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ABSTRACT In a network of excitatory and inhibitory
neurons, hyperpolarization-activated inward currents can help
to produce population rhythms in which individual cells par-
ticipate sparsely and randomly. A shift in the activation curve
of such a current changes the fraction of the cells participating
in any given cyde of the population rhythm, thus hanging the
anmpltude of the field potential. Furthermore, the frequency of
the population rhythm remains relatively fixed over a substan-
tial range of amplitudes, allowing the population rhythm to
play a separate processing role from that of the individual
components.

Neurons in the central nervous system have many different
ionic currents that contribute to their behavior and to the
emergent behavior of the network of such neurons (1). It is of
interest to understand the functional significance of different
currents and combinations of them. The hyperpolarization-
activated cation current ih has been found in a variety of cells
and preparations in the central nervous system (2-12). This
current is very small when the cell is depolarized, but it has
important effects on the activity ofthe neuron when the cell is
hyperpolarized. It has been suggested that ih helps set the
resting potential of a cell, thereby modulating the effects of
other currents (2, 3) and that it is significant in producing and
modulating rhythmic activity in a single cell (3, 4). It is known
that ih can be modulated by histamine (5), noradrenaline (4, 6),
serotonin (6), the volatile anesthetics enflurane and forskolin
(7), nitric oxide (8), and cyclic AMP (9) by shifting the
activation curve of ih in either the hyperpolarized or the
depolarized direction. This modulation has been suggested to
play a role in the ability of the thalamocortical relay cells to
switch behavior between low-frequency rhythmic bursting
characteristic ofthe sleep state and the more excitable but less
regular behavior characteristic of the waking state (3, 4, 10).
We suggest another function that hyperpolarization-

activated currents may be playing in general cortical-like
tissue that produces rhythmic output (13). We show via
simulations that if ih is present along with standard Hodgkin-
Huxley sodium and potassium channels, population rhythms
can be obtained from model cells, none of which are them-
selves capable of oscillation (burst or tonic fuing) without
external input. In these population rhythms, individual cells
fire action potentials only infrequently (14-16). Shifting the
activation curve of ih or changing its maximal conductance in
some of the cells modulates the amplitude of the population
rhythm; if ih is increased, by increasing the maximal conduc-
tance or shifting the activation curve in the depolarized
direction, more excitatory cells fire within a cycle, giving a
range of amplitudes for the associated field potential. In our
simulations, the frequency of the population remains rela-
tively fixed over a substantial range of amplitudes. Since the
rhythm of the population can continue without change when

a given microcircuit is withdrawn, the ih modulation provides
a mechanism by which a microcircuit and the global oscilla-
tion can perform different processing tasks (multiplexing).
We illustrate our points by using a relatively simple net-

work, in which each ofthe cells is described by voltage-gated
conductance equations with a small number of ionic currents.
As in cortical tissue, there is substantial convergence and
divergence of connections. The model cells are connected to
one another via excitatory or inhibitory synapses.
With some changes in parameters, the ionic conductances

and synapses that we use suffice to produce an oscillation
even for a single pair of excitatory and inhibitory cells.
However, a large number of neurons is needed to get a
rhythm in which each cell fires less often than once per "field
potential" cycle, and a very large network is required for
very sparse participation. We describe our simulations in
networks of many cells and then explain the results by using
simulations and analysis of behavior in smaller networks.

Simulations and Results

Simulations were carried out in a network consisting of 55
elements, each described by voltage-gated conductance
equations similar to the Hodgkin-Huxley equations. Each
cell had a fast sodium current with an activation and inacti-
vation, a slower potassium current, and a leak current. In
addition, the 50 cells designated excitatory cells (E-cells)
were each given a hyperpolarization-activated inward cur-
rent (ih). This current activates slowly in the hyperpolarized
regime and deactivates more quickly in the depolarized
regime. The other 5 cells were designated inhibitory cells
(I-cells). Without connections to other cells, each cell re-
mained at resting potential. (In the presence of sufficient
depolarizing injected current, they would fire periodically.)
The cells were identical except for the maximal conductance
of ih. The equations used are in the Appendix.
Each E-cell was connected to two I-cells, with connections

randomly chosen. Each I-cell was connected to 10 E-cells,
again with the connections random. There were no connec-
tions from E-cells to E-cells or I-cells to I-cells. The con-
nections were modeled by using caricatures of voltage-gated
excitatory and inhibitory synapses, also given in the Appen-
dix. The model inhibitory synapses (i.e., the connection from
an I-cell to E-cell) were slower than the model excitatory
synapses (connections from E-cells to I-cells).
A series of simulations was run using different values for

the maximal conductance of ih and different positions of the
activation curve. The network was started by stimulating a
fraction of the cells for a short time. If the average amount of
ih in the system was too small, the network returned to rest
shortly after the end of stimulation. If the amount of ih was
very large, we obtained rhythms in which each cell fired in

Abbreviations: E-cell, excitatory cell; I-cell, inhibitory cell; IPSP,
inhibitory postsynaptic potential.
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every period of the oscillation. For intermediate cases, we
illustrate our major findings in Fig. 1.

