An ABC transporter required for intercellular transfer of developmental signals in a heterocystous cyanobacterium

Patrick Videau^{a,1}, Orion S. Rivers^a, Kelly C. Higa^{a,2} and Sean M. Callahan^{a*}

^aDepartment of Microbiology, University of Hawai'i at Mānoa, USA

Present address: ¹Oregon State University, College of Pharmacy, 103 Memorial Place, 418 Weniger Hall, Corvallis, OR 97331; ²University of Colorado Anschutz Medical Campus, Department of Immunology & Microbiology, 12800 E. 19th Ave., RC1-North Tower, Aurora, CO 80045

***For correspondence:** E-mail scallaha@hawaii.edu; Tel. (+1) 808 956 8015; Fax (+1) 808 956 5339

Supporting Information

Figure S1. Acetylene reduction assay with *hetC*-mutant strains conducted in aerobic (clear bars) or anaerobic (dotted bars) conditions either 24 h (wild type, $\Delta hetR$, $\Delta patS$, and $\Delta hetC \Delta patS$ strains) or 48 h ($\Delta hetC$, $\Delta hetN$, and $\Delta hetC \Delta hetN$ strains) after the removal of combined nitrogen. Error bars represent one standard deviation.

Figure S2. Source cells are not present at 0 h after the induction of differentiation. Plasmid pPJAV247 contains a PpatS-YFP transcriptional fusion divergently transcribed from P_{petE^-} *hetR*(*H69Y*)-CFP and was introduced into the wild type (A), $\Delta hetC$ (B), $\Delta patS$ (C), $\Delta hetC \Delta patS$ (D), $\Delta hetN$ (E), and $\Delta hetC \Delta hetN$ (F) strains. Cultures were maintained in the presence of ammonia and were imaged 0 h after its removal. From top to bottom: bright field, yellow fluorescence from P_{patS} -YFP, blue fluorescence from $P_{petE^-}hetR(H69Y)$ -CFP, and red autofluorescence. Bar, 10 µm.

Figure S3. Short cell intervals between heterocysts do not display measureable signal ranges. The wild type (A), $\Delta hetN$ (B), $\Delta hetN\Delta hetC$ (C) strains harboring pPJAV247, which encodes YFP expressed from the *patS* promoter to mark proheterocysts and HetR(H69Y)-CFP expressed from the copper-inducible *petE* promoter, were imaged 9 h after the removal of combined nitrogen. From top to bottom: bright field, yellow fluorescence from P_{*patS*}-YFP, blue fluorescence from HetR(H69Y)-CFP, and the composite image. Carets indicate proheterocysts. Bar, 10 µm.

Figure S4. Short cell intervals between heterocysts do not display measurable signal ranges. The wild type (A) and $\Delta hetN$ (B) strains harboring pPJAV247, which encodes YFP expressed from the *patS* promoter to mark proheterocysts and HetR(H69Y)-CFP expressed from the copper-inducible *petE* promoter, were imaged 24 (A) or 48 h (B) after the removal of combined nitrogen. From top to bottom: bright field, yellow fluorescence from P_{*patS*}-YFP, blue fluorescence from HetR(H69Y)-CFP, and the composite image. Carets indicate heterocysts. Bar, 10 µm.

Figure S5.Transcription of *hetN* is unaltered in heterocysts produced by strains containing a *hetC* mutation. The plasmid pPJAV341, which contains a transcriptional fusion of the *hetN* promoter to the FMN-dependent fluorophore EcFbFP, was introduced into the wild type (A), $\Delta hetC$ (B), and $\Delta patS \Delta hetC$ (C) strains. Cultures were imaged 48 h after the removal of combined nitrogen. From top to bottom: bright field, blue fluorescence from P_{hetN}-EcFbFP, and red autofluorescence. Carets indicate heterocysts. Bar, 10 µm.

Figure S6. Degradation of HetR-CFP in response to RGSGR peptide. Plasmid pPJAV247 contains a PpatS-YFP transcriptional fusion divergently transcribed from P_{petE} -hetR(H69Y)-CFP and was introduced into the indicated strains. Cultures were maintained in the presence of nitrate and imaged before and 6 hours after the addition of 10 µM PatS-5 pentapeptide (RGSGR) or a control to which nothing was added. From top to bottom: bright field, yellow fluorescence from P_{patS} -YFP, blue fluorescence from P_{petE} -hetR(H69Y)-CFP, and red autofluorescence. Bar, 10 µm.

