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Cohort Participants, Ethics Approval, and Plasmodium
falciparum Case Detection and Definition
Participants. The malaria research program involving the inhabitants
of the Dielmo and Ndiop villages in Senegal has been ongoing since
1990 as described and documented in detail elsewhere (1–3).Malaria
transmission in Ndiop is moderate and strictly seasonal, depending
upon the rainy season during the second semester. By contrast, in
neighboring Dielmo, the population is exposed to intense, perennial
malaria transmission, maintained during the dry season by anoph-
eline production in a stream. The number of infectious bites per
person per year, the annual entomological inoculation rate, in
Dielmo is of the order of 200 (4), compared with ∼20 in Ndiop (5).
This program is supported by three different institutions: the Institut
Pasteur (Dakar, Senegal), the Institut de Recherche pour le Dé-
veloppement (IRD) (Marseille, France), and the Senegalese Min-
istry of Health and Prevention. An agreement between these
institutions defines all research activities conducted in this program.
A field research station with two dispensaries run by nurses has been
constructed for the program, ensuring free-of-charge access to
health care for the volunteers. Every villager can join or leave the
program at any time and newborns can be included upon the re-
quest of their parents or legal guardian, therefore forming an open
cohort. In the malaria research program, a family-based longitudinal
study is conducted to identify all episodes of fever. Specifically for
children under 15 y of age, surveillance is active with a daily visit 6 d/wk
(i.e., excluding Sunday) of all of the households by field monitors to
detect episodes of fever and related symptoms. In the case of sus-
pected fever or fever-related symptoms, a thick blood smear is
systematically performed. After the detailed medical examination
has been completed by an experienced health worker, specific
treatment is administered. When a clinical malaria attack is di-
agnosed, an antimalarial treatment is administered according to the
National Malaria Control Program guidelines. Presence in the vil-
lage of each volunteer is also recorded on a daily basis. The longi-
tudinal surveys were approved by the Ministry of Health of Senegal
and the assembled population of the two villages. Every year, the
program was reexamined by the Conseil de Perfectionnement of the
Institut Pasteur in Dakar and the assembled village population;
informed consent of the volunteers is renewed every year. More
specifically after informing them about the procedures and the
purpose of the study, written informed consent was obtained from
parents or guardians of children either by signature or by thumb-
print on a voluntary consent form written in both French and in
Wolof, the main local language. Consent was obtained in the
presence of the school director, an independent witness.

P. falciparum Life Cycle. The Plasmodium life cycle consists of
multiple stages in both human and mosquito hosts. When a
(female) mosquito takes a blood meal from an infected human,
male and female Plasmodium gametocytes may be ingested.
Sexual reproduction of the parasite takes place within the mos-
quito’s stomach, forming an ookinete that penetrates the midgut
wall and encysts. After a period of 10 d or so, sporozoite-stage
parasites emerge from the mature oocyst and migrate to the
mosquito’s salivary glands. Upon a subsequent blood meal, the
sporozoites invade the liver and, after a period of mitotic division,
emerge into the blood, reproducing asexually in erythrocytic stages
and eventually producing gametocytes to complete the cycle. Im-
munity to P. falciparum is nonsterilizing. After repeated infection,
individuals may develop clinical immunity whereby they can toler-

ate parasites without showing symptoms. Such asymptomatic in-
fections have blood parasite densities that are detectable in a blood
smear. Antiparasite immunity, whereby individuals control parasite
density, develops more slowly, but complete protection from the
parasite is never achieved. Individuals with sufficient antiparasite
immunity may be able to control densities below what is detectable
by blood smear (although detection can be achieved by molecular
methods to a lower density). Without drug treatment, an infection
is estimated to last for up to 320 d (6). The model captures some
key aspects of the human, parasite, and vector dynamics.

