




Supplemental Figure 1. Gating scheme and sorted cell subsets. (A) NK cells were sorted as CD1d-tet⁻CD3⁻NK1.1⁺DX5⁺ cells. (B) iNKT cells were sorted as CD1d-tet⁺CD3⁺ cells. (C) NKT cells were sorted as CD1d-tet⁻CD3⁺NK1.1⁺⁻ cells. (D) CD8⁺ conventional T cells were sorted as CD1d-tet⁻CD3⁺CD3⁺NK1.1⁻ cells. (E) CD8⁺ NKT cells were sorted as CD1d-tet⁻CD3⁺CD3⁺NK1.1⁺ cells.

Supplemental Figure 2. Phenotypic comparison of CD8⁺ T cells from conventional T cell versus NKT cell compartments. (A) Plots show the distribution of CD4 versus CD8 among conventional T cell compartment (NK1.1⁻ CD3⁺CD1d-tet⁻) versus NKT cell compartment (NK1.1⁺CD3⁺CD1d-tet⁻). (B) CD8⁺ T cells from the conventional T cell compartment (NK1.1⁻CD3⁺CD3⁺CD1d-tet⁻) and NKT cell compartment (NK1.1⁺CD3⁺CD1d-tet⁻) were compared for the expression of the indicated receptors. Shown as controls, NK (NK1.1⁺DX5⁺CD3⁻CD1d-tet⁻), iNKT (NK1.1⁺CD3⁺CD1d-tet⁺), and total NKT (NK1.1⁺CD3⁺CD1d-tet⁻) cells. Numbers indicate the frequency of positive cells as mean \pm s.e.m. Data are representative of two independent experiments, n = 6.

Supplemental Figure 3. Experimental design. **(A)** Mice were intravenously injected with Listeria monocytogenes (expressing Ovalbumin, LM-Ova) at day 0 and day 42 (depicted as arrows in graphs). In prime/boost setting prime dose was 10^4 CFU and boost dose was $2x10^5$ CFU. For prime dose response single 10^3 CFU and $2x10^5$ CFU infections were also used. Mice were sacrificed at days 0, 3, 7, 14, 42, 45, 49, and 70 and innate (IFN γ , CD107, CD69, Granzyme B) and adaptive (Ova-tetramer, LemA-tetramer, OVA or LemA peptide ex vivo stimulation of recall responses) were studied. **(B)** Graphs of kinetics of absolute number for total splenocytes and liver lymphocytes in WT mice are shown in response to LM-Ova. Data are representative of three independent experiments, n = 9 (days 0, 7, 49), n = 6 (days 3, 14, 42, 45, 70), mean \pm s.e.m.

Supplemental Figure 4. Tracking LemA-specific T cells among conventional CD8⁺ T cells and CD8⁺ NKT cells. Mice were infected with 10⁴ CFU of LM-Ova on day 0 and re-challenged with $2x10^5$ CFU on day 42, as indicated by arrows. Graphs show kinetics of absolute number of LemA-tetramer positive cells among CD8⁺ NKT and CD8⁺ T cells in spleen and liver. Data are representative of three independent experiments, *n* = 4 for each time point (for days 0, 7, 49) and data are representative from one of two independent experiments *n* = 3 for each (for days 3, 14, 42, 45, 70), mean ± s.e.m.