5	C -108.3 -1.9 3.0 values P	Isot 3243 9012 0552 s: - Isot	YX= YY= YZ= 108.82 ropic	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534	5 An: ZX= ZY= ZZ= 85 2	isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy =	127.4301 330.2040
4 XX= XY= XZ= Eigen: 5 XX=	C -108.3 -1.9 3.0 values P 822.5	Isot 3243 9012 0552 s: - Isot 5360	YX= YX= YZ= 108.82 ropic YX=	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477	5 An: ZX= ZY= ZZ= 5 2 5 2 2X=	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718</pre>	127.4301 330.2040
4 XX= XY= XZ= Eigen 5 XX= XX= XY=	C -108.3 -1.9 3.0 values P 822.9 -146.2	Isot 3243 9012 0552 s: - Isot 5360 2944	ropic YX= YY= YZ= 108.82 ropic YX= YY=	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321	5 An: ZX= ZY= ZZ= 5 2 5 An: ZX= ZY=	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819</pre>	127.4301 330.2040
4 XX= XZ= Eigen 5 XX= XX= XY= XZ=	C -108.3 -1.9 3.0 values P 822.9 -146.2 65.0	Isot 3243 9012 0552 s: - Isot 5360 2944 0030	ropic YX= YZ= 108.82 ropic YX= YY= YZ=	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321 125.8007	5 An: ZX= ZY= ZZ= 5 2 2X= ZX= ZY= ZZ=	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819 548.4921</pre>	127.4301 330.2040
4 XX= XZ= Eigen: 5 XX= XX= XZ= Eigen:	C -108.3 -1.9 3.0 values P 822.5 -146.2 65.0 values	Isot 3243 9012 0552 s: - Isot 5360 2944 0030 s:	ropic YX= YY= YZ= 108.82 ropic YX= YX= YY= YZ= 339.57	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321 125.8007 60 764.194	5 An: ZX= ZZ= ZZ= 5 2 2 X= ZX= ZY= ZZ= 8 88	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819 548.4921 82.0894</pre>	127.4301 330.2040
4 XX= XZ= Eigen 5 XX= XX= XZ= Eigen 6	C -108.3 -1.9 3.0 values P 822.9 -146.2 65.0 values O	Isot 3243 9012 0552 s: - Isot 5360 2944 0030 s: Isot	ropic YX= YY= YZ= 108.82 ropic YX= YY= YZ= 339.57 ropic	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321 125.8007 60 764.194 = -225.2735	5 An: ZX= ZZ= ZZ= 5 An: ZX= ZY= ZZ= 8 88 5 An:	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819 548.4921 82.0894 isotropy =</pre>	127.4301 330.2040 858.8743
4 XX= XZ= Eigen 5 XX= XX= XZ= Eigen 6 XX=	C -108.3 -1.9 3.0 values P 822.9 -146.2 65.0 values O -251.0	Isot 3243 9012 0552 s: - Isot 5360 2944 0030 s: Isot 6042	ropic YX= YY= YZ= 108.82 ropic YX= YY= YZ= 339.57 ropic YX=	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321 125.8007 60 764.194 = -225.2735 -50.7408	5 An: ZX= ZY= ZZ= 5 2 CAN: ZX= ZZ= 8 88 5 An: ZX= 2Z= 8 88 5 An: 2X= 2Z= 2Z= 2Z= 2Z= 2Z= 2Z= 2Z= 2Z	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819 548.4921 82.0894 isotropy = -55.2200</pre>	127.4301 330.2040 858.8743
4 XX= XZ= Eigen 5 XX= XX= XZ= Eigen 6 XX= XX= XY=	C -108.3 -1.9 3.0 values P 822.9 -146.2 65.0 values O -251.0 -80.2	Isot 3243 9012 0552 s: - Isot 5360 2944 0030 s: Isot 6042 2073	ropic YX= YZ= 108.82 ropic YX= YZ= 339.57 ropic YX= YY= YY=	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321 125.8007 60 764.194 = -225.2735 -50.7408 -734.1546	5 An: ZX= ZY= ZZ= 5 2 2X= ZX= ZZ= 5 An: ZX= ZZ= 5 An: ZX= ZZ= 5 ZZ= 5 ZZ= 5 ZZ= 5 ZZ= 7 Z	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819 548.4921 82.0894 isotropy = -55.2200 -385.1482</pre>	127.4301 330.2040 858.8743
4 XX= XZ= Eigen 5 XX= XY= XZ= Eigen 6 XX= XY= XZ=	C -108.3 -1.9 3.0 values P 822.9 -146.2 65.0 values O -251.0 -80.2 -13.2	Isot 3243 9012 0552 s: - Isot 5360 2944 0030 s: Isot 6042 2073 2991	ropic YX= YZ= 108.82 ropic YX= YY= YZ= 339.57 ropic YX= YY= YZ=	= -61.6916 6.6741 -96.5810 37.2900 81 -99.508 = 661.9534 -98.3477 614.8321 125.8007 60 764.194 = -225.2735 -50.7408 -734.1546 -12.4324	5 An: ZX= ZY= ZZ= 5 2 2X= ZY= ZZ= 8 88 5 An: ZX= ZY= ZY= ZY= ZY= ZY=	<pre>isotropy = -7.0545 -77.5878 19.8304 23.2618 isotropy = 70.7718 281.1819 548.4921 32.0894 isotropy = -55.2200 -385.1482 309.9384</pre>	127.4301 330.2040 858.8743