The Model
Our modeling framework was designed to be applicable to both
villages. It considers both human and mosquito population var-
iability, the first one through yearly census and the second one
either directly from landing catches or indirectly estimated
through the variability in local meteorological conditions, mainly
local rainfall and temperature. Our model also differs from
previous dynamic models applied to Ndiop (7) in that we are
fitting both birth and death rates and in that we differentiate
humans showing symptoms from asymptomatics (8).
The system of equations for human classes is

dS1
dt

= μBS1N +
dN
dt

− μS1ES1+ tsμTI1+ μS2S1S2− δ S1 [S1]

dE
dt

= μS1ES1−ΦμEIE− ð1−ΦÞμEIE− δE [S2]

dI1
dt

=ΦμEIE− ð1− tsÞμTI1+ si1μS1EI2+ si2μS1ES2− tsμTI1− δ I1

[S3]

dI2
dt

=ð1− tsÞμTI1−si1μS1EI2+ð1−ΦÞμEIE−μI2S2I2

+si3μS1ES2−δ I2 [S4]

dS2
dt

= μI2S2I2− μS2S1S2− si3μS1ES2− si2μS1ES2− δ S2, [S5]

where nonlinear terms are highlighted in red and NðtÞ is the total
human population for each village at time t obtained from in-
terpolated yearly census data as shown in Table S1.
The differential Eqs. S1–S5 correspond to a large population

limit of homogeneous individual-level models where each individual
has exponentially distributed transition times. The birth rate μBS1ðtÞ
is set to ensure that S1ðtÞ+ S2ðtÞ+EðtÞ+ I1ðtÞ+ I2ðtÞ+RðtÞ=NðtÞ
and the death rate was computed by fitting the data as explained in
SI Text, Natural Mortality Rate Estimation).

The force of infection or transmission rate at the current
time t is defined as

μS1EðtÞ= ba2c
Z t

t0

MðsÞ
NðsÞ

IðsÞ
NðsÞ xðsÞpðt− sÞ ds [S6]

with xðsÞ, the fraction of uninfected mosquitoes at a previous time
s; MðsÞ, total number of mosquitoes at time s; NðsÞ, total number
of humans at time s; IðsÞ=NðsÞ, fraction of infected humans at
time s; and pð. Þ, a delay distribution that describes the mosquito
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stage of the parasite life cycle and vector survival. We choose pð. Þ
to be a Γðκ, τ=κÞ density.
Uninfected mosquitoes become infected with malaria with a

probability c when they bite (at a rate a) an infected human. The
infected mosquitoes then contribute to malaria infection in humans
when they again bite an uninfected human (at a rate a) and infect
humans with a probability b that has information on immunity.
Instead of explicitly modeling mosquito dependence on the

force of infection we can define the transmission rate μS1E at the
current time t in a more general way as

μS1EðtÞ=
Z t

−∞

λðsÞγðt− sÞdΓðsÞ, [S7]

where λðsÞ is the force of infection at a previous time s when the
mosquito bites the infected human and γðt− sÞ is a delay distri-
bution (for duration of parasite life cycle inside mosquito plus
vector survival).
We take γ to be the density of a Γðκ, τ=κÞ random variable with

mean delay τ and variance τ2=κ.
Then

γðtÞ= ðκ=τÞκtκ−1
ðκ− 1Þ! expf−κt=τg. [S8]

To implement the multiiterated filtering methodology it is neces-
sary to transform the non-Markovian integral [S7] in a Markovian
chain of differential equations. We consider delay distributions
leading to finite-dimensional Markovian representations. The
consideration of Gamma-distributed transitions between the la-
tent λðtÞ and current μS1EðtÞ force of infection replaces the in-
tegral and the development–mortality kernel of Eq. S7 with a
series of compartments between μEI and λ following refs. 9 and
10). We replace the integral [S7] by the κ-dimensional Markov-
ian system, λðtÞ, . . . λκ−1ðtÞ, λκð≡ μS1EðtÞÞ:

λ1
dt
= ðλ− λ1Þκ

τ
, [S9]

λi
dt
= ðλi−1 − λiÞκ

τ
for  i= 2, . . . , κ− 1, [S10]

μS1E
dt

= ðλκ−1 − μS1EÞ
κ

τ
. [S11]

The differential Eqs. S9–S11 correspond to Gamma-distrib-
uted transitions for the latent period of the force of infection.
Therefore, Eqs. S1–S5 for the human population and Eqs. S9–
S11 for the mosquito populations completely determine our
coupled human–mosquito malaria model. After experimenting
with different choices of κ, we fixed κ= 3.

Transmission and the Entomological Inoculation Rate
The entomological inoculation rate (EIR) is the number of in-
fectious bites per person per unit time. It can be defined as the
product of the human biting rate (M(t) a) and the sporozoite rate (S).

