Supplementary Figures ## Ca²⁺ signaling but not store-operated Ca²⁺ entry (SOCE) is required for the function of macrophages and dendritic cells Martin Vaeth*, Isabelle Zee*, Axel R. Concepcion*, Mate Maus*, Patrick Shaw*, Cynthia Portal-Celhay[†], Aleena Zahra[†], Lina Kozhaya*[†], Carl Weidinger*, Jennifer Philips*, Derya Unutmaz*[†], and Stefan Feske* *Department of Pathology, [†]Department of Medicine, New York University School of Medicine, New York, NY 10016, USA Figure S1. The loss-of-function ORAI1^{R91W} mutation does not affect the frequency of peripheral blood monocytes and DCs. Analysis of peripheral CD14⁺ monocytes, conventional (cDCs), and plasmacytoid dendritic cells (pDCs) of a healthy donor and a patient homozygous for a loss-of-function ORAI^{R91W} mutation (2) by flow cytometry. Singlet PBMC were gated on CD3⁻CD19⁻non-T and non-B cells that are HLA-DR⁺. The frequencies and populations of CD14⁺CD303⁻ monocytes, CD14⁻CD303⁻ cDCs, and CD14⁻CD303⁺ pDCs within HD and patient PBMC are indicated. Figure S2. Intracellular Ca²⁺ signaling but not SOCE is required for FcR-dependent and FcR independent phagocytosis in BMDMs and peritoneal macrophages. (a,b) Phagocytosis of latex beads and *S. aureus*. BMDMs generated from the BM of poly I:C-treated WT, *Stim1*^{n/n} *Mx1-Cre* and *Stim1*^{n/n} *Stim2*^{n/n} *Mx1-Cre* mice were incubated at 1, 5, and 25 bead-to-cell ratios with carboxylate-modified yellow-green microspheres for 2 h (a) or 1, 10, and 50 MOI of GFP-expressing *S. aureus* for 30 min (b). Phagocytosis was quantified by flow cytometry. Representative histogram plots (left panels) and averaged data from 3 mice per group (right panels). (c) FcR crosslinking induces STIM1/STIM2-dependent SOCE. WT and *Stim1*^{n/n} *Stim2*^{n/n} *Vav-Cre* BMDMs were loaded with Fura-2 for 30 min, incubated with 10 μg/ml rat-anti-mouse FcγIIR/FcγIIIR (CD16/CD32) antibody and analyzed for [Ca²⁺] by FlexStation3. Store depletion was induced by FcR crosslinking with 20 μg/ml rabbit-anti-rat antibody in Ca²⁺ free Ringer solution; SOCE was induced by raising the extracellular [Ca²⁺] to 1 mM. Shown is one representative experiment (left panel); store depletion (AUC_{1808-440s}) and peak Ca²⁺ influx (peak F340/380) were quantified from 5 independent experiments (right panel). (d) Phagocytosis of IgG-coated beads. WT, *Stim1*^{n/n} *Mx1-Cre* and *Stim1*^{n/n} *Stim2*^{n/n} *Mx1-Cre* BMDMs were incubated at 1, 5, and 25 bead-to-cell ratios with FITC-labeled IgG-coated fluorescent beads and FcR dependent phagocytosis was measured by flow cytometry (left panel); bar graphs show data from 2 individual experiments (right panel). (e,f) Phagocytosis of opsonized red blood cells (RBCs). BMDMs (e) or primary peritoneal macrophages (f) from poly I:C-treated WT, *Stim1*^{n/n} *Mx1-Cre* and *Stim1*^{n/n} *Stim2*^{n/n} *Mx1-Cre* mice were incubated for 3 h with mouse RBCs opsonized with an anti-mouse RBC antibody and labeled with anti-Ter119-PE. FcR-dependent phagocytosis was measured using 2, 20, and 200 RBC-to-cell ratios. Representative Figure S3. Phagocytosis by bone marrow-derived DC requires intracellular Ca^{2+} signaling but not SOCE. (a-c) WT and $Stim1^{fl/fl}Stim2^{fl/fl}$ Vav-Cre BMDCs were left untreated (medium) or incubated with 2.2 mM EGTA (a), 10 μM BAPTA-AM (b), or 50 μM 2-APB (c) for 30 min and $[Ca^{2+}]_i$ was analyzed using a FlexStation3 plate reader (a-c, left panels). Store depletion (AUC_{60s-540s}) after TG stimulation in Ca^{2+} -free Ringer solution and peak Ca^{2+} influx (peak F340/380) in 1 mM Ca^{2+} Ringer solution were quantified from 3 individual mice per group (a-c, right panels). (d,e) WT and $Stim1^{fl/fl}Stim2^{fl/fl}$ Vav-Cre BMDCs were incubated with 1, 5, and 25 bead-to-cell ratios of carboxylate-modified yellow-green microspheres (d) or FITC-labeled IgG-coated fluorescent beads (e) for 2 h with medium alone or with 2.2 mM EGTA, 10 μM BAPTA-AM, or 50 μM 2-APB as described in (a-c). Phagocytosis was quantified by flow cytometry (left panels) and data from 3 mice per group was compiled as ΔMFI (right panel), where ΔMFI = MFI_{beads} - MFI_{no beads}. Bar graphs represent the mean ± SEM. Statistical significance was calculated with an unpaired Student's t test: *, p<0.05; ***, p<0.005; ****, p<0.001. Figure S4. Intracellular Ca^{2+} signals in BMDCs upon LPS, curdlan, zymosan, imiquimod and CpG stimulation. (a-c) BMDCs from WT (a) and $Stim1^{fl/fl}Stim2^{fl/fl}Vav$ -Cre (b) mice were loaded with Fura-2 for 30 min and stimulated with 5 μg/ml LPS, 20 μg/ml curdlan, 100 μg/ml zymosan, 1 μg/ml imiquimod, 100 nM CpG or medium alone in 2 mM Ca^{2+} containing Ringer solution. After 420 s, SOCE was induced by addition of 0.2 μM ionomycin. $[Ca^{2+}]_i$ was analyzed by time-lapse microscopy. Graphs in (a) and (b) show individual cell traces (grey lines) and averaged $[Ca^{2+}]_i$ of all cells recorded (bold black line). Dot plots in panel c show the integrated Ca^{2+} signal as the area under the curve (AUC) from the addition to stimulus (120s) to 210s in cells from 3 independent experiments.