$\underline{2}_{calc}$ at $\omega B97XD/6-311g(d,p)$

Frequencies not calculated

Charge = -1 Multiplicity = 1

Ρ	-1.5833448362	-0.6831977271	-2.1173348066
Si	0.4461632605	-0.2811692734	-1.1720164228
Si	-2.1401138099	-0.6004479537	-0.063217246
Si	-0.2223346992	-0.9900681206	0.9995722828
С	4.4136984231	-3.5574041734	-6.0332021339
С	0.772811665	0.1326350014	-5.4369983858
С	4.8699657098	-3.1580661962	-4.6258841105
С	6.0937495952	-2.2360229511	-4.6831566052
С	2.4976251963	1.6048910015	-4.2937059973
С	3.1098483731	-1.3767502793	-4.2489323821
С	1.4762978942	0.4749942583	-4.1189620019
С	3.7510208715	-2.5273633813	-3.8211917779
С	-0.7840921015	3.3441579002	-3.5963698748
С	2.1109695012	-0.7610430352	-3.4958767348
С	3.3359228168	-3.0778733607	-2.6184192971
С	3.6500733162	5.8300992518	-2.3945651519
С	1.7286551351	-1.2841789801	-2.2397110232
С	-0.7502410122	2.7714481625	-2.1751020649
С	2.3436157136	-2.4933903047	-1.8335081412
С	-4.8808160565	1.6083391987	-1.6244375871
С	1.3654089544	3.8851829537	-1.5435148706
С	0.6545205519	2.6894005279	-1.5888340506
С	3.3957310503	5.2887529912	-0.9832193352
С	-1.6836021114	3.5755041589	-1.2658127797
С	2.6463340353	3.972682328	-1.020709896
С	1.2353044413	1.4932907053	-1.097183768
С	4.4792876232	-0.0013147102	-0.7754051221
С	0.6509629871	-4.043247349	-0.8375998694
С	3.2038854871	2.8122891378	-0.5120347767
С	2.5284404443	1.5909903401	-0.5270361908
С	1.9171502336	-3.2211283894	-0.5719619782
С	2.6657830168	6.3220385163	-0.1172349932
С	-4.4715622639	1.5423452217	-0.1483480464
С	2.9980431299	-4.0816114032	0.0819328663
С	3.276631478	0.4085539946	0.084513014
С	-3.6568066462	-4.1884509427	-0.2416661947
С	-4.8632368635	0.1968626847	0.439402238
С	-8.751154137	-2.5229228405	1.005148534
С	-3.9367691568	-0.858091033	0.4979395612
С	-5.0202737929	2.7414750527	0.6279485247
С	-6.1751651046	-0.0075718268	0.8637006312
С	-4.3620376129	-2.1149445914	0.978054709
С	-6.6023446557	-1.2384186091	1.3423030521
С	3.7225038539	0.6870824183	1.5266316496
С	-5.6821837966	-2.2808711198	1.3863049963
С	-8.0319717858	-1.4345288179	1.8094417473
С	-3.4236383434	-3.3127335787	0.9948200059
С	0.2719722297	3.5713402175	1.8270655965
С	-0.4360633597	2.2238437207	1.9902840354