EIRðtÞ=MðtÞa S. [S12]

The human biting rate is the number of bites per human per unit
time, whereMðtÞ equals the number of Anopheles per person at a
given time and a equals the average number of persons bitten by
one Anopheles in 1 d. The sporozoite rate (S) is the proportion of
female mosquitoes containing infective-stage parasites in their
salivary glands upon dissection and therefore infectious. Within

our framework we could rewrite λ in Eq. S7 by comparing it with
Eq. S6 as

λðtÞ=
�
I1ðtÞ+ qf × I2ðtÞ+ sf × S2ðtÞ

NðtÞ expfEIRðtÞ+DðtÞg dΓ
dt

�
β,

[S13]

with β a dimensional constant set as β= yr−1, which is required to
give μS1EðtÞ units of y−1.
Here, qf and sf are the fractions of asymptomatics in classes I2

and S2 respectively capable of infecting mosquitoes, with the
fraction of infectives from I1 set to 1 for comparison.
Environmental noise was included as multiplicative Gamma

noise to take into account the stochasticity that arises from
variations in vector abundance and behavior (11, 12). ΓðtÞdenotes
a Gamma process with stationary independent increments such
that ΓðtÞ−ΓðsÞ∼Γð½t− s�=σ2, σ2Þ, where Γða, bÞ is the Gamma
distribution with mean ab and variance ab2. The rationale behind
choosing a Gamma noise is that of keeping the term λðtÞ positive
at all times; because a Gamma process is increasing, its de-
rivative (dΓ=dt) is nonnegative at all times. For the continuous-
time process in [S1–S5] and [S9–S11], all of the states are
necessarily nonnegative. When discretizing to give a Euler so-
lution with time step Δ, this property could be violated. How-
ever, with Δ= 1 d, such potential numerical issues did not cause
problems in our fitted models.
We modeled drug treatment as a rectangular window function

D that is equal to one for the time period of the corresponding
drug treatment and zero otherwise. Different drug treatment
periods were taken from the dataset:

DðtÞ= βquiD
�
tqui

�
+ βcloD½tclo�+ βfanD

�
tfan

�
+ βactD½tact�. [S14]

Throughout the text, we refer to this model as the EIR transmis-
sion model. The timing of transmission is well emulated by the
EIR model for both Dielmo and Ndiop, although not the inten-
sity, a fact that could be due to spatial heterogeneities not taken
into account in our model.

Transmission and Climatic Variables
We expect mosquito populationMðsÞ in Eq. S6 to be seasonal, to
have a dependence on climatic factors, and to have a random
component. We can rewrite the transmission λ in Eq. S6 as

λðtÞ=
"
I1ðtÞ+ qf × I2ðtÞ+ sf × S2ðtÞ

NðtÞ

× exp

(Xk
i=1

βisiðtÞ+ZðtÞ+DðtÞ
)
dΓ
dt

#
β,

[S15]

where β is a dimensional constant and we set β= y−1. Here, time
is measured in units of years.
Seasonality is modeled nonparametrically through the co-

efficients fβig of a periodic cubic B-spline basis siðtÞ, i= 1, . . . , 6
constructed using six evenly spaced knots. It represents in-
terannual variability in transmission and was modeled by

log βseasðtÞ=
X5
i=0

bisiðtÞ, [S16]

where siðtÞ is a periodic cubic B-spline basis defined so that siðtÞ
has a maximum at t= ð2i+ 1Þ=12, and normalized so thatP5

i=0siðtÞ= 1. When only splines were considered, we called the
model the Sp model.
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Time-varying covariates enter via the vector ZðtÞ. Temperature
and rainfall variability lead to air and soil moisture fluctuations
that drive changes in mosquito population densities and, for
temperature, may alter the rate of development of the parasite
within the mosquito. In this direction we suggested a (simplest
parsimonious) linear combination of temperature and rainfall as
an indicator of humidity conditions (SpTR model) as