Strain (Genotype)	Hours N-	Heterocyst Percentage	Mean Vegetative	Heterocyst Occurrence	Diazotrophic Growth
		_	Cell Interval		
Wild type	24	9.13 ± 0.64	10.9 ± 0.26	95 ± 1.53; 5 ± 1.53	YES
	48	7.31 ± 0.61	13 ± 0.3	94.11 ± 0.96;	
				5.44 ± 1.17	
				0.44 ± 0.51	
	72	9.06 ± 0.42	13.2 ± 0.34	94.11 ± 1.35; 5.89 ± 1.35	
	96	8.73 ± 1.01	14.3 ± 0.37	93.22 ± 1.02;	
				6 ± 0.88;	
				0.78 ± 0.19	
	120	8.93 ± 0.31	14.2 ± 0.36	92.78 ± 1.07;	
				5.67 ± 1.2;	
				1.56 ± 0.51	
UHM115	24	8.8 ± 0.53	11 ± 0.35	86.78 ± 1.64;	YES
$(\Delta het N::\Omega)$				12.89 ± 1.64;	
Sp ^r /Sm ^r)	10	10 5 1 00		0.33 ± 0.33	
	48	13.5 ± 1.29	6.2 ± 0.38	44.67 ± 1.2;	
				29.78 ± 0.77 ;	
	70	4740+447	57 ,000	25.67 ± 0.58	-
	12	17.13 ± 1.47	5.7 ± 0.39	34.89 ± 1.17 ;	
				20.11 ± 1.00 ,	
	06	177+07	61+044	31 ± 1.01	-
	90	17.7 ± 0.7	0.1 ± 0.44	39.33 ± 0.00 , 26.22 ± 0.84	
				20.22 ± 0.04 , 34.67 ± 01.15	
	120	178+1/	67+048	$\frac{34.07 \pm 01.13}{10 \pm 2.73}$	-
	120	17.0 ± 1.4	0.7 ± 0.40	40 ± 2.75 , 20 11 + 0 84.	
				3989 ± 25	
UHM334	24	249+27	3+02	$58.22 \pm 0.84^{\circ}$	YES
(ΔpatS::Ω			0 - 0	40.78 ± 0.77 :	
Sp ^r /Sm ^r)				1 ± 1.2	
. ,	48	20.13 ± 1.14	3.5 ± 0.21	61.78 ± 2.52;	
				35.33 ± 2.73;	
				2.67 ± 1.2	
	72	17.47 ± 1.94	4.3 ± 0.25	63.33 ± 0.67;	
				29.44 ± 1.84;	
				7.33 ± 2.08	
	96	15.7 ± 2.1	6.3 ± 0.34	67.44 ± 2.67;	
				25 ± 0.88;	
				7.56 ± 1.9	
	120	16.6 ± 1.31	6.3 ± 0.32	69.78 ± 0.96;	
				$24.56 \pm 0.84;$	
	24	0		5.07 ± 1.2	NO
(A hotC)	<u> </u>	0	-		UNU .
(AnetC)	40	2.01 ± 1.2	-	30.70 ± 0.09 ;	
	70	378 ± 1 /0	21 + 0 4	1.22 ± 0.09	1
	12	5.10 I 1.49	21 ± 0.4	54.70 ± 1.0 , 5 11 + 1 30	
	96	47+125	197+042	93 44 + 1 17	1
	50	-7.7 ± 1.20	10.1 ± 0.72	50.77 ± 1.17	

Table S1. Patterns of heterocysts produced by strains of Anabaena.

				6.56 ± 1.17	
	120	4.4 ± 1.67	18.5 ± 0.45	91.44 ± 1.68;	
				8.56 ± 1.68	
UHM224	24	16.27 ± 1.7	3.8 ± 0.24	70.44 ± 0.84;	YES
(∆hetC				27.78 ± 0.69;	
ΔpatS::Ω				1.78 ± 0.51	
Sp ^r /Sm ^r)	48	17.8 ± 1.31	6 ± 0.33	72.33 ± 1.76;	
				23.89 ± 1.68;	
				3.78 ± 1.02	
	72	15.2 ± 1.78	11 ± 0.51	73.89 ± 1.68;	
				22.44 ± 0.84;	
				3.56 ± 1.26	
	96	14.87 ± 1.22	12 ± 0.54	73.11 ± 3.17;	
				22.78 ± 2.67;	
				4.11 ± 0.51	
	120	13.67 ± 1.33	11.9 ± 0.56	77 ± 1;	
				19 ± 1.53;	
				4.33 ± 0.88	
UHM225	24	0.33 ± 0.31	-	96.89 ± 0.84;	YES
(∆hetC				3.11 ± 0.84	
ΔhetN::Ω	48	6.93 ± 0.99	10.6 ± 0.43	72.11 ± 1.26;	
Sp'/Sm')				24.33 ± 1.33;	
				3.56 ± 0.51	
	72	9.6 ± 0.87	10.8 ± 0.51	57.78 ± 3.24;	
				29.89 ± 2.04;	
				12.33 ± 1.2	
	96	10.33 ± 1.21	10.2 ± 0.53	51.78 ± 0.69;	
				29.67 ± 1.2;	
				18.33 ± 1.86	
	120	8.27 ± 0.88	11.6 ± 0.53	55.11 ± 1.17;	
				24.56 ± 1.35;	
				20.33 ± 1.2	