С	-1.8706712812	2.4043413393	2.4972440542
С	-3.5027480803	-4.1309572801	2.2856499719
С	0.4537169151	-0.1118068503	2.5760367745
C	-8 0930280703	-1 7300764051	3 3127450548
C	0 3203575598	1 258/01370	2 8852743639
C	1 2575(00010	2 4020170026	2.00JZ745059
C	1.35/5688818	-2.42291/9826	3.2649085767
С	2.7394970911	-2.9497508128	3.6581131362
С	1.1820075956	-0.9232810969	3.4834041785
С	0.2433144809	-3.1976119156	3.9756271425
С	0.8815533766	1.76873679	4.0573097305
С	1.7379654918	-0.3699351091	4.6324392744
С	1.6011560285	0.9779359782	4.9379063002
C	2 2623546369	1 5761808759	6 1640313822
C	3 7877024043	1 5875585464	6 0021016676
C	1 0 = 1 0 1 0 C 4 C 4	0.00120500404	7 4555020070
	1.8519126464	0.8613956261	1.455502659
Н	4.1256895176	-2.6/69159519	-6.6156913805
H	5.2178571187	-4.0671365381	-6.5741805608
Н	1.4800973795	-0.2186173711	-6.1956357805
Η	3.5488041043	-4.2236680377	-5.9877504329
Н	0.2636749208	1.0157559842	-5.837042406
Н	6.9259700775	-2.7184703321	-5.2067038014
н	3 3952364077	-0 9345178859	-5 1996263152
и П	3 2979511937	1 3171002530	-1 0051010700
	0 000001005	0 6464512001	-4.9951919799 5.0760601006
H	0.0238391825	-0.6464512901	-5.2/60691226
H	5.8535597211	-1.308/912043	-5.212/33/68
Н	2.0169125337	2.506260046	-4.6856728391
Н	5.1672356921	-4.073461395	-4.1004958964
Н	-0.1312217373	2.7851439349	-4.2681439765
Н	-1.8022056577	3.2820599334	-3.9935306715
Н	6.423368947	-1.9665775533	-3.676698286
Н	-0.4778788208	4.3955450653	-3.6263411347
н	2 962420165	1 8617899268	-3 3389748561
и П	0 6967384267	0 8360498608	-3 4524238862
11 11	1 104224154	5 0005225202	-2 000227770/
п	4.194334134	5.0995555202	-2.9903277794
H	2.7057689356	6.0446194051	-2.90448/9052
Н	4.2326401129	6./56/6/5342	-2.3599443976
Η	3.8113949637	-3.9934602837	-2.2823919684
Н	-4.3629469021	0.8413980914	-2.2048801904
Н	-1.1572751011	1.7625285618	-2.230425258
Н	-4.6343907038	2.5846622491	-2.053261026
Н	0.8928247005	4.7838053074	-1.9308908522
Н	4.1836200279	-0.223451908	-1.8017674805
н	-5 9605292377	1 4544210435	-1 7253447354
11	2 6802411127	2 6144779762	1 6045541402
п	-2.0892411127	1 0250212776	1 5 6 5 7 7 0 4
H	0.8565935952	-4.8358213776	-1.5665264/94
Н	-1.33263/6209	4.60534///31	-1.13492/48/5
H	4.3701169095	5.0943101059	-0.519453357
Н	5.2264631819	0.7998732661	-0.7984433553
Н	-0.1501181126	-3.4122491493	-1.2305280211
Н	3.2393517726	-4.9727344097	-0.5073305054
Н	1.6886061609	6.5668436086	-0.5449672756
Н	4.9561437822	-0.894924844	-0.359798654
 Н	3 2429810419	7 2498376058	-0 0446270222
ц		-3 607516711	-1 1569677/7/
п	-J.JI4JUI/JOI	-J.UU/JIU/II	
н	-0./14059433		-0.0652451053
H	4.201260911	2.8604117809	-0.0835323244

Н	-1.7563703024	3.1179225248	-0.2786756334
Н	-3.3780514231	1.6128336244	-0.1076964438
Н	3.9208874147	-3.5161660472	0.2427480341
Н	2.5994092076	-0.4452882384	0.1324198592
Н	-4.6739211713	-4.5970948506	-0.2452823219
Н	1.6334511557	-2.4617118068	0.1584915382
Н	0.2916473499	-4.5008637054	0.0901187567
Н	-4.5549241772	3.6623001451	0.2632374577
Н	-2.9495517489	-5.0235462084	-0.2577570937
H	-6.8880724644	0.8110501185	0.8175383328
H	2.4978999446	5.9359090608	0.8912752796
н	-6.1021876676	2.847036322	0.4980758238
н	-9.8007245309	-2.6008125384	1.3069565187
H	-8.2844511859	-3.4999518737	1.1630502858
н	2 6405655091	-4 4287568109	1 0555986112
н	-8 559707388	-0 4893535698	1 6355110728
н	-0 4905932183	1 7606749764	1 0033862305
н	4 5237096499	1 43284038	1 5622138198
н	-0 2251766345	4 1676199365	1 059250111
ц	-4 811339464	2 6527003664	1 6966689367
н	-2 399177646	-2 9351316169	0 9330660404
н	1 3085594577	3 4284221147	1 5131486238
и П	-6 0033642338	-3 2537805254	1 7/72893323
п п	1 1082998094	-0.2305502341	1 0010733773
п u	2 8948110458	1 0423645944	2 1/15180639
п u	-2 4177269003	3 1166121025	1 97120/3536
п	1 2201020210	-2 6124749022	2 1050000000
п	1.2291930316	-2.0134740033	2.193090022
п	-4.4302702313 -2.4110070599	1 4524124060	2.3042200321
п	-2.4119070388	1 1595104420	2.4031372400
п	-2 7102040020	4.1303194429	2.7517105022
п	-2.7103640626	-4.8853260869	2.2958961797
H	-9.1308849574	-1.8099666571	3.6525213056
	-7.5007020909	-2.0755525502	2.0434139303
H	3.5332824938	-2.3622223879	3.188/33644
H	2.8477841803	-3.9882510997	3.3316163601
H	-3.3/35550813	-3.4931988531	3.1641967577
H	-7.6001151044	-0.9405168527	3.8852557204
H	-1.8/653456/1	2./846/89459	3.5246915805
H	0.3565997347	-4.2/5536343	3.816/8065/9
H	-0./33649/341	-2.89/584/698	3.58/1011221
H	2.899450469	-2.9353886684	4./412036/96
H	0.//01/01/51	2.8246798164	4.285364051
H 	0.2603411429	-3.0033155791	5.0536894346
H	2.3032443539	-1.0048946644	5.30/0031/24
H	4.0775714328	2.130/539964	5.0992716801
H	1.9268549708	2.61/2990413	6.2389863/8/
Н	4.1/02249456	U.5661661197	5.9113600052
H	4.2730574108	2.05/9992662	6.8638231033
H	0.765477908	0.8585212702	7.5736381371
H	2.1901362364	-0.1792186548	7.4535487403
H	2.2945976948	1.3530410782	8.3279278463