ZðtÞ= βrainRðtÞ+ βtempTðtÞ, [S17]

where RðtÞ is the standardized rainfall anomaly and TðtÞ is the
standardized temperature anomaly. All of the climate covariates
were normalized to zero mean and unit variance. Therefore, in
this model rainfall forcing is represented by the term βrainRðtÞ
and temperature forcing is represented by the term βtempTðtÞ.
The link of the malaria vector breeding sites to land water

content (LWC) and/or soil moisture (SM) states in an area has
been reported extensively in the past (13). For regions in the
world where direct estimates of the local LWC or SM values are
lacking, the construction of analogs from rainfall and temper-
ature is justified (14). Soil moisture plays an important role in
hydrological processes with partitioning of rainfall into in-
filtration and runoff or partitioning of net radiation into sensible
and latent heat and as such, acting as an analog of the water
content remaining in the soil after precipitation. Thus, the
combined effect of precipitation and evaporation on SM can be
defined as Rk=ETj with j= 1, . . . , k, where Rk is precipitation of
k days ago, and ETj is evaporation of j days ago. As such, land
surface soil moisture integrates the local precipitation and
surface evaporation that in subtropical regions is largely de-
pendent on temperature (14). It is well known that there exists
a negative correlation between SM states and mean and max-
imum temperatures, more so in the subtropics and semidesertic
areas (15, 16). Eltahir and collaborators (17) also suggested a
link between rainfall and surface wet bulb temperature during
summer months in the United States, with wet bulb tempera-
ture being an indicator of soil moisture (18). Based on these
facts we propose an alternative transmission model (SpROT)
with an additional term representing the interaction between
rainfall and temperature:

ZðtÞ= βrainRðtÞ+ βtempTðtÞ+ βROT
RðtÞ
TðtÞ. [S18]

Therefore, the soil moisture term is represented by βROTRðtÞ=TðtÞ.
Rainfall time series from Dielmo (13,685662N, 16,38463W)

and Ndiop (13,724620N, 16,409324W) come from a meteoro-
logical ground-based manually operated station in each village
(Fig. S3).
Due to the lack of complete local village data, we averaged the

temperature series extracted from the four nearest towns [e.g.,
Cap Skirring, Kaolack, Diourbel, and Ziguinchor; National
Oceanic and Atmospheric Administration (NOAA) National
Climate Data Center (NCDC) Global Hydrology and Climatol-
ogy Network (GHCN) v2] (19). Cap Skirring and Ziguinchor are
in Casamance near the border with Guinée Bissau. Diourbel is
east of Dakar, in the Sahel region, and Kaolack is the closest
town to Dielmo, in between other stations. Maximum, mean, and
minimum averaged temperature time series are shown in Fig. S4.
Drug treatment was included as in the previous section through

Eq. S14.
As described in the main text, the rate of change of the force of

infection μS1E is driven by an exogenous forcing including three
sources of variability that influence the vector’s abundance and
behavior, i.e., seasonality, climate covariates (here, rainfall and
temperature), and random noise.

Immunity and Recovery Rates. The rate of loss of immunity from
asymptomatics I2 to subpatent S2 was modeled as dependent on
transmission (8, 20, 21),

μI2S2ðtÞ=
μS1EðtÞ

eμS1EðtÞtI2S2 − 1
,

with tI2S2 a characteristic time for the transition in the sense that
1=tI2S2 is the basal rate at which transmission tends to zero.
Therefore, tI2S2 is expected to be longer in Ndiop than in Dielmo,
given the evidence of higher parasite immunity in Dielmo. Ac-
cording to this formulation immunity lasts until the occurrence
of a gap of tI2S2 mo without exposure. This function is consistent
with the fact that in high-transmission places like Dielmo (high
μS1E) the decay of immunity is slower (μI2S2 will be smaller) than
in low unstable-transmission sites like Ndiop. Similarly, clear-
ance of subpatent infections was modeled as (20)

μS2S1ðtÞ=
μS1EðtÞ

eμS1EðtÞtS2S1 − 1
.

This function is consistent with the fact that in high-trans-
mission places like Dielmo (high μS1E) the process of full recovery
is slower than in low unstable-transmission sites like Ndiop.

Superinfection and Recrudescence of Existing Infections.Reinfection
from asymptomatic class I2 to infected symptomatic I1 was
considered as a fraction of the force of infection:

μI2I1 = si1μS1E.