Fig. 1 shows voltage vs. time for 3 of 5 of the I-cells and 25
of 50 ofthe E-cells. The last trace at the bottom of each graph
is a computation ofthe field potential. (To obtain an analogue
of the field potential, the cells were placed arbitrarily in a
two-dimensional grid. The calculated quantity is proportional
to the sum of all the currents for each cell and inversely
proportional for each cell to the distance to the electrode. The
qualitative behavior was the same for different positions of
the electrode.) The graphs are taken from a portion of a run
after the initial stimulation was removed. In each case, the
maximal conductance ofih varies among the E-cells, between
0.03 and 0.3 mS/cm2, using a uniform distribution with a
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FiG. 1. Network with 50 E-cells and 5 I-cells. The E-cells have
an ih current whose activation curve is a saturating sigmoidal function
decreasing with increasing voltage. (A) Spontaneous activity of
network with half-activation of ih in the E-celis set to -75 mV. Field
potential is rhythmic with an average frequency of 46 Hz. (B)
Spontaneous activity of network with half-activation of ih in the
E-cells set to -65 mV. Fraction of cycles in which each cell fires is
increased and the field potential amplitude is higher, but the popu-
lation frequency is approximately the same (49 Hz).

mean of 0.17 and a SD of 0.069. The parameters in Fig. 1B
are those of Fig. 1A, with the activation curve of ih displaced
in the depolarizing direction, with half-activation changed
from -75 to -65 mV.
The following features of these figures held in all of the

simulations: (i) There is a fairly regular rhythmic activity that
is not perfectly periodic. (ii) Individual cells, especially
E-cells, fire far less frequently than once per cycle and in a
manner that is seemingly random. In particular, there is no
obvious longer periodicity for an individual cell. (iii) If the
activation curve of ih in the E-cells is displaced in the depo-
larized direction, the E-cells fire on the average more often.
This is also true if the mean maximal conductance of ih in the
E-cells is increased. (iv) The population period does not
change substantially with the change in ih level. Rather, the
field potential increases with the increase in ih conductance.

Role of Some Rate Constants

A network consisting of one E-cell and one I-cell is capable
of producing a rhythmic firing, using the postsynaptic re-
bound exhibited by the E-cell (17). The firing of the E-cell
quickly induces an action potential in the I-cell. The resulting
inhibitory postsynpatic potential (IPSP) in the E-cell turns on
ih in the E-cell, and this cell then fires when released
sufficiently from inhibition by the decay of the inhibitory
synaptic current. This mechanism differs from others that
produce oscillations from an ensemble of excitatory and
inhibitory cells (18-20).
The phenomenon of postinhibitory rebound can be exhib-

ited even without ih. However, in that case, after an IPSP too
small to elicit a rebound, the system moves toward its
previous resting potential. Unless the IPSPs come too
quickly for the system to return close to that potential, the
system has no memory. By contrast, with ih, an IPSP too
small to provoke a rebound can turn on ih, which does not
inactivate between pulses. When another IPSP is later re-
ceived, it arrives when the cell is closer to threshold and can
exhibit rebound with the same IPSP that was previously too
small. When the cell is depolarized, ih decays quickly, so the
response ends after one firing and the cell can again build up
slowly. This mechanism is capable ofproducing one response
after many inhibitory impulses. Furthermore, it can do so in
a step-like manner as parameters are changed (21-23).
The population oscillation is due to a combination of

effects: ih allows each cell to fire after several IPSPs; the I-cell
fires, as in the 2-cell circuit with 1 E-cell and 1 I-cell, provided
that at least 1 E-cell fires at each cycle and thereby gives
excitation to the I-cell. The requirement that at least 1 E-cell
fire per cycle implies that the fraction of cycles in which each
cell fires cannot be very low for a small network.
To clarify the role of ih and rate constants in the mechanism,

we use a network ofintermediate size: 6 E-cells and 1 I-cell to
which all the E-cells are connected. With appropriate values
of maximal conductance and half-activation voltage of ih, the
population of E-cells splits into several subpopulations, with
each E-cell firing once for several population cycles. In Fig. 2
A and B, we plot the voltage, ih conductance, and inhibitory
synaptic conductance as functions of time for a single E-cell.
Arrowheads mark the onset of I-cell firing. Note that the
conductance of ih builds up with each successive IPSP and
resets rapidly when the cell fires. The conductance of the
inhibitory synaptic current increases shortly after the E-cell
fires, reflecting the short interval between the firing of some
E-cells and the subsequentfiringofthe I-cell. The longerdecay
time of the inhibitory conductance appears to be the most
important variable in setting the frequency of the network
rhythm. Fig. 2 B and C illustrates that a change in the kinetics
of the inhibition has a significant effect on the period of the
rhythm. Fig. 2 A and D shows that a change in the kinetics of
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ih changes the fraction of cycles that a given E-cell fires
without significantly changing the periodicity of the rhythm.