Excerpt from TDDFT output for 2_{calc}

Singlet-A 2.4267 eV 510.92 nm Excited State 1: f=0.1196 <S**2>=0.000 255 -> 256 0.68723 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3551.66480125Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-A 2.9968 eV 413.72 nm Excited State 2: f=0.0115 <S**2>=0.000 255 -> 257 0.63943 255 -> 258 -0.17386 Excited State 3: Singlet-A 3.4859 eV 355.67 nm f=0.0125 <S**2>=0.000 254 -> 256 0.13961 Excited State 4: Singlet-A 3.6913 eV 335.88 nm f=0.0819 <S**2>=0.000 254 -> 256 0.65236 254 -> 258 0.10775 254 -> 258 0.10775 255 -> 258 -0.12688 Excited State 5: Singlet-A 3.9237 eV 315.99 nm f=0.0582 <S**2>=0.000 255 -> 259 0.52354 255 -> 261 0.19289 255 -> 262 0.34801 Excited State 6: Singlet-A 3.9771 eV 311.75 nm f=0.0590 <S**2>=0.000 253 -> 256 -0.33661 255 -> 259-0.27758255 -> 2610.38059 255 -> 262 0.27573 255 -> 264 0.12666

GIAO calculations for 2calc

Reference at: SiMe₄ (²⁹Si : 355.4917); PMe₃ (³¹P: 391.7033, corrected to H_3PO_4 reference by

subtracting 61 ppm)

Atom	δ_{exp} ([D ₈]-THF)	δ_{calc} (scrf(cpcm,solvent=THF))
P1	-55.7 ppm	-38.5 ppm (vs. H ₃ PO ₄ , 85%)
Si2	-14.9 ppm	-11.5 ppm
Si3	+193.1 ppm	+283.8 ppm
Si4	-39.9 ppm	-43.4 ppm

Excerpt from Gaussian09/GIAO output

1	P I:	sotropic	= 369.2374	l Ani	sotropy =	332.7304
XX=	189.00	80 YX=	109.4139	ZX=	58.4166	
XY=	166.09	49 YY=	421.6812	ZY=	-51.3290	
XZ=	124.123	34 YZ=	178.0732	ZZ =	497.0230	
Eigenv	values:	116.19	991 400.455	55 59	1.0576	
2	Si I	sotropic	= 367.0110) Ani	sotropy =	125.5141
XX=	341.38	40 YX=	-23.2226	ZX=	-6.4213	
XY=	-29.86	53 YY=	312.7613	ZY=	-43.6884	
XZ=	-10.10	09 YZ=	-1.1877	ZZ =	446.8876	
Eigenv	values:	293.32	131 357.032	27 45	0.6870	
2	~ ' –					
3	Si I:	sotropic	= /1./250) Ani	sotropy =	447.5116
- = XX	Si I: 192.23	sotropic 14 YX=	= /1./250) Ani: ZX=	sotropy = -2.9453	447.5116
	-10.13	sotropic 14 YX= 50 YY=	= /1./250 31.4201 60.2929) Anı: ZX= ZY=	sotropy = -2.9453 80.7149	447.5116
3 XX= - XY= XZ=	-192.23 -10.13 68.41	sotropic 14 YX= 50 YY= 47 YZ=	= /1./250 31.4201 60.2929 79.4837) Anı; ZX= ZY= ZZ=	sotropy = -2.9453 80.7149 347.1134	447.5116
XX= - XY= XZ= Eigenv	-192.23 -10.13 68.41 values:	sotropic 14 YX= 50 YY= 47 YZ= -194.34	= 71.7250 31.4201 60.2929 79.4837 490 39.457) Ani; ZX= ZY= ZZ= 78 37	sotropy = -2.9453 80.7149 347.1134 0.0660	447.5116
XX= - XY= XZ= Eigenv 4	-192.23 -10.13 68.41 values: Si I	sotropic 14 YX= 50 YY= 47 YZ= -194.34 sotropic	= 71.7250 31.4201 60.2929 79.4837 $490 39.457$ $= 398.9373$) Ani ZX= ZY= ZZ= 78 37 3 Ani	sotropy = -2.9453 80.7149 347.1134 0.0660 sotropy =	447.5116
XX= - XY= XZ= Eigenv 4 XX=	-192.233 -10.133 68.414 values: Si I: 388.214	sotropic 14 YX= 50 YY= 47 YZ= -194.34 sotropic 44 YX=	= 71.7250 31.4201 60.2929 79.4837 $490 39.457$ $= 398.9373$ -52.6351) Ani: ZX= ZY= ZZ= 78 37 3 Ani: ZX=	sotropy = -2.9453 80.7149 347.1134 0.0660 sotropy = 24.1307	447.5116
XX= - XY= XZ= Eigenv 4 XX= XX= XY=	S1 19 -192.233 -10.133 68.414 values: Si Is 388.214 -20.878	sotropic 14 YX= 50 YY= 47 YZ= -194.34 sotropic 44 YX= 83 YY=	= 71.725(31.420160.292979.4837490 39.457= 398.9373-52.6351458.2449) Ani: ZX= ZY= ZZ= 78 37 3 Ani: ZX= ZY=	<pre>sotropy = -2.9453 80.7149 347.1134 0.0660 sotropy = 24.1307 -20.3471</pre>	447.5116
XX= - XY= XZ= Eigenv 4 XX= XY= XZ=	Si 19 -192.233 -10.133 68.41 values: Si 19 388.21 -20.878 -28.16	sotropic 14 YX= 50 YY= 47 YZ= -194.34 sotropic 44 YX= 83 YY= 41 YZ=	= 71.7250 31.4201 60.2929 79.4837 $490 39.457$ $= 398.9373$ -52.6351 458.2449 31.5645) Ani: ZX= ZY= ZZ= 78 37 3 Ani: ZX= ZY= ZZ=	<pre>sotropy = -2.9453 80.7149 347.1134 0.0660 sotropy = 24.1307 -20.3471 350.3525</pre>	447.5116