This transition takes into account new infections, i.e., superinfection,
as well as recrudescent infections. According to ourmodeling results,
even that the fraction of force of infection (relative to that needed to
pass from susceptible to exposed) needed for an individual to pass
from asymptomatic to symptomatic was much smaller for Dielmo
(si1 ≈ 0.02) than for Ndiop (si1 ≈ 0.1), the forces needed to go from
I2 to I1 are comparable for both villages. This is because the overall
force of infection is 10 times higher in Dielmo than in Ndiop.
Superinfection from subpatent infections S2 to symptomatic I1

was considered as

μS2I1 = si2μS1E.

This transition denotes mainly superinfection in the sense that hu-
mans with ultralow parasite densities flip to the symptomatic state.
Reinfection from class S2 to class I2 was considered as

μS2I2 = si3μS1E.

Our results indicate that the fraction of the force of infection (rel-
ative to that needed to pass from susceptible to exposed) resulting
in change of state from subpatent to asymptomatic is the same for
both villages (0.5); however, as the overall force of infection is
10 times higher in Dielmo than in Ndiop, the total force needed
to go from S2 to I2 is 10 times higher in Dielmo than in Ndiop.

Observation Model. Let Cn be the number of people moving from
class E, S2, or I2 to class I1 between time tn−1 and tn, where tn is
the nth observation time; i.e.,

Cn =
Ztn
tn−1

ðdNEI1ðsÞ+ dNS2I1ðsÞ+ dNI2I1ðsÞÞ.

Observations Yn at time tn are then modeled as YnjCn ∼
Negbinðmean= ρCn, var= ρCn + ρ2σ2obsC

2
nÞ. Here ρ is a number
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between 0 and 1 that corresponds to the fraction of the infected
symptomatic population that reports to the hospital. In our case ρ
is expected to be equal to one given that every fever case is di-
agnosed and, if confirmed, is treated. This fraction was fitted and
the obtained values were ≈   0.9 (Tables S3 and S4). The negative
binomial distribution accounts for the possibility of overdispersion.

Natural Mortality Rate Estimation
Assuming a population in demographic equilibrium [ρhðαÞ time
independent] and ignoring extra mortality due to disease, we can
define the density of people ρh at a given age α as

ρhðαÞ= δ
e−δ α

1− e−δ αm
, [S19]

with δ the natural mortality rate and αm the maximum age in the
human population. Fitted values for the natural mortality rate
are shown in Fig. S1 and were set as the fixed value for mortality
in the models (i.e., 0.03 1/y).

Population Changes
During the rainy season there is a general return to the village
because adolescents and adults return home to help with the
harvest. Additionally, is it the holiday period and thus certain
children will also return to the village (e.g., those having gone to
Koranic school or accompanied adults to towns/cities). In Fig. S5
we compare occupation for both villages during the first (Jan-
uary–June) and second (July–December) semesters of the year.
The graph shows the total number of days present cumulative
for all villagers during the semester–year for both villages. We
see that occupation for both villages does not vary significantly.
Although there is a small semestrial increase in the population
present in the villages, this is not significant for the overall
population or for the child population, which contributes the
major part of the clinical episodes. Given that not a clear pat-
tern was observed, this variable was not included in model
transmission.
Since the introduction of the on-site medical facility, there has

been no mortality due to malaria. Obviously there have been other
causes of mortality. The populations are typical of those living in
rural malaria endemic regions with (previously) no access to health
care. There are no intervillage differences, because living so close
(a few kilometers), there is interaction. The only significant be-
havioral change followed the introduction of bed nets after 2008.
There are intraannual population differences but these are small.

Fitted Parameters
We carried out all numerical simulations in the R computing en-
vironment, using the R package Pomp (22) to implement the al-
gorithm for statistical inference, which is detailed elsewhere (23, 24).
Errors were calculated as a weighted average of all of the fits

obtained. The weight assigned to each fit was defined as the
normalized likelihood of the fit.