In other simulations in this network (not reported here) we
have shown that, as the ih time constant is changed, the
population period changes slowly, but the period of a single
cell changes abruptly (thus changing its entrainment mode
with the population cycle from 1:1 to 1:2 to 1:3). By contrast,
change in the synaptic kinetics over the same range (20-fold)
changes the period of the population but leaves the entrain-
ment mode constant.

Discussion

Properies ofthe Network. Rhythmicity is a property ofvery
simple networks having at least 1 E- and 1 I-cell. In a network
that has a cortex-like architecture of extensive convergence
and divergence, a population rhythm does not require that
each E-I pair be capable ofoscillating. The convergence ofthe
network allows each cell to receive input provided that enough
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of the cells have fired in the previous cycle. The convergence
and divergence together ensure that there is roughly the same
periodic input to all the cells of the subpopulations.

In our network, the currents were set so that the excitatory
postsynaptic potential (EPSP) from any E-cell is sufficient to
cause an I-cell to fire. This was needed because the number
of cells in our network was relatively small. For a network of
appropriate physiological size, and with sufficient conver-
gence and divergence, we expect that the phenomena persist
even if the firing of an I-cell requires many EPSPs.
The mechanism described here produces regulation of

population frequency, while the amplitude of the field po-
tential is modulated. One reason is that the time interval
between an I-cell action potential and the next round ofE-celi
action potentials depends very little on the average number
of cells in the network that are firing in a given cycle. Rather,
the network provides E-cells with a window of opportunity
within which to fire. The time between E-cell action poten-
tials is governed mainly by the time constant of the synaptic
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inhibition, while the length of the window, which is much
shorter, is governed by the interval between E-cell firing and
I-cell firing plus the rapid buildup of inhibition. Those cells
with high enough ih to fire upon release of inhibition in a given
window do so; the others wait for the next cycle. Thus, in
spite of distribution of parameters within the population,
those cells that do fire in a given cycle are almost synchro-
nous, giving a sharp population rhythm. The number of cells
firing is modulated by changing the maximal conductance of
ib or the position of its activation curve. The larger the
network, the greater the range of possible amplitude modu-
lation. With a 50%o change in average maximal conductance
in the 55-cell network, we obtained a 48% change in ampli-
tude of the field potential, and a 6% change in the frequency.
For the 7-cell network, the 50% change in maximal conduc-
tance led to a 23% change in field potential amplitude and a
10% change in frequency.
For large networks, we have found that the rhythmic

behavior is not robust when the maximal conductance of ih is
set uniformly for the E-cells. The difficulty is the prevention
of too large a degree of synchrony among the cells; if too
many cells fire in a given cycle, those cells are unavailable for
firing until their level of ih builds up again, and the network
crashes because not enough I-cells get input in the next cycle.
One way to prevent the unwanted synchrony uses a distri-
bution of maximal ih conductances for the E-cells. Then the
E-cells build up to firing at different rates, and those cells that
have fired in one cycle become ready to fire again at a mixture
of later cycles.
The rhythmic behavior and sparse fiing of cells is robust to

variations in time constants, including those ofthe I-E and E-I
connections and the ih current. When the E-I time constants
are varied (up to 30%) in the population, the E-cells remain
synchronous, while there is a small spread (much less than the
spread in time constants) in the firing time and spike duration
of the I-cells. When the I-E time constants are allowed to vary
(up to 25%) over the population, both the E-cells and the I-cells
remain synchronous (when they fire in a given cycle); the
major effect is that the cycle time is less regular cycle to cycle.
Variation ij kinetics of ih has essentially the same effect as
variation in maximal conductance of that current.