[K(18-crown-6)][2_{calc}] at @B97XD/6-311g(d,p)

Frequencies not calculated

-		-	
Р	1.04963	-0.58766	0.41803
Si	-1.17927	-0.82424	-0.0141
Si	0.54146	1.47678	0.0992
Si	-1.36485	1.32132	-0.98664
K	4.10316	-1.48513	-0.03781
0	5.38217	-0.39406	2.13416
0	5 9549	0 76564	-0 35406
0	4 63535	-3 09017	2 34008
0	4 40156	-0 24829	-2 44378
0	3 27594	-4 08785	0 10646
0	3 2587	-2 82734	-2 39944
C	1 52479	3 1969	3 82653
C	-5 07019	-0.20061	5 02055
C		-0.20001 5 0/50/	-1 27064
C	-0.02291	3.94304	-1.57004
C	-1.90033	2 14001	2.10300
C	-3.78527	2.14091	2.8932
C	-6.67401	4.60952	-0.62292
C	-4.6/056	3.52972	0.47032
C	-0./111	0.40618	4.103
C	-7.81972	3./3038	-1.1385/
C	-2.80586	2.49929	1.77431
С	4.50294	7.18367	0.42339
С	-5.73122	-1.59732	4.266
С	1.92804	2.47328	2.76162
С	-5.35287	3.86949	-0.68742
С	-5.48476	-2.7622	5.22963
С	3.46199	4.06676	1.57782
С	5.05169	5.76105	0.58775
С	2.94186	1.46731	3.30785
С	-3.48016	2.80256	0.44793
С	-3.29049	-1.27587	3.67508
С	2.42521	3.13663	1.48704
С	3.93823	4.7393	0.46305
С	-4.60629	-1.43072	3.26519
С	-0.85689	-0.93889	3.38739
С	6.19739	5.49893	-0.39516
С	-4.80041	3.48677	-1.9033
С	-0.49072	-2.08851	4.33329
С	-2.24422	-1.08825	2.77737
С	-2.92869	2.40304	-0.78812
С	-4.85678	-1.37348	1.90488
С	1.84779	2.85092	0.23747
С	3.32088	4.49446	-0.76175
С	-3.61046	2.77083	-1.97441
C	2.27912	3.58267	-0.89539
C	-2.49866	-1.03718	1.38521
C	-3.84447	-1.16969	0.96674
C	-5,40521	-0.13502	-0.75877
Č	6 31617	0 65228	1 99808
~			

Charge = -1 Multiplicity = 1 (atom list rearranged)