Sensitivity Analysis. To explore the sensitivity of the results to our
compound of rainfall and temperature, we also fitted themalaria time
series with transmission modeled using temperature and rainfall as
separate covariates. We recall here the goodness of fit when taking
into account contributions both of rainfall and of temperature
in transmission from Tables S3 and S4 (Dielmo, loglik=−782,
AICc = 1,642; Ndiop, loglik=−631, AICc = 1,344). With the com-
bination of splines and temperature (Dielmo, loglik=−784, AICc =
1,643; Ndiop, loglik=−634, AICc = 1,347) the goodness of fit gets
worse than when both contributions are taken into account in
transmission. The same happens when a combination of splines and
rainfall is considered (Dielmo, loglik=−785, AICc = 1,645; Ndiop,
loglik=−632, AICc = 1,344). Interestingly for the case of Ndiop,
accounting for the temperature covariate does not improve signifi-
cantly the goodness of fit, whereas it does in the case of Dielmo.
Rainfall consideration, however, seems to be more crucial to re-
produce malaria dynamics in both villages.

Fitting the Malaria Model by Maximum Likelihood. Fitting partially
observed nonlinear stochastic dynamic models to data is a
methodological challenge. We estimated parameters with a re-
cently developed method, iterated filtering, that allows the like-
lihood-based comparison of models of disease transmission. This
methodology has a plug-and-play property (11, 12), meaning that
one needs only to numerically simulate the differential equations
that define the model. This enables comparison among a wide class
of models. An overview of an iterated filtering procedure, which
converges to the maximum of the likelihood function (25, 26), is
presented elsewhere (24) where the computationally challenging
step is an application of widely used sequential Monte Carlo
techniques (27, 28). The method consists of two loops, with the
external loop essentially iterating an internal, “filtering” loop and
in so doing generating a new, improved estimate of the parameter
values at each iteration. The filtering loop implements a selection
process for a large number of “particles” over time. For each time
step, a particle can be seen as a simulation characterized by its
own set of parameter values. Particles can survive or die as the
result of a resampling process, with probabilities determined by
their likelihood given the data. From this selection process over
the whole extent of the data, a new estimate of the parameters is
generated, and from this estimate, a cloud of new particles is re-
initialized using a given noise intensity adjusted by a cooling fac-
tor. This noise, as well as the stochasticity of the dynamics of the
system itself, provides the variability for the selection process of
the particles to act upon. Further details can be found in refs. 22,
25, and 27–29. Given the huge amount of simulations needed,
these computations were done using a cluster for high-perfor-
mance computing. Fits for Dielmo and Ndiop are shown in Figs.
S6 and S7.
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Fig. S1. Age structure and natural mortality rate for Dielmo (red) and Ndiop (black). The average population for each age bin was taken over 15 y for Ndiop
(black triangles) and 18 y for Dielmo (red circles); error bars are twice the SD of the mean during those years. Natural mortality rate for Dielmo and Ndiop was
fitted according to Eq. S19. Fitted values are δ= 0.0371=y for Dielmo (red solid line) and δ= 0.0411=y for Ndiop (black dotted line).
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Fig. S2. Monthly entomological inoculation rate (EIR) by mosquito species for Dielmo (Upper) and Ndiop (Lower). Red lines, A. funestus; black lines,
A. gambiae s.l.
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Fig. S3. Monthly rainfall for Ndiop (black) and Dielmo (red). Note the high similarity between rainfall in the two villages.
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Fig. S4. Maximum (red), mean (green), and minimum (blue) temperature averaged over four locations: Diourbel, Kaolack, Cap Skirring, Ziguinchor. Tem-
perature was extracted from NOAA NCDC GHCN v2 (19).
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Fig. S5. Occupation fraction for Dielmo (red triangles) and Ndiop (black circles). Solid symbols correspond to all of the population and open symbols cor-
respond to children (less than 15 y old). Mean occupation was calculated as mean number of days present in the village by person during the whole semester.
Error bars are the SD of the mean for the 19 y in Dielmo and the 16 y in Ndiop. Mean occupation and error bars are centered on the corresponding semester;
they are plotted slightly displaced for clarity.
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Fig. S6. Ndiop P. falciparum time series fitted by multiiterated filtering (MIF) procedure. Transmission was modeled by taking into account different drug
periods, seasonal variability, and local climate variability. Population variability was also considered. Model: spTR. Data are shown in red and fit in black.
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Fig. S7. Dielmo P. falciparum time series fitted by multiiterated filtering (MIF) procedure. Transmission was modeled by taking into account different drug
periods, seasonal variability, and local climate variability. Population variability was also considered. Model: SpTR. Data are shown in red and fit in black.
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Table S1. Population (number of inhabitants) of Ndiop and Dielmo