Related Models. Most models of cortical activity either use
very simple elements, in which the variables are averaged
firing rates (18, 19) or phases for oscillatory elements (24, 25),
or are very detailed and large simulations using thousands of
elements with layers of complexity that include many ionic
and synaptic currents with many time scales as well as spatial
dependence ofthe connections (26, 27). The above simulation
is intended to draw attention to the functional possibilities
associated with particular ionic currents without modeling
the details of neural activity.
For models of the hippocampus and the thalamus that

reproduce some of the features of this paper see refs. 16 and
28-31. Asynchronous states in networks have been produced
in various other models (32, 33) (D. Terman, personal com-
munication); none of these models is concerned with the
potential role of particular ionic currents. Other models using
currents including or similar to ih are described in refs. 34 and
35. The ability of inhibition to produce synchronization of
some cells, as in our method, was also noted (36).
BiologalSi ce. i4 is known to exist in some parts of

the brain that produce rhythmic activity and that have
networks of excitatory and inhibitory cells interacting
through convergent and divergent connections. One such
example is the network of relay cells and nucleus reticularis
cells within the thalamus (1). Population phenomena similar
to those discussed in this paper are associated with the
generation of spindle waves in vivo (14) as well as in a slice
preparation (15). We note that the mechanism of this paper
produces synchrony among the subset of excitatory cells that

fire in any cycle, even though there are no direct connections
among those cells; this is also true of the excitatory elements
of this intrathalamic network, the relay cells (37).
Another potentially relevant network is that formed by the

relay cells in the thalamus giving inhibition to cortical cells and
excitation from the latter cells back to the relay cells (1).
Oscillations are found in the 30- to 50-Hz range during attention
and cognition (38), and it has been suggested that the thalamus
may be involved in the production of these rhythms (1).

Cells in the thalamus and in the cortex have many con-
ductances in addition to the ones represented in our model
(1). It is possible that other slow conductances, such as a
slowly inactivating calcium-gated potassium current, could
produce similar phenomena, in which an easily modulatable
quantity (like the ih activation curve) dramatically modifies
amplitude while preserving the population frequency. It
remains to be fully understood what combinations ofcurrents
and time scales display this regulation, thus allowing the
population rhythm and the microcircuits to be used for
different tasks. We note that the larger the network, the
sparser the involvement of any individual component can be
and, hence, the more flexibly the network may "multiplex."
The model in this paper does not deal with spatial differ-

ences in connectivity. However, ifthere are such differences,
and different regions have different average levels of ih
conductances or hyperpolarization, then the network can
have spatial differences in field potential amplitude while
having a uniform "carrier wave" frequency. The existence of
field potentials with these properties has been noted by
Freeman (20). The mechanism of this paper could also be
used to help facilitate "map overlays" of different modalities
in the cortex. That is, information from, e.g., the auditory
cortex could, via the thalamus, be relayed to the visual cortex
without disturbing aspects of the visual processing.

Appendix

The equations used for both the E-cells and the I-cells were
Hodgkin-Huxley equations

dV
C- = -: ionic currents.

dt
[Al]

For the E-cell, the RHS of [Al] is iNa+ iK + ih+ lleak+ 4syn
Na = gNamh [V - ENa],

where

dm
Tm(V) = mOO(V)- m

dh

and

1
mco(V) = 1 - /-31 - V\ ,

1 + exp- v1

h,,(V) = [1 + exp (7 )1
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Tm(V) = V+40\ (23-v\]'

exp 58 expk 15is

Th(V) = 72[( Q( +7)]

= gKflK(V -EK),

where

dnK
FkV) ds = nK,c,(V) -n

F11

nK,oo(V) =0.96- /-46- V\I
1+exp -17

_ t ~~1
TK(V) =9.4 /-104 - V\_+ expQ 17

1

1 + exp( )

631

ih =lihfi,(V E 2) -

where

dnhh =1li,¢(V) ns

[11

niih.JV) =VL+ 75)
- 0.06,

631
The(vavi nv+2.\I

1+ep

4.2

ileak = gleak(V Elak

isyn gsynns(V Es"n)

where

dnt

F1.41

ns,oo(V) =I-0.43.

1+expQ6.2

The above activation and kinetic functions were con-

structed by usingR curve-fitting programs, and the constants

given are approximate. Gating variables and time constants
are set to zero by the software if the above equations give
negative values. The I-cell had all of the above currents

except for ih, and the forms of the equations used were the
same as above. The equations for the E-cells and I-cells
differed in the constants used for the maximal conductances,
time constants, and reversal potentials. For the E-cells, the
constants were given by C = 1 puF/cm2, gK = 20, EK = -72,
gNa = 120, ENa = 55, E = -10, klcak = 0.3, Eicajk = -50,
gsyn= 0.6, EY = 55, T = 20 msec. The units for maximal
conductance and reversal potential are mS/cm2 and mV. For
the I-cells, the constants were the same for C, iK, and iNa:
kleak= 0.1, EL = -60, ksyn = 2.1, Esyn = -85, Ts = 80 msec.
The software used to produce the simulations was devel-

oped by G.L. and is not commercially available. The numer-
ical method used in the software is the exponential method
(39), a first-order method often applied to neural models
because of its good stability properties. The numerical results
were partially checked by the Runge-Kutta method.
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