5.527 5.915	61 -1.1223 05 1.5215	3.32997 52 0.83681
1.549	76 4.661	-3.10041
-4.279	51 3.3874 51 -1.1440	-2.25/12
4.4508	38 -2.173	3.39759
-2.131	51 3.5909	-3.82017
-4.1004	41 2.1284	-4.40967
-2.245	47 -4.4079	1.67859
-4.686	-3.8279	-0.97332 99 1.08129
5.595	96 1.5459	94 -1.47704
2.292	57 2.255 78 -4.6433	72 - 3.04277
-1.271	96 -2.4418	34 -1.08223
3.7422	25 -4.1818 37 -3 6860	2.42224
5.4592	16 0.6496	58 -2.6801
-1.776	3 -1.2348	33 -3.31283
-0.538	-2.4692	-2.48639 -3.97917
3.7490	04 -4.943	1.11912
-1.024 -2.8888	74 -4.868 37 -1.4771	-1.16455 -4.33751
-1.3359	91 -3.675	-3.18352
3.900	56 -0.8825 57 -4.8879	-3.60078
2.756	43 -1.772	6 -3.19289
2.227	72 -3.7024 39 -4.740(-1.97767
-2.264	46 -7.0900	-2.97474
-1.074	41 -6.1889 78 -6 9287	-3.32525
-6.8092	28 -0.3878	33 5.72514
-7.5678	84 6.4860)5 -1.25889
-2.480 1.0272	27 2.9934	47 2.29585 47 4.66076
2.394	56 4.0252	4.22924
-5.0824	49 -0.0115 24 4.8261	5.60/25
0.8368	4.2395	3.41703
-4.3690	3.0041 31 6.5780	L8 3.22889)5 -0.99031
-1.4108	36 3.457	3.14083
-6.185	54 0.531° 59 3.830°	78 4.34079 71 1.42343
-3.2383	33 1.762(3.75958
3.7153	37 7.3838 55 4 237	38 1.15356 29 -1 0235
-1.4232	1.2372	4.93021
-1.1248	3.8429	06 1.43266 12 0.55679
5.458	71 5.6748	31 1.60204
-6.4518	5.7919	-2.44037
0.2978	JO U.JIJ	4.01335

Н Η Н Η Н Н Н H H Н Н Η Η Η Н Н Н Н

H H

Н	3.90739	4.27746	2.54689
Н	-0.88863	1.23425	3.41481
Н	-6.34183	-2.90038	5.8955
Н	-4.47372	1.35691	2.57036
Н	2.56076	0.99352	4.21812
н	-4.60618	-2.57785	5.85521
H	-7.85956	2.78297	-0.5954
н	-3.06699	-1,29586	4,73783
H	3 88878	1 96173	3 55596
н	-6 64095	-1 82243	3 69742
н	1 02598	1 90684	2 50967
н	4 07493	7 31981	-0 57444
н Н	-2 17014	1 62766	1 61388
и и	-7 68//8	3 50054	-2 10007
	-7.00440	2 06572	-Z.19997
H	-1.07310	-2.06575	0.20900
H	7.0097 E 217E	0.21424	-0.23023
H	-5.31/5	-3.69436	4.6846
H	0.56692	-2.01828	4.6099
H	3.14433	0.08023	2.5/35
H	6.6UI/4	4.49056	-0.2/258
H	-5.31/51	3./494/	-2.82002
H 	-0.1247	-0.94358	2.58032
H 	6.32798	1.2/14/	2.90696
H	-5.88068	-1.48846	1.56054
H 	-5.16532	0.8477	-0.35079
Н	5.42502	-0.45167	4.19561
Н	5.86301	5.60195	-1.43167
Н	3.65253	5.04768	-1.63423
Н	-0.65517	-3.05977	3.86232
Н	-6.35276	-0.46712	-0.3231
Н	1.1181	5.49057	-2.53478
Н	4.90784	1.92518	0.99778
Н	6.61248	2.3703	0.77632
Н	-2.70088	4.51888	-3.93624
Н	-1.33848	3.77148	-3.0906
Н	3.45956	-1.70321	3.32153
Н	7.32365	0.24104	1.84424
Н	-5.56104	-0.02326	-1.83612
Н	4.51819	-2.68473	4.36851
Н	0.59656	3.06481	-2.0728
Н	6.51777	-1.59737	3.37093
Н	2.53213	4.97305	-3.47009
Н	-2.16963	-4.47377	2.76834
Н	-4.68588	3.00876	-4.69246
Н	0.91797	4.48343	-3.97492
Н	-3.43418	-0.82133	-1.10354
Н	-0.81144	-2.83986	1.50919
Н	-3.10699	-3.78099	1.44263
Н	-2.40799	1.56626	-3.24674
Н	-5.5404	-2.91348	-0.39652
Н	-4.79318	1.35898	-4.05849
Н	4.64495	2.06052	-1.29084
Н	-1.66598	3.35013	-4.78185
Н	6.36557	2.30739	-1.6721
Н	0.36893	-4.63998	2.58724
Н	2.34844	1.33843	-2.45186