Village 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Dielmo 290 301 303 321 335 333 381 363 434 434 446 414 397 401 405 460 456 487 508
Ndiop — — — 416 414 444 417 476 604 528 513 471 498 455 422 549 477 528 508

Table S2. List of symbols for the malaria model

Symbol Description Unit Estimated? Y/N Constraints

μXY Per-capita rate of transition from compartment X to Y; X, Y ∈fS1, E, I1, I2, S2g y−1 Y >0
βi Ith spline coefficient — Y None
β Dimensionality constant y−1 N 1
τ Mean development delay for mosquitoes d N 11
σ SD of the process noise y1=2 Y >0
ρ Reporting fraction of people in the transition from E to I1 — Y [0–1]
Δ Time step for stochastic Euler integration d N 1
δ Natural mortality rate 1/y N 0.03
σobs SD of the observation noise — Y >0
X0 Initial fraction of people in compartment X; X ∈fS1, E, I1, I2, S2g — Y [0–1]
qf Infectivity of asymptomatic people — Y [0–1]
sf Infectivity of subpatent infected people — Y [0–1]
ps Probability of becoming a symptomatic case — Y [0–1]
ts Fraction of successful treatments — Y [0–1]
si1 Fraction of force of infection for superinfection (from I2 to I1) — Y [0–1]
si2 Fraction of force of infection for superinfection (from S2 to I1) — Y [0–1]
si3 Fraction of force of infection for superinfection (from S2 to I2) — Y [0–1]
βrain Rainfall coefficient in transmission — Y None
βtemp Temperature coefficient in transmission — Y None
βROT Rainfall over temperature coefficient in transmission — Y None
βEIR Entomological inoculation rate coefficient in transmission — Y >0

Fixed parameters are β= 1 y−1, nλ = 2, Δ= 1 d, δ= 0.03 y−1, and ft = 1.
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Table S3. Fitted parameters for Dielmo with transmission modeled as proportional to EIR, with splines,
temperature, and rainfall anomalies (SpTR) and with the additional rain over temperature (ROT) term

Description Symbol Unit Dielmo, EIR Dielmo, SpTR Dielmo, SpROT

Likelihood Loglik — −800 −782 −783
No. data points n — 221 221 221
No. free parameters p — 26 33 34
Second-order or corrected Akaike information criteria AICc — 1,659 1,642 1,646
Time from exposed to infected 1/μEI d 151 134 133
Time from symptomatic to asymptomatic tI1I2 d 14636 10930 10915
Time of immunity decay from asymptomatic to subpatent tI2S2 d 3615 3610 511
Time of recovery after treatment tI1S1T d 101 101 111
Time of recovery from subpatent infection to susceptible tS2S1 d 111 91 81
Development time of parasite τ d 11 11 11
Measurement noise σ — 0.140.01 0.130.01 0.150.01
Observation noise σobs — 0.020.01 0.030.01 0.040.01
Infectivity of I2 class qf — 0.90.1 0.70.1 0.70.1
Infectivity of S2 class sf — 0.60.1 0.50.1 0.50.1
Reporting rate ρ — 0.980.01 0.990.01 0.990.01
Probability of developing symptoms ps — 0.080.01 0.040.02 0.040.01
Initial susceptible population S1.0 — 0.070.01 0.090.04 0.10.2
Initial exposed population E.0 — 0.40.3 0.10.1 0.20.3
Initial infected symptomatic population I1.0 — 0.10.2 0.060.06 0.30.3
Initial infected asymptomatic population I2.0 — 0.40.3 0.090.09 0.40.3
Initial susceptible subpatent population S2.0 — 0.050.05 0.0030.003 0.040.1
Superinfection fraction, from I2 to I1 si1 — 0.020.01 0.020.01 0.020.01
Superinfection fraction, from S2 to I1 si2 — 0.870.1 0.850.01 0.90.01
Superinfection fraction, from S2 to I2 si3 — 0.560.1 0.530.01 0.600.05
Treatment success ts — 0.940.01 0.910.02 0.910.02
EIR coefficient βEIR — −0.0090.001 — —