At the indicated times following nitrogen stepdown, 500 cells were counted in triplicate and total heterocysts are presented as the mean ± the standard deviation. The presence of single (top line), double (second line), or multiple contiguous heterocysts (third line) was determined for 300 heterocyst occurrences in triplicate and are presented as the average percent ± the standard deviation. The number of vegetative cell between heterocysts was counted for 300 intervals and is presented as the mean ± the standard deviation of the mean. The ability to grow diazotrophically was assessed visually following two weeks of growth on solid BG-11 medium lacking a combined nitrogen source.

Table S2. Statistical analysis of differences in signal ranges 9 h following the removal of combined nitrogen. Pairwise comparisons of signal ranges recorded from the indicated strains were analyzed with a t-test. P-values are indicated for each pairwise comparison. Values below 0.05 were considered indicative of a significant difference between signal ranges.

	WT	∆patS	∆hetN	∆hetC	∆hetC∆patS	∆hetC∆hetN
WT		< 0.0001	0.16	0.59	< 0.0001	0.2
∆patS			< 0.0001	< 0.0001	1	0.0006
∆hetN				0.55	< 0.0001	0.65
∆hetC					< 0.0001	0.26
∆hetC∆patS						0.0046
∆hetC∆hetN						

Table S3. Statistical analysis of differences in signal ranges 24 or 48 h following the removal of combined nitrogen. Pairwise comparisons of signal ranges recorded from the indicated strains were analyzed with a t-test. P-values are indicated for each pairwise comparison. Values below 0.05 were considered indicative of a significant difference between signal ranges.

	WT	∆patS	∆hetN	∆hetC	∆hetC∆patS	∆hetC∆hetN
WT		N/A	0.92	< 0.0001	< 0.0001	< 0.0001
∆patS			N/A	N/A	N/A	N/A
∆hetN				< 0.0001	< 0.0001	< 0.0001
∆hetC					0.46	1
∆hetC∆patS						0.57
∆hetC∆hetN						