Н	3.31104	2.54134	-3.33141
Н	2.72628	-3.81951	2.61985
Н	-2.43265	-5.41393	1.28817
Н	-3.86716	-3.25757	-0.87023
Н	-4.98204	-2.51661	-2.02664
Н	-3.61574	1.76272	-5.32003
Н	-2.14415	-0.47548	-2.62331
Н	4.03854	-4.85412	3.24055
Н	1.16332	-4.20216	1.06346
Н	1.72673	2.03985	-3.95429
Н	0.1679	-0.28641	-3.22206
Н	0.19793	-5.68996	1.18281
Н	-0.81592	0.23299	-4.58891
Н	5.24379	1.27366	-3.55839
Н	6.39439	0.10317	-2.86653
Н	-3.21498	-0.52268	-4.75811
Н	-3.75429	-1.95835	-3.87564
Н	-0.90801	-5.80933	-0.63424
Н	3.08745	-5.81395	1.22665
Н	4.76017	-5.30217	0.88226
Н	2.01951	-1.19479	-2.61965
Н	-0.04662	-1.36678	-4.62835
Н	1.44301	-3.1441	-1.45139
Н	-2.55987	-2.10323	-5.17253
Н	3.53463	-0.12898	-4.31241
Н	-1.44787	-3.67184	-4.26371
Н	2.04343	-5.47255	-0.81153
Н	-2.23027	-7.38865	-1.92249
Н	4.68967	-1.47403	-4.08583
Н	-3.21003	-6.56907	-3.14181
Н	2.26309	-2.16888	-4.09111
Н	3.65474	-5.25949	-1.55793
Н	1.76637	-4.19515	-2.84329
Н	-1.15052	-5.93622	-4.38901
Н	0.39144	-7.19407	-2.06351
Н	-2.25788	-7.99984	-3.58272
Н	1.10155	-6.31258	-3.42295
Н	0.277	-7.85408	-3.69848

Excerpt from TDDFT output for [K(18-crown-6)][2]_{calc}

Singlet-A 2.4101 eV 514.44 nm Excited State 1: f=0.1304 <S**2>=0.000 336 -> 337 0.68629 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -5074.62431783Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-A 3.0414 eV 407.65 nm Excited State 2: f=0.0037 <S**2>=0.000 336 -> 339 0.65200 336 -> 340 336 -> 350 -0.12124 0.12637 Excited State 3: Singlet-A 3.5538 eV 348.88 nm f=0.0156 <S**2>=0.000 336 -> 339 0.13423 336 -> 340 0.62047 336 -> 344 0.11696 336 -> 351 0.13581 Excited State 4: Singlet-A 3.7559 eV 330.11 nm f=0.0988 <S**2>=0.000 335 -> 337 0.65314 Singlet-A 4.0006 eV 309.92 nm Excited State 5: f=0.0987 <S**2>=0.000 325 -> 337 0.10180 -0.10220 332 -> 337 334 -> 337 336 -> 342 -0.19518 336 -> 343 0.12893 336 -> 344 -0.16168 336 -> 347 0.11439 336 -> 348-0.10790336 -> 350-0.25841 Excited State 6: Singlet-A 4.0128 eV 308.97 nm f=0.0231 <S**2>=0.000 334 -> 337 0.41349 336 -> 342 0.22947 336 -> 343 -0.16634 336 -> 344 0.29311 336 -> 350 0.26242

Selected Molecular Orbitals of [K(18-crown-6)][2]_{calc}

MO 343 (isovalue 0.05)

MO 345 (isovalue 0.05)

MO 346 (isovalue 0.05)

GIAO calculations for [K(18-crown-6)][2]_{calc}

Reference at: SiMe₄ (²⁹Si : 355.4917, ¹³C: 190.2308);

PMe₃ (³¹P: 391.7033 corrected to H₃PO₄ reference by

subtracting 61 ppm)

Atom	δ _{exp} ([D ₈]-THF)	δ_{calc} (scrf(cpcm,solvent=thf))
P1	-55.7 ppm	-76.9 ppm (vs. H ₃ PO ₄ , 85%)
Si2	-14.9 ppm	-11.0 ppm
Si3	+193.1 ppm	+265.8 ppm
Si4	-39.9 ppm	-39.2 ppm

Excerpt from Gaussian09/GIAO output (corrected for atom order)

1	P	Isot	cropic	= 4	107.649	9.	Anisoti	copy =	27	0.3494
XX=	304.	.4439	YX=	-130	.7151	ZX	= -98	3.0652		
XY=	-109.	.6198	YY=	425	5.8525	ΖY	-15	5.4923		
XZ=	33.	.7680	YZ=	-213	3.4940	ΖZ	= 492	2.6532		
Eigen	nvalue	es:	202.10)52	432.96	16	587.88	328		
2	Si	Isot	cropic	= 3	866.540	8.	Anisoti	copy =	11	8.2020
XX=	357.	.0259	YX=	22	2.4052	ZX	-49	9.1195		
XY=	16.	.5732	YY=	309	9.9455	ΖY	= 47	7.2905		
XZ=	-1.	.1276	YZ=	17	7.7166	ΖZ	= 432	2.6511		
Eigen	nvalue	es:	291.89	934	362.38	69	445.34	122		
3	Si	Isot	ropic	=	89.683	2.	Anisoti	copy =	42	7.6442
XX=	5.	.0640	YX=	-80	.3327	ZX	= 24	1.2390		
XY=	-120.	.5487	YY=	-100	.9329	ΖY	= -32	2.7934		
XZ=	-34.	.9248	YZ=	-102	2.5812	ΖZ	= 364	4.9186		
Eigen	nvalue	es: -	-168.40	547	62.73	50	374.71	793		
4	Si	Isot	ropic	= 3	394.663	4.	Anisoti	copy =	13	5.4245
XX=	477.	.3045	YX=	-55	5.5189	ZX	= -22	L.2187		
XY=	0.	.7770	YY=	360	0.6449	ΖY	= 3	3.1927		
XZ=	54.	.7716	YZ=	13	3.4240	ΖZ	= 346	5.0407		
Eiger	nvalue	es:	336.79	990	362.24	48	484.94	164		