Rainfall coefficient βrain — — −0.070.01 −0.20.08
Temperature coefficient βtemp — — −0.040.01 −0.10.02
R over T coefficient βROT — — — 0.160.03
Drug coefficient Quinine βqui — 1.040.01 1.091 0.90.1
Drug coefficient Chloroquine βclo — 2.90.4 2.984 30.2
Drug coefficient Fansidar βfan — −0.250.02 −0.190.01 −0.10.01
Drug coefficient ACT βact — −1.270.03 −1.410.02 −1.50.2
Spline coefficient β1 — — 3.30.2 2.20.2
Spline coefficient β2 — — 1.960.02 1.80.2
Spline coefficient β3 — — 1.60.1 1.70.1
Spline coefficient β4 — — 2.720.3 2.80.2
Spline coefficient β5 — — 0.960.02 0.70.1
Spline coefficient β6 — — 2.520.03 2.60.2

The number of fitted parameters, including initial conditions, and data points are listed. According to the second-order or corrected
Akaike information criteria (AICc), the SpTR model better fits the observed data. Subscript numbers are the errors of the fitted parameters.
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Table S4. Fitted parameters for Ndiop with transmission modeled as proportional to EIR, with splines,
temperature, and rainfall anomalies (SpTR) and with the additional rain over temperature (ROT) term

Description Symbol Unit Ndiop, EIR Ndiop, SpTR Ndiop, SpROT

Likelihood Loglik — −737 −631 −631
No. data points n — 172 172 172
No. free parameters p — 26 33 34
Second-order Akaike information criteria AICc — 1536 1344 1347
Time from exposed to infected 1/μEI d 101 91 91
Time from symptomatic to asymptomatic tI1I2 d 981 14630 106109
Time of immunity decay from asymptomatic to subpatent tI2S2 d 12030 10930 9125
Time of recovery after treatment tI1S1T d 316 111 111
Time of recovery from subpatent infection to susceptible tS2S1 d 10930 10930 10933
Development time of parasite τ d 11 11 11
Measurement noise σ — 0.250.02 0.250.02 0.180.01
Observation noise σobs — 0.150.05 0.150.05 0.050.03
Infectivity of I2 class qf — 0.60.2 0.50.2 0.70.1
Infectivity of S2 class sf — 0.90.2 0.50.2 0.60.1
Reporting rate ρ — 0.990.01 0.980.01 0.990.01
Probability of developing symptoms ps — 0.60.2 0.80.1 0.70.1
Initial susceptible population S1.0 — 0.30.2 0.70.2 0.70.2
Initial exposed population E.0 — 0.080.02 0.030.02 0.030.02
Initial infected symptomatic population I1.0 — 0.30.01 0.30.3 0.30.2
Initial infected asymptomatic population I2.0 — 0.080.02 0.010.01 0.10.1
Initial susceptible subpatent population S2.0 — 0.30.02 0.020.05 0.040.07
Superinfection fraction, from I2 to I1 si1 — 0.70.02 0.10.1 0.140.04
Superinfection fraction, from S2 to I1 si2 — 0.10.1 0.40.1 0.50.1
Superinfection fraction, from S2 to I2 si3 — 0.10.1 0.50.1 0.60.1
Treatment success ts — 0.890.03 0.920.03 0.910.04
EIR coefficient βEIR — 9.51.1 — —

Rainfall coefficient βrain — — 0.0080.002 0.080.02
Temperature coefficient βtemp — — −0.50.6 −0.060.04
R over T coefficient βROT — — — −0.090.01
Drug coefficient Quinine βqui — 2.20.7 0.450.08 0.390.2
Drug coefficient Chloroquine βclo — 4.20.8 1.690.01 2.50.3
Drug coefficient Fansidar βfan — 0.80.7 −0.40.1 −0.50.2
Drug coefficient ACT βact — 0.90.9 −1.230.09 −1.80.2
Spline coefficient β1 — — 0.460.07 0.50.1
Spline coefficient β2 — — −1.30.1 −1.60.3
Spline coefficient β3 — — −1.880.03 −1.90.2
Spline coefficient β4 — — 0.50.1 1.10.3
Spline coefficient β5 — — 2.00.3 3.20.2
Spline coefficient β6 — — 0.30.1 0.80.2

Number of fitted parameters, including initial conditions, and data points are listed. According to the second-order Akaike in-
formation criteria (AICc), the SpTR model better fits the observed data. Subscript numbers are the errors of the fitted parameters.
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