Strain or plasmid	Characteristic(s)*	Source or
		reference
<i>Anabaena</i> sp. strains		
PCC 7120	Wild type	Pasteur Culture
1 00 / 120		Collection
UHM103		(1)
UHM115	AhetN O Sp ^r /Sm ^r	(1)
UHM224	AhetC ApatS::0 Sp ^r /Sm ^r	This study
UHM225	AhetC AhetN::0 Sp ^r /Sm ^r	This study
UHM232	AhetC	This study
UHM334	ApatS::0 Sp ^r /Sm ^r	This study
Plasmids		
pBlueScript SK+	Cloning vector, Ap ^r	Stratagene
pAM504	Shuttle vector for replication in <i>E. coli</i> and <i>Anabaena</i> : Km ^r Nm ^r	(2)
pUC57-PS12-cfp	Plasmid used as template for CFP	(3)
pUC57-PS12-vfp	Plasmid used as template for YFP	(3)
pRL277	Suicide vector: Sp ^r /Sm ^r	(4)
pAM1951	pAM504 with P _{neter} gfp	(5)
pSMC126	pAM504 with P_{heth} afp	(6)
pSMC164	Suicide plasmid used to replace patS with Sp ^r /Sm ^r Ω interposon	(7)
pSMC182	Suicide plasmid used to replace <i>hetN</i> with $Sp^{r}/Sm^{r} \Omega$ interposon	(1)
pDR306	pAM504 with P _{nete} -hetR(H69Y)-afp	(8)
pPJAV123	pAM504 with the Ndel site removed	(9)
pPJAV341	pAM504 with Photor ECEbEP	(9)
pPJAV243	pAM504 with Prete-CFP	This study
pPJAV247	pAM504 with P_{petE} -hetR(H69Y)-CFP transcribed divergently from P_{patS} -	This study
pKH206	pRL277 used to delete <i>hetC</i>	This study
Oligonucleotide"	Sequence	
CCFP2-PpetE- OEX-F	GATCCTCCCGCGGATCGGCGTCAGCTATGAGCGGGGGGCGAGGAGG	CTGTTCGCTGGC
CCFP2-PpetE-	CGATCCGCGGGAGGATCCCCCGGGCATATGGTTCTCCTAACCTGT	AGTTTTATTTTTC
OEX-R		
CCFP2-Sacl-R	ATATAGAGCTCTTAGCGGTACAGCTCGTCCATGCCGTG	
del-hetC-dn-F	AAACAGACCCGGGTCTAGTCAGTTGTCAG	
del-hetC-dn-R	TATATGAGCTCTACTAGGTAATGAGG	
del-hetC-up-F	TATATAGATCTCAACCAAGGGAAAATG	
del-hetC-up-R	TGACTAGACCCGGGTCTGTTTGGTGTGTAAAC	
del-hetC-dn-out	TTTTCATGAATGTCACCCG	
del-hetC-up-out	AACCAGTGTTAACAATTTTCGG	
HetR-F-Ndel-	ATCGATCGCATATGAGTAACGACATCGATCTGATC	
express		
hetR-tln-BamHI-R	GGATCCATCTTCTTCTACCAAACACCATTTG	
down-hetN-R	GGATCCGCCCATTAATATAAGTCTC	
up-hetN-F	GAGCTCGGCAAGCAGAGTTAATC	
patSfor	GATATCTAATCGATGCCACATCTAAG	
patSrev	CACATTAATCTCACTAACTTCTACATC	
PpatS-MunI-F	ATATACAATTGTGAATTTGTTTTGGGAACACTTAAG	
PpatS-OEX-R	CGCCGCTGCTCATGTATATCTCCTTCTTAAATCTAGCGCTCATC	
PpetE-Xhol-F	TATATCTCGAGGCTGAGGTACTGAGTACACAGC	

Table S4. Strains, plasmids, and oligonucleotide primers used in this study.

Turbo-OEX-F	GAAGGAGATATACATGAGCAGCGGCGCCCTGCTGTTCCACGGC
YFP-Munl-R	ATATACAATTGTCAGCTGGTGTCTCCGGAAC

*Ap, ampicillin; Km, kanamycin; Nm, neomycin; Sp, spectinomycin; Sm, streptomycin. ^aOligonucleotides are shown in the 5'-to-3' direction.

References cited

- Borthakur, P. B., C. C. Orozco, S. S. Young-Robbins, R. Haselkorn, and S. M. Callahan. 2005. Inactivation of *patS* and *hetN* causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium *Anabaena* sp. PCC 7120. Mol. Microbiol. 57:111-123.
- Wei, T.-F., R. Ramasubramanian, and J. W. Golden. 1994. Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J. Bacteriol. 176:4473-4482.
- Norris, M. H., Y. Kang, B. Wilcox, and T. T. Hoang. 2010. Stable site-specific fluorescent tagging constructs optimized for Burkholderia species. Appl. Env. Microbiol. 76:7635-7640.
- 4. Black, T. A., Y. Cai, and C. P. Wolk. 1993. Spatial expression and autoregulation of *hetR*, a gene involved in the control of heterocyst development in *Anabaena*. Mol. Microbiol. **9**:77-84.
- 5. **Yoon, H.-S., and J. W. Golden.** 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science **282**:935-938.
- 6. **Callahan, S. M., and W. J. Buikema.** 2001. The role of HetN in maintenance of the heterocyst pattern in *Anabaena* sp. PCC 7120. Mol. Microbiol. **40**:941-950.
- Orozco, C. C., D. D. Risser, and S. M. Callahan. 2006. Epistasis analysis of four genes from *Anabaena* sp. strain PCC 7120 suggests a connection between PatA and PatS in heterocyst pattern formation. J. Bacteriol. 188:1808-1816.
- 8. **Risser, D. D., and S. M. Callahan.** 2009. Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay. Proc. Natl. Acad. Sci. USA **106**:19884-19888.
- 9. Videau, P., R. T. Oshiro, L. M. Cozy, and S. M. Callahan. 2014. Transcriptional dynamics of developmental genes assessed with an FMN-dependent fluorophore in mature heterocysts of *Anabaena* sp. strain PCC 7120. Microbiol. **160**:1874-1881.