NMR-Standards at ω B97XD/6-311g(d,p); scrf(cpcm,solvent=thf)

$\underline{\text{SiMe}}_4$ (NIF = 0)

Si	0.00005 0.0	0003 -0.00001	
С	1.84855 0.3	3705 0.07691	
Н	2.25063 0.5	656 -0.91479	
Н	2.06888 1.1	8755 0.72916	
Н	2.39287 -0.5	293 0.46485	
С	-0.63916 -0.3	8611 1.7258	
Н	-0.46645 0.4	5152 2.40837	
Н	-1.71443 -0.5	8858 1.71322	
Н	-0.14015 -1.2	6506 2.14508	
С	-0.8863 1.5	164 -0.67189	
Н	-0.536 1.7	6608 -1.67802	
Н	-1.96654 1.3	5099 -0.72739	
Н	-0.71588 2.3	8919 -0.03429	
С	-0.32313 -1.4	6736 -1.1308	
Н	0.18001 -2.3	6743 -0.76462	
Н	-1.39288 -1.6	8791 -1.19674	
Н	0.03943 -1.2	7292 -2.14475	
1 Si Isotrop:	ic = 355.4917	Anisotropy =	0.1971
XX= 355.5405 YX	X= 0.0273	ZX= -0.0994	
XY= -0.0436 YY	Y= 355.4883	ZY= -0.1858	
XZ= -0.0329 Y2	Z= -0.0847	ZZ= 355.4463	
Eigenvalues: 355	.3163 355.535	7 355.6231	
2 C Isotrop:	ic = 190.2308	Anisotropy =	8.0421
XX= 195.3105 YX	X= 1.4401	ZX= 0.3062	
XY= 1.4479 YY	Y= 187.7919	ZY= 0.0370	
XZ= 0.3567 Y	Z= 0.0614	ZZ= 187.5902	
Eigenvalues: 187	.5215 187.578	8 195.5923	
3 H Isotrop:	ic = 31.9949	Anisotropy =	9.7793
XX= 32.7245 YX	X= 1.5529	ZX= -4.2199	
XY= 1.5047 YY	Y= 28.5219	ZY= -1.8541	
XZ= -3.9671 YZ	Z= -1.8005	ZZ= 34.7383	
Eigenvalues: 27	.9509 29.519	3 38.5144	

<u>PMe₃</u> (NIF = 0)

Р	-0.00004	0.00046	-0.60525
С	-1.41978	0.79099	0.27979
Н	-2.35311	0.30592	-0.01573
Н	-1.31592	0.72353	1.3675
Н	-1.48838	1.84413	-0.00284
С	1.39537	0.83324	0.27979
Н	1.29426	0.76254	1.36762
Н	2.3428	0.37681	-0.01646
Н	1.43192	1.88808	-0.00262
С	0.02446	-1.62493	0.27931
Н	-0.85095	-2.21297	-0.00626
Н	0.91307	-2.18937	-0.01287
Н	0.02673	-1.50131	1.36713

1 Isotropic = 391.7033 Anisotropy = 16.7347 Ρ XX= 402.6369 YX= 0.0424 ZX= 0.0594 XY= 0.0529 YY= 402.8496 ZY= -0.21240.0527 XZ =YZ= 0.1619 ZZ =369.6235 Eigenvalues: 369.6234 402.6268 402.8598 Isotropic = 171.9652 Anisotropy = 28.1018 2 С -10.7654 XX= 178.9549 YX= ZX= 6.8384 XY= -10.6981 YY= 165.9889 ZY= -3.6754 11.7891 YZ= -6.4517 ZZ =170.9518 XZ= 159.9297 165.2662 190.6997 Eigenvalues: Isotropic = 30.9512 3 Н Anisotropy = 10.4647 1.2776 37.6026 YX= -1.3876 XX= ZX= XY= 1.2867 YY= 27.8974 ZY= -0.8198 XZ= -1.0305 YZ= -0.6419 ZZ =27.3537 26.8380 28.0880 37.9277 Eigenvalues:

8. References

[1] A. R. Jupp, J. M. Goicoechea, Angew. Chem. 2013, 125, 10248–10251; Angew.
 Chem. Int. Ed. 2013, 52, 10064–10067.

[2] K. Leszczyńska, K. Abersfelder, A. Mix, B. Neumann, H.-G. Stammler, M. J.

Cowley, P. Jutzi, D. Scheschkewitz, Angew. Chem. 2012, 124, 6891-6895; Angew. Chem.

Int. Ed. 2012, 51, 6785–6788.

[3] *CrysAlisPro*, Agilent Technologies, Version 1.171.35.8.

[4] (a) G. M. Sheldrick in SHELXL97, *Programs for Crystal Structure Analysis (Release*

97-2), Institut für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400

Göttingen, Germany, 1998; (b) G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46,

467-473; (c